Search results for: the torsional rate constant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9775

Search results for: the torsional rate constant

9385 Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment

Authors: Fatemeh Rezaei, Babak Shokri

Abstract:

In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films.

Keywords: cellular response, hydrophilicity, MTT assay, PMMA, RF plasma

Procedia PDF Downloads 671
9384 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie

Abstract:

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 414
9383 Encapsulation of Volatile Citronella Essential oil by Coacervation: Efficiency and Release Kinetic Study

Authors: Rafeqah Raslan, Mastura AbdManaf, Junaidah Jai, Istikamah Subuki, Ana Najwa Mustapa

Abstract:

The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using gum Arabic and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph was developed with R2 equal to 0.9523 for the accurate determination of encapsulation efficiency and release study. The release kinetic was analyzed based on Fick’s law of diffusion for polymeric system and linear graph of log fraction release over log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The capsules morphology analysis supported the release kinetic mechanisms of produced capsules for both coacervation process.

Keywords: simple coacervation, complex coacervation, encapsulation efficiency, release kinetic study

Procedia PDF Downloads 316
9382 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 264
9381 Nanofluids and Hybrid Nanofluids: Comparative Study of Mixed Convection in a Round Bottom Flask

Authors: Hicham Salhi

Abstract:

This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results. This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results.

Keywords: bottom flask, mixed convection, hybrid nanofluids, numerical simulation

Procedia PDF Downloads 88
9380 Growth Performance, Survival Rate and Feed Efficacy of Climbing Perch, Anabas testudineus, Feed Experimental Diet with Several Dosages of Papain Enzyme

Authors: Zainal A. Muchlisin, Muhammad Iqbal, Abdullah A. Muhammadar

Abstract:

The objective of the present study was to determine the optimum dose of papain enzyme in the diet for growing, survival rate and feed efficacy of climbing perch (Anabas testudineus). The study was conducted at the Laboratory of Aquatic of Faculty of Veterinary, Syiah Kuala University from January to March 2016. The completely randomized design was used in this study. Six dosages level of papain enzyme were tested with 4 replications i.e. 0 g kg-1 of feed, 20.0 g kg-1 feed, 22.5 g kg-1 of feed, 25.0 g kg-1 of feed, 27.5 g kg-1 of feed, and 30.0 g kg-1 of feed. The experimental fish fed twice a day at feeding level of 5% for 60 days. The results showed that weight gain ranged from 2.41g to 7.37g, total length gain ranged from 0.67cm to 3.17cm, specific growth rate ranged from 1.46 % day to 3.41% day, daily growth rate ranged from 0.04 g day to 0.13 g day, feed conversion ratio ranged from 1.94 to 3.59, feed efficiency ranged from 27.99% to 51.37%, protein retention ranged from 3.38% to 28.28%, protein digestibility ranged from 50.63% to 90.38%, and survival rate ranged from 88.89% to 100%. The highest rate for all parameters was found in the dosage of 3.00% papain enzyme kg feed. The ANOVA test showed that enzyme papain gave a significant effect on the weight gain, total length gain, daily growth rate, specific growth rate, feed conversion ratio, feed efficiency, protein retention, protein digestibility, and survival rate of the climbing perch (Anabas testudieus). The best enzyme papain dosage was 3.0%.

Keywords: betok, feed conversion ratio, freshwater fish, nutrition, feeding

Procedia PDF Downloads 237
9379 Experimental Investigation on the Role of Thermoacoustics on Soot Formation

Authors: Sambit Supriya Dash, Rahul Ravi R, Vikram Ramanan, Vinayak Malhotra

Abstract:

Combustion in itself is a complex phenomenon that involves the interaction and interplay of multiple phenomena, the combined effect of which gives rise to the common flame that we see and use in our daily life applications from cooking to propelling our vehicles to space. The most important thing that goes unnoticed about these flames is the effect of the various phenomena from its surrounding environment that affects its behavior and properties. These phenomena cause a variety of energy interactions that lead to various types of energy transformations which in turn affect the flame behavior. This paper focuses on experimentally investigating the effect of one such phenomenon, which is the acoustics or sound energy on diffusion flames. The subject in itself is extensively studied upon as thermo-acoustics globally, whereas the current work focuses on studying its effect on soot formation on diffusion flames. The said effect is studied in this research work by the use of a butane as fuel, fitted with a nozzle that houses 3 arrays consisting of 4 holes each that are placed equidistant to each other and the resulting flame impinged with sound from two independent and similar sound sources that are placed equidistant from the centre of the flame. The entire process is systematically video graphed using a 60 fps regular CCD and analysed for variation in flame heights and flickering frequencies where the fuel mass flow rate is maintained constant and the configuration of entrainment holes and frequency of sound are varied, whilst maintaining constant ambient atmospheric conditions. The current work establishes significant outcomes on the effect of acoustics on soot formation; it is noteworthy that soot formation is the main cause of pollution and a major cause of inefficiency of current propulsion systems. This work is one of its kinds, and its outcomes are widely applicable to commercial and domestic appliances that utilize combustion for energy generation or propulsion and help us understand them better, so that we can increase their efficiency and decrease pollution.

Keywords: thermoacoustics, entrainment, propulsion system, efficiency, pollution

Procedia PDF Downloads 161
9378 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

Authors: C. Lanzerstorfer, M. Hinterberger

Abstract:

The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.

Keywords: iron ore concentrate, flowability, moisture content, wall friction angle

Procedia PDF Downloads 318
9377 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 54
9376 Modeling Intelligent Threats: Case of Continuous Attacks on a Specific Target

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

In this paper, we treat a model that falls in the area of protecting targeted systems from intelligent threats including terrorism. We introduce the concept of system survivability, in the context of continuous attacks, as the probability that a system under attack will continue operation up to some fixed time t. We define a constant attack rate (CAR) process as an attack on a targeted system that follows an exponential distribution. We consider the superposition of several CAR processes. From the attacker side, we determine the optimal attack strategy that minimizes the system survivability. We also determine the optimal strengthening strategy that maximizes the system survivability under limited defensive resources. We use operations research techniques to identify optimal strategies of each antagonist. Our results may be used as interesting starting points to develop realistic protection strategies against intentional attacks.

Keywords: CAR processes, defense/attack strategies, exponential failure, survivability

Procedia PDF Downloads 395
9375 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand

Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed

Abstract:

The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.

Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus

Procedia PDF Downloads 151
9374 Heart Rate Variability as a Measure of Dairy Calf Welfare

Authors: J. B. Clapp, S. Croarkin, C. Dolphin, S. K. Lyons

Abstract:

Chronic pain or stress in farm animals impacts both on their welfare and productivity. Measuring chronic pain or stress can be problematic using hormonal or behavioural changes because hormones are modulated by homeostatic mechanisms and observed behaviour can be highly subjective. We propose that heart rate variability (HRV) can quantify chronic pain or stress in farmed animal and represents a more robust and objective measure of their welfare.

Keywords: dairy calf, welfare, heart rate variability, non-invasive, biomonitor

Procedia PDF Downloads 600
9373 Determinants for Discontinuing Contraceptive Use and Regional Variations in Bangladesh: A Sociological Perspective

Authors: Md. Shahriar Sabuz

Abstract:

Bangladesh, a South Asian developing country, has experienced an increasing rate of contraceptive use in the last few decades. But one-third of the pregnancies are still unintended, and the fertility rate surpasses the desired rate of children. It may be because of the discontinuation of the use of contraceptive methods. So, it is necessary to find out the reasons for the discontinuation of the use of contraceptives. Moreover, the rate of contraception discontinuation varies from rural to urban, region to region. In this study, our objectives are to find out the reasons behind the discontinuation of the use of the contraceptive method, and the regional variations of the rate of those reasons. We are using the dataset of Bangladesh Demographic and Health Surveys (BDHS) 2014 for this study and the ever-married women of Bangladesh who have discontinued the use of contraceptive methods aged 15-49. The data was collected from the seven districts of the country. The finding shows that currently there are 23% of women have stopped using their contraception. The most common reasons for stopping using the method are that either they are pregnant or want to be pregnant. A significant number of people are not using the contraceptive method because of the fear of side effects. Though the rate of non-user is higher in rural areas than in urban areas, reasons for method discontinuation are not significantly different between urban and rural areas. However, reasons for discontinuing contraceptive methods significantly vary from region to region.

Keywords: discontinuation of contraceptive, health, pregnant, fertility

Procedia PDF Downloads 95
9372 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 147
9371 Determination Power and Sample Size Zero-Inflated Negative Binomial Dependent Death Rate of Age Model (ZINBD): Regression Analysis Mortality Acquired Immune Deficiency De ciency Syndrome (AIDS)

Authors: Mohd Asrul Affendi Bin Abdullah

Abstract:

Sample size calculation is especially important for zero inflated models because a large sample size is required to detect a significant effect with this model. This paper verify how to present percentage of power approximation for categorical and then extended to zero inflated models. Wald test was chosen to determine power sample size of AIDS death rate because it is frequently used due to its approachability and its natural for several major recent contribution in sample size calculation for this test. Power calculation can be conducted when covariates are used in the modeling ‘excessing zero’ data and assist categorical covariate. Analysis of AIDS death rate study is used for this paper. Aims of this study to determine the power of sample size (N = 945) categorical death rate based on parameter estimate in the simulation of the study.

Keywords: power sample size, Wald test, standardize rate, ZINBDR

Procedia PDF Downloads 437
9370 Thermal Transformation and Structural on Se90Te7Cu3 Chalcogenide Glass

Authors: Farid M. Abdel-Rahim

Abstract:

In this study, Se90Te7Cu3 chalcogenide glass was prepared using the melt quenching technique. The amorphous nature of the as prepared samples was confirmed by scanning electron microscope (SEM). Result of differential scanning calorimetric (DSC) under nonisothermal condition on composition bulk materials are reported and discussed. It shows that these glasses exhibit a single-stage glass transition and a single-stage crystallization on heating rates. The glass transition temperature (Tg), the onset crystallization (Tc), the crystallization temperature (Tp), were found by dependent on the composition and heating rates. Activation energy for glass transition (Et), activation energy of the amorphous –crystalline transformation (Ec), crystallization reaction rate constant (Kp), (n) and (m) are constants related to crystallization mechanism of the bulk samples have been determined by different formulations.

Keywords: chalcogenides, heat treatment, DSC, SEM, glass transition, thermal analysis

Procedia PDF Downloads 399
9369 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 235
9368 Measurements of Physical Properties of Directionally Solidified Al-Si-Cu Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

Al-12.6wt.%Si-2wt.%Cu ternary alloy of near eutectic composition was directionally solidified upward at a constant temperature gradient in a wide range of growth rates (V=8.25-165.41 µm/s). The microstructures (λ), microhardness (HV), tensile stress (σ) and electrical resistivity (ρ) were measured from directionally solidified samples. The dependence of microstructures, microhardness and electrical resistivity on growth rate (V) was also determined by statistical analysis. According to these results, it has been found that for increasing values of V, the values of HV, σ and ρ increase. Variations of electrical resistivity for casting Al-Si-Cu alloy were also measured at the temperature in range 300-500 K. The enthalpy (ΔH) and the specific heat (Cp) for the Al-Si-Cu alloy were determined by differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. The results obtained in this work were compared with the similar experimental results in the literature.

Keywords: Al-Si-Cu alloy, microstructures, micro-hardness, tensile stress electrical resistivity, enthalpy

Procedia PDF Downloads 279
9367 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A

Abstract:

This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 202
9366 Revisiting the Fiscal Theory of Sovereign Risk from the DSGE View

Authors: Eiji Okano, Kazuyuki Inagaki

Abstract:

We revisit Uribe's `Fiscal Theory of Sovereign Risk' advocating that there is a trade-off between stabilizing inflation and suppressing default. We develop a class of dynamic stochastic general equilibrium (DSGE) model with nominal rigidities and compare two de facto inflation stabilization policies, optimal monetary policy and optimal monetary and fiscal policy with the minimizing interest rate spread policy which completely suppress the default. Under the optimal monetary and fiscal policy, not only the nominal interest rate but also the tax rate work to minimize welfare costs through stabilizing inflation. Under the optimal monetary both inflation and output gap are completely stabilized although those are fluctuating under the optimal monetary policy. In addition, volatility in the default rate under the optimal monetary policy is considerably lower than one under the optimal monetary policy. Thus, there is not the SI-SD trade-off. In addition, while the minimizing interest rate spread policy makes inflation rate severely volatile, the optimal monetary and fiscal policy stabilize both the inflation and the default. A trade-off between stabilizing inflation and suppressing default is not so severe what pointed out by Uribe.

Keywords: sovereign risk, optimal monetary policy, fiscal theory of the price level, DSGE

Procedia PDF Downloads 321
9365 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast

Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey

Abstract:

The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.

Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein

Procedia PDF Downloads 255
9364 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation

Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar

Abstract:

In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.

Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment

Procedia PDF Downloads 431
9363 Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation

Authors: J. Y. Tan, L. C. Lum, M. G. Lee, S. Mansouri, K. Hapgood, X. D. Chen, M. W. Woo

Abstract:

Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapor precipitation (AVP), incorporating ethanol vapor as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.

Keywords: absorption, antisolvent vapor precipitation, dissolution rate, folic acid

Procedia PDF Downloads 445
9362 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor

Authors: Manal A. Mohsen, Ahmed Tawfik

Abstract:

Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).

Keywords: cake wastewater industry, chemical oxygen demand (COD), hydrogen production, up-flow anaerobic staged reactor (UASR)

Procedia PDF Downloads 380
9361 Experimental Investigation of Energy Performance of Split Type Air Conditioning for Building under Various Indoor Set Point Temperatures and Different Air Flowrates through Cooling Coil

Authors: Niran Watchrodom

Abstract:

An experimental study was carried out to investigate the energy performance of a 1.5 Tr commercial split type air conditioner operating at different indoor set points and different air flowrate circulating through the cooling coil. The refrigerant R-22 was used as working fluid. In this paper, the test conditions considered were varied as follows: The room temperature varied from 23, 24, 25, 26, and 27 C, the air velocity passing through the evaporator was varied from 1.9, 2.1 and 2.4 m/s. The air velocity passing through the condenser was kept constant at 5 m/s. The results showed that when the indoor temperature was high, 27 C, and air velocity was 1.9 m/s, the coefficient of performance (COP) of the system was 3.74. The electrical power consumption of compressor was 1.64 kW, the rate of heat transfer in the condenser and evaporator were 7.79 and 6.10 kW, respectively. The amount corresponding amount of condensed water coming out of evaporator was 8.20 liter. The system can applied to commercial building.

Keywords: condensed water, coefficient of performance, air velocity

Procedia PDF Downloads 439
9360 Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar

Authors: Amira Touil, Achouak Arfaoui, Ibtissem Mannaii

Abstract:

The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption.

Keywords: pollution, biochar, nitrate, adsorption

Procedia PDF Downloads 95
9359 Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation

Authors: Zhihong Luo, Guangbin Zhu, Lulu Guo, Zhujun Lyu, Kun Luo

Abstract:

Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed.

Keywords: lithium oxygen battery, pre-activation, cyclability, capacity

Procedia PDF Downloads 159
9358 Effect of Strontium on Surface Roughness and Chip Morphology When Turning Al-Si Cast Alloy Using Carbide Tool Insert

Authors: Mohsen Marani Barzani, Ahmed A. D. Sarhan, Saeed Farahany, Ramesh Singh

Abstract:

Surface roughness and chip morphology are important output in manufacturing product. In this paper, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness and chip morphology in turning the Al-Si cast alloy and Sr-containing. Experimental trials carried out using coated carbide inserts. Experiments accomplished under oblique dry cutting when various cutting speeds 70, 130 and 250 m/min and feed rates of 0.05, 0.1 and 0.15 mm/rev were used, whereas depth of cut kept constant at 0.05 mm. The results showed that Sr-containing Al-Si alloy have poor surface roughness in comparison to Al-Si alloy (base alloy). The surface roughness values reduce with cutting speed increment from 70 to 250 m/min. the size of chip changed with changing silicon shape in Al matrix. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev.

Keywords: strontium, surface roughness, chip, morphology, turning

Procedia PDF Downloads 386
9357 Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines

Authors: Nusrat Masood, Vijaya Dubey, Suaib Luqman

Abstract:

Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity.

Keywords: Caspase 3, terpenoids, flavonoids, activation constant, binding energy

Procedia PDF Downloads 238
9356 InP Nanocrystals Core and Surface Electronic Structure from Ab Initio Calculations

Authors: Hamad R. Jappor, Zeyad Adnan Saleh, Mudar A. Abdulsattar

Abstract:

The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of indium phosphide (InP) nanocrystals (NCs) (216-738 atoms) with sizes ranging up to about 2.5 nm in diameter. The calculations are divided into two parts, surface, and core. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results show that lattice constant and ionicity of the core part show decreasing order as nanocrystals grow up in size. The smallest investigated nanocrystal is 1.6% larger in lattice constant and 131.05% larger in ionicity than the converged value of largest investigated nanocrystal. Increasing nanocrystals size also resulted in an increase of core cohesive energy (absolute value), increase of core energy gap, and increase of core valence. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valence bandwidth is wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence bandwidth and cohesive energy of core part of nanocrystals duo to shape variation. The present work suggests the addition of ionicity and lattice constant to the quantities that are affected by quantum confinement phenomenon. The method of the present model has threefold results; it can be used to approach the electronic structure of crystals bulk, surface, and nanocrystals.

Keywords: InP, nanocrystals core, ionicity, Hartree-Fock method, large unit cell

Procedia PDF Downloads 399