Search results for: nonparametric geographically weighted regression
3518 International Trade, Food Security, and Climate Change in an Era of Liberal Trade
Authors: M. Barsa
Abstract:
This paper argues that current liberal trade regimes have had the unfortunate effect of concentrating food production by area and by crop. While such hyper-specialization and standardization might be efficient under ordinary climate conditions, the increasing severity of climate shocks makes such a food production system especially vulnerable. Examining domestic US crop production, and the fact that similar patterns are evident worldwide, this paper explores the vulnerabilities of several major crops and suggests that the academic arguments surrounding increasing liberalization of trade are ill-suited to the climate challenges to come. Indeed, a case can be made that protectionist measures—especially by developing countries whose agricultural sectors are vulnerable to the cheap US and European exports—are increasingly necessary to scatter food production geographically and to retain a resilient diversity of crop varieties.Keywords: climate change, crop resilience, diversity, international trade
Procedia PDF Downloads 1293517 The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials
Authors: Simin Shahvazi, Sepideh Soltani, Seyed Mehdi Ahmadi, Russell J. De Souza, Amin Salehi-Abargouei
Abstract:
Background and Objectives: Vitamin D has received attention for its potential to disrupt cancer processes such as attenuating cell proliferation and exacerbating differentiation and apoptosis. However, whether there exists a role for vitamin D in the treatment of prostate cancer specifically remains controversial. We systematically review the literature to assess whether supplementation with vitamin D influences PSA response and overall survival in patients with prostate cancer. Methods: We searched PubMed, Scopus, ISI Web of Science and Google scholar from inception through up to 10 September 2017 for both before-and-after and randomized trials that evaluated the effect of vitamin D supplementation on the prostate specific antigen (PSA) response rate in participants with prostate cancer. The DerSimonian and Laird, inverse-weighted random-effects model was used to pool effect estimates from the studies. Heterogeneity and potential publication bias were evaluated. Subgroup analyses were also performed. Results: Twenty-two studies (16 before-after and 6 randomized controlled trials) were found and included in meta-analysis. The analysis on controlled clinical trials revealed that PSA change from baseline [weighted mean difference (WMD) = -1.66 ng/ml, 95%CI: -0.69, 0.36, P= 0.543)], PSA response (RR=1.18, 95%CI: 0.97, 1.45, P=0.104) and mortality rate (risk ratio (RR) = 1.05, 95% CI: 0.81-1.36; P=0.713) was not significantly different between vitamin D supplementation and placebo groups. Single arm trials revealed that vitamin D supplementation had had a modest effect on PSA response rate: 19% of those enrolled had at least a 50% reduction in PSA by the end of treatment (95% CI: 7% to 31%; p=0.002). Conclusion: We found that vitamin D modestly increases the PSA response rate in single arm studies. No effect on serum PSA levels, PSA response and mortality was seen in randomized controlled clinical trials. It does not seem patients with prostate cancer benefit from vitamin D supplementation.Keywords: mortality, prostatic neoplasms, PSA response, vitamin D
Procedia PDF Downloads 1933516 Determination of the Informativeness of Instrumental Research Methods in Assessing Risk Factors for the Development of Renal Dysfunction in Elderly Patients with Chronic Ischemic Heart Disease
Authors: Aksana N. Popel, Volha A. Sujayeva, Olga V. Kоshlataja, Irеna S. Karpava
Abstract:
Introduction: It is a known fact that cardiovascular pathology and its complications cause a more severe course and worse prognosis in patients with comorbid kidney pathology. Chronic kidney disease (CKD) is associated with inflammation, endothelial dysfunction, and increased activity of the sympathoadrenal system. This circumstance increases the risk of cardiovascular diseases and the progression of kidney pathology. The above determines the need to identify cardiorenal changes at early stages to reduce the risks of cardiovascular complications and the progression of CKD. Objective: To identify risk factors (RF) for the development of CKD in elderly patients with chronic ischemic heart disease (CIHD). Methods: The study included 64 patients (40 women and 24 men) with a mean age of 74.4±4.5 years with coronary heart disease, without a history of structural kidney pathology and CKD. All patients underwent transthoracic echocardiography (TTE) and kidney ultrasound (KU) using GE Vivid 9 equipment (GE HealthCare, USA), and cardiac computed tomography (CCT) using Siemens Somatom Force equipment (Siemens Healthineers AG, Germany) in 3 months and in 1 year. Data obtained were analyzed using multiple regression analysis and nonparametric Mann-Whitney test. Statistical analysis was performed using the STATISTICA 12.0 program (StatSoft Inc.). Results: Initially, CKD was not diagnosed in all patients. In 3 months, CKD was diagnosed: stage C1 had 11 people (18%), stage C2 had 4 people (6%), stage C3A had 11 people (18%), stage C3B had 2 people (3%). After 1 year, CKD was diagnosed: stage C1 had 22 people (35%), stage C2 had 5 people (8%), stage C3A had 17 people (27%), stage C3B had 10 people (15%). In 3 months, statistically significant (p<0.05) risk factors were: 1) according to TTE: mitral peak E-wave velocity (U=678, p=0.039), mitral E-velocity DT (U=514, p=0.0168), mitral peak A-wave velocity (U=682, p=0.013). In 1 year, statistically significant (p<0.05) risk factors were: according to TTE: left ventricular (LV) end-systolic volume in B-mode (U=134, p=0.006), LV end-diastolic volume in B-mode (U=177, p=0.04), LV ejection fraction in B-mode (U=135, p=0.006), left atrial volume (U=178, p=0.021), LV hypertrophy (U=294, p=0.04), mitral valve (MV) fibrosis (U=328, p=0.01); according CCT: epicardial fat thickness (EFT) on the right ventricle (U=8, p=0.015); according to KU: interlobar renal artery resistance index (RI) (U=224, p=0.02), segmental renal artery RI (U=409, p=0.016). Conclusions: Both TTE and KU are very informative methods to determine the additional risk factors of CKD development and progression. The most informative risk factors were LV global systolic and diastolic functions, LV and LA volumes. LV hypertrophy, MV fibrosis, interlobar renal artery and segmental renal artery RIs, EFT.Keywords: chronic kidney disease, ischemic heart disease, prognosis, risk factors
Procedia PDF Downloads 243515 Application of the Quantile Regression Approach to the Heterogeneity of the Fine Wine Prices
Authors: Charles-Olivier Amédée-Manesme, Benoit Faye, Eric Le Fur
Abstract:
In this paper, the heterogeneity of the Bordeaux Legends 50 wine market price segment is addressed. For this purpose, quantile regression is applied – with market segmentation based on wine bottle price quantile – and the hedonic price of wine attributes is computed for various price segments of the market. The approach is applied to a major privately held data set which consists of approximately 30,000 transactions over the 2003–2014 period. The findings suggest that the relative hedonic prices of several wine attributes differ significantly among deciles. In particular, the elasticity coefficient of the expert ratings shows strong variation among prices. If - as suggested in the literature - expert ratings have a positive influence on wine price on average, they have a clearly decreasing impact over the quantiles. Finally, the lower the wine price, the higher the potential for price appreciation over time. Other variables such as chateaux or vintage are also shown to vary across the distribution of wine prices. While enhancing our understanding of the complex market dynamics that underlie Bordeaux wines’ price, this research provides empirical evidence that the QR approach adequately captures heterogeneity among wine price ranges, which simultaneously applies to wine stock, vintage and auctions’ house.Keywords: hedonics, market segmentation, quantile regression, heterogeneity, wine economics
Procedia PDF Downloads 3383514 Factors Affecting Green Consumption Behaviors of the Urban Residents in Hanoi, Vietnam
Authors: Phan Thi Song Thuong
Abstract:
This paper uses data from a survey on the green consumption behavior of Hanoi residents in October 2022. Data was gathered from a survey conducted in ten districts in the center of Hanoi, with 393 respondents. The hypothesis focuses on understanding the factors that may affect green consumption behavior, such as demographic characteristics, concerns about the environment and health, people living around, self-efficiency, and mass media. A number of methods, such as the T-test, exploratory factor analysis, and a linear regression model, are used to prove the hypotheses. Accordingly, the results show that gender, age, and education level have separate effects on the green consumption behavior of respondents.Keywords: green consumption, urban residents, environment, sustainable, linear regression
Procedia PDF Downloads 1303513 Complex Network Approach to International Trade of Fossil Fuel
Authors: Semanur Soyyigit Kaya, Ercan Eren
Abstract:
Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weakness and strength of the system. On the other side, it is commonly believed that international trade has complex network properties. Complex network is a tool for the analysis of complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex systems such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to data.Keywords: complex network approach, fossil fuel, international trade, network theory
Procedia PDF Downloads 3353512 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 3653511 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model
Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura
Abstract:
This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.Keywords: Malawi rainfall, forecast model, predictors, SST
Procedia PDF Downloads 3883510 Employee Aggression, Labeling and Emotional Intelligence
Authors: Martin Popescu D. Dana Maria
Abstract:
The aims of this research are to broaden the study on the relationship between emotional intelligence and counterproductive work behavior (CWB). The study sample consisted in 441 Romanian employees from companies all over the country. Data has been collected through web surveys and processed with SPSS. The results indicated an average correlation between the two constructs and their sub variables, employees with a high level of emotional intelligence tend to be less aggressive. In addition, labeling was considered an individual difference which has the power to influence the level of employee aggression. A regression model was used to underline the importance of emotional intelligence together with labeling as predictors of CWB. Results have shown that this regression model enforces the assumption that labeling and emotional intelligence, taken together, predict CWB. Employees, who label themselves as victims and have a low degree of emotional intelligence, have a higher level of CWB.Keywords: aggression, CWB, emotional intelligence, labeling
Procedia PDF Downloads 4713509 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 1473508 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3903507 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa
Authors: Yegnanew A. Shiferaw
Abstract:
Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility
Procedia PDF Downloads 2003506 The Effect of Fast Food Globalisation on Students’ Food Choice
Authors: Ijeoma Chinyere Ukonu
Abstract:
This research seeks to investigate how the globalisation of fast food has affected students’ food choice. A mixed method approach was used in this research; basically involving quantitative and qualitative methods. The quantitative method uses a self-completion questionnaire to randomly sample one hundred and four students; while the qualitative method uses a semi structured interview technique to survey four students on their knowledge and choice to consume fast food. A cross tabulation of variables and the Kruskal Wallis nonparametric test were used to analyse the quantitative data; while the qualitative data was analysed through deduction of themes, and trends from the interview transcribe. The findings revealed that globalisation has amplified the evolution of fast food, popularising it among students. Its global presence has affected students’ food choice and preference. Price, convenience, taste, and peer influence are some of the major factors affecting students’ choice of fast food. Though, students are familiar with the health effect of fast food and the significance of using food information labels for healthy choice making, their preference of fast food is more than homemade food.Keywords: fast food, food choice, globalisation, students
Procedia PDF Downloads 2893505 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression
Procedia PDF Downloads 3503504 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters
Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel
Abstract:
Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.Keywords: craniofacial, gender, odontometric, stature
Procedia PDF Downloads 1903503 Examining the Relationship between Chi-Square Test Statistics and Skewness of Weibull Distribution: Simulation Study
Authors: Rafida M. Elobaid
Abstract:
Most of the literature on goodness-of-fit test try to provide a theoretical basis for studying empirical distribution functions. Such goodness-of-fit tests are Kolmogorove-Simirnov and Crumer-Von Mises Type tests. However, it is likely that most of literature has not focused in details on the relationship of the values of the test statistics and skewness or kurtosis. The aim of this study is to investigate the behavior of the values of the χ2 test statistic with the variation of the skewness of right skewed distribution. A simulation study is conducted to generate random numbers from Weibull distribution. For a fixed sample sizes, different levels of skewness are considered, and the corresponding values of the χ2 test statistic are calculated. Using different sample sizes, the results show an inverse relationship between the value of χ2 test and the level of skewness for Wiebull distribution, i.e the value of χ2 test statistic decreases as the value of skewness increases. The research results also show that with large values of skewness we are more confident that the data follows the assumed distribution. Nonparametric Kendall τ test is used to confirm these results.Keywords: goodness-of-fit test, chi-square test, simulation, continuous right skewed distributions
Procedia PDF Downloads 4203502 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 1863501 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network
Authors: Jui-Chen Huang, Shou-Hsiung Cheng
Abstract:
This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.Keywords: fall, fuzzy neural network, health belief model, telecare, willingness
Procedia PDF Downloads 2003500 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 1223499 The Effect of Peer Pressure and Leisure Boredom on Substance Use Among Adolescents in Low-Income Communities in Capetown
Authors: Gaironeesa Hendricks, Shazly Savahl, Maria Florence
Abstract:
The aim of the study is to determine whether peer pressure and leisure boredom influence substance use among adolescents in low-income communities in Cape Town. Non-probability sampling was used to select 296 adolescents between the ages of 16–18 from schools located in two low-income communities. The measurement tools included the Drug Use Disorders Identification Test, the Resistance to Peer Influence and Leisure Boredom Scales. Multiple regression revealed that the combined influence of peer pressure and leisure boredom predicted substance use, while peer pressure emerged as a stronger predictor than leisure boredom on substance use among adolescents.Keywords: substance use, peer pressure, leisure boredom, adolescents, multiple regression
Procedia PDF Downloads 5973498 Understanding the Effect of Fall Armyworm and Integrated Pest Management Practices on the Farm Productivity and Food Security in Malawi
Authors: Innocent Pangapanga, Eric Mungatana
Abstract:
Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, has caused substantial yield loss since its first detection in September 2016, thereby threatening the farm productivity food security and poverty reduction initiatives in Malawi. Several stakeholders, including households, have adopted chemical pesticides to control FAW without accounting for its costs on welfare, health and the environment. Thus, this study has used panel data endogenous switching regression model to investigate the impact of FAW and the integrated pest management (IPM) –related practices on-farm productivity and food security. The study finds that FAW substantively reduces farm productivity by seven (7) percent and influences the adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, by 6 percent, ceteris paribus. Interestingly, multiple adoptions of the IPM -related practices noticeably increase farm productivity by 21 percent. After accounting for potential endogeneity through the endogenous switching regression model, the IPM practices further demonstrate tenfold more improvement on food security, implying the role of the IPM –related practices in containing the effect of FAW at the household level.Keywords: hunger, invasive fall army worms, integrated pest management practices, farm productivity, endogenous switching regression
Procedia PDF Downloads 1373497 Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties
Authors: Hossein Alimohammadi, Mohsen Amirmojahedi, Mehrdad Rowhani
Abstract:
Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy.Keywords: standard penetration test, soil properties, soil classification, regression method
Procedia PDF Downloads 1883496 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 3983495 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis
Authors: Kuixi Du, Thomas J. Lipscomb
Abstract:
The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies
Procedia PDF Downloads 953494 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 4353493 How Do Crisis Affect Economic Policy?
Authors: Eva Kotlánová
Abstract:
After recession that began in 2007 in the United States and subsequently spilled over the Europe we could expect recovery of economic growth. According to the last estimation of economic progress of European countries, this recovery is not strong enough. Among others, it will depend on economic policy, where and in which way, the economic indicators will proceed. Economic theories postulate that the economic subjects prefer stably, continual economic policy without repeated and strong fluctuations. This policy is perceived as support of economic growth. Mostly in crises period, when the government must cope with consequences of recession, the economic policy becomes unpredictable for many subjects and economic policy uncertainty grows, which have negative influence on economic growth. The aim of this paper is to use panel regression to prove or disprove this hypothesis on the example of five largest European economies in the period 2008–2012.Keywords: economic crises in Europe, economic policy, uncertainty, panel analysis regression
Procedia PDF Downloads 3833492 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 1633491 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians
Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah
Abstract:
Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio
Procedia PDF Downloads 1833490 Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference
Authors: M. Celeska, K. Najdenkoski, V. Dimchev, V. Stoilkov
Abstract:
Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.Keywords: canonical correlation analysis, power curve, power performance, wind energy
Procedia PDF Downloads 3343489 Dietary Patterns and Hearing Loss in Older People
Authors: N. E. Gallagher, C. E. Neville, N. Lyner, J. Yarnell, C. C. Patterson, J. E. Gallacher, Y. Ben-Shlomo, A. Fehily, J. V. Woodside
Abstract:
Hearing loss is highly prevalent in older people and can reduce quality of life substantially. Emerging research suggests that potentially modifiable risk factors, including risk factors previously related to cardiovascular disease risk, may be associated with a decreased or increased incidence of hearing loss. This has prompted investigation into the possibility that certain nutrients, foods or dietary patterns may also be associated with incidence of hearing loss. The aim of this study was to determine any associations between dietary patterns and hearing loss in men enrolled in the Caerphilly study. The Caerphilly prospective cohort study began in 1979-1983 with recruitment of 2512 men aged 45-59 years. Dietary data was collected using a self-administered, semi-quantitative, 56-item food frequency questionnaire (FFQ) at baseline (1979-1983), and 7-day weighed food intake (WI) in a 30% sub-sample, while pure-tone unaided audiometric threshold was assessed at 0.5, 1, 2 and 4 kHz, between 1984 and 1988. Principal components analysis (PCA) was carried out to determine a posteriori dietary patterns and multivariate linear and logistic regression models were used to examine associations with hearing level (pure tone average (PTA) of frequencies 0.5, 1, 2 and 4 kHz in decibels (dB)) for linear regression and with hearing loss (PTA>25dB) for logistic regression. Three dietary patterns were determined using PCA on the FFQ data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, both linear and logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P<0.001) and linear regression analysis showed a significant association between the High sugar/Alcohol avoider pattern and hearing loss (P=0.04). Three similar dietary patterns were determined using PCA on the WI data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P=0.02) and a significant association between the Traditional pattern and hearing loss (P=0.04). A Healthy dietary pattern was found to be significantly inversely associated with hearing loss in middle-aged men in the Caerphilly study. Furthermore, a High sugar/Alcohol avoider pattern (FFQ) and a Traditional pattern (WI) were associated with poorer hearing levels. Consequently, the role of dietary factors in hearing loss remains to be fully established and warrants further investigation.Keywords: ageing, diet, dietary patterns, hearing loss
Procedia PDF Downloads 229