Search results for: membrane transporters
726 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide
Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh
Abstract:
Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration
Procedia PDF Downloads 142725 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration
Authors: Wei-Song Hung
Abstract:
We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)
Procedia PDF Downloads 293724 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells
Authors: Ali Akbar, Seungho Shin, Sukkee Um
Abstract:
The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling
Procedia PDF Downloads 119723 Aspirin Loaded Poly-L-Lactic Acid Nanofibers and Their Potentials as Small Diameter Vascular Grafts
Authors: Mahboubeh Kabiri, Saba Aslani
Abstract:
Among various approaches used for the treatment of cardiovascular diseases, the occlusion of the small-diameter vascular graft (SDVG) is still an unresolved problem which seeks further research to address them. Though autografts are now the gold standards to be replaced for blocked coronary arteries, they suffer from inadequate quality and quantity. On the other hand, the major problems of the tissue engineered grafts are thrombosis and intimal hyperplasia. Provision of a suitable spatiotemporal release pattern of anticoagulant agents such as heparin and aspirin can be a step forward to overcome such issues . Herein, we fabricated electrospun scaffolds from FDA (Food and Drug Administration) approved poly-L-lactic acid (PLLA) with aspirin loaded into the nanofibers. Also, we surface coated the scaffolds with Amniotic Membrane lysate as a source for natural elastic polymers and a mimic of endothelial basement membrane. The scaffolds were characterized thoroughly structurally and mechanically for their morphology, fiber orientation, tensile strength, hydrophilicity, cytotoxicity, aspirin release and cell attachment support. According to the scanning electron microscopy (SEM) images, the size of fibers ranged from 250 to 500 nm. The scaffolds showed appropriate tensile strength expected for vascular grafts. Cellular attachment, growth, and infiltration were proved using SEM and MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. Drug-loaded scaffolds showed a sustained release profile of aspirin in 7 days. An enhanced cytocompatibility was observed in AM-coated electrospun PLLA fibers compared to uncoated scaffolds. Our results together indicated that AM lysate coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG.Keywords: vascular tissue engineering, vascular grafts, anticoagulant agent, aspirin, amniotic membrane
Procedia PDF Downloads 160722 Synthesis and Gas Transport Properties of Polynorbornene Dicarboximides Bearing Trifluoromethyl Isomer Moieties
Authors: Jorge A. Cruz-Morales, Joel Vargas, Arlette A. Santiago, Mikhail A. Tlenkopatchev
Abstract:
In industrial processes such as oil extraction and refining, products are handled or generated in the gas phase, which represents a challenge in terms of treatment and purification. During the past three decades, new scientific findings and technological advances in separation based on the use of membranes have led to simpler and more efficient gas separation processes, optimizing the use of energy and generating less pollution. This work reports the synthesis and ring-opening metathesis polymerization (ROMP) of new structural isomers based on norbornene dicarboximides bearing trifluoromethyl moieties, specifically N-2-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2a) and N-3-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2b), using tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene] ruthenium dichloride (I), bis(tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride (II), and bis(tricyclohexylphosphine) p-fluorophenylvinylidene ruthenium (II) dichloride (III). It was observed that the -CF3 moiety attached at the ortho position of the aromatic ring increases thermal and mechanical properties of the polymer, whereas meta substitution has the opposite effect. A comparative study of gas transportation in membranes, based on these fluorinated polynorbornenes, showed that -CF3 ortho substitution increases permeability of the polymer membrane as a consequence of the increase in both gas solubility and gas diffusion. In contrast, gas permeability coefficients of the meta-substituted polymer membrane are rather similar to those of that which is non-fluorinated; this can be attributed to a lower fractional free volume. The meta-substituted polymer membrane, besides showing the largest permselectivity coefficients of all the isomers studied here, was also found to have one of the largest permselectivity coefficients for separating H2/C3H6 into glassy polynorbornene dicarboximides.Keywords: gas transport membranes, polynorbornene dicarboximide, ROMP, structural isomers
Procedia PDF Downloads 253721 Genetic Polymorphisms of the Human Organic Cation Transporter 2 gene, SLC22A2, in the Zulu population
Authors: N. Hoosain, S. Nene, B. Pearce, C. Jacobs, M. Du Plessis, M. Benjeddou
Abstract:
Organic Cation Transporters play a vital role in the absorption, tissue distribution and elimination of various substrates. Numerous studies have suggested that variations in non-synonymous single nucleotide polymorphisms (SNPs) of SLC22A2 could influence an individual’s response to various treatments, including clinically important drugs. This study is the first to determine the baseline frequency distribution for twenty SNPs of SLC22A2in the Zulu population. DNA was collected from 101 unrelated “healthy” Zulu participants. Genotypes of all samples were determined using a multiplex PCR and SNaPshot assay followed by the generation of the haplotype structure. This is the first time that the baseline frequency distribution of SNPs is reported for the Zulu population. Data from this study could be used in in vitro and in vivo pharmacogenetic and pharmacokinetic studies to evaluate the potential role the studied SNPs play in the therapeutic efficacy of clinically important drugs.Keywords: SLC22A2 gene, SNaPshot assay, PCR, Zulu population
Procedia PDF Downloads 285720 Investigation of Textile Laminates Structure and Electrical Resistance
Authors: A. Gulbiniene, V. Jankauskaite
Abstract:
Textile laminates with breathable membranes are used extensively in protective footwear. Such polymeric membranes act as a barrier to liquid water and soil entry from the environment, but are sufficiently permeable to water vapour to allow significant amounts of sweat to evaporate and affect the comfort of the wearer. In this paper the influence of absorbed humidity amount on the electrical properties of textiles lining laminates with and without polymeric membrane is presented. It was shown that textile laminate structure and its layers have a great influence on the water vapour absorption. Laminates with polyurethane foam layers show lower ability to absorb water vapour. Semi-permeable membrane increases absorbed humidity amount. The increase of water vapour absorption ability decreases textile laminates' electrical resistance. However, the intensity of the decrease in electrical resistance depends on the textile laminate layers' nature. Laminates with polyamide layers show significantly lower electrical resistance values.Keywords: electrical resistance, humid atmosphere, textiles laminate, water vapour absorption
Procedia PDF Downloads 240719 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital
Authors: A. Wahid Uddin
Abstract:
Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.Keywords: dilator, induction, labour, osmotic
Procedia PDF Downloads 137718 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant
Authors: Renzo Castillo, George Tsatsaronis
Abstract:
High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion
Procedia PDF Downloads 184717 Purification of Bacillus Lipopeptides for Diverse Applications
Authors: Vivek Rangarajan, Kim G. Clarke
Abstract:
Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC
Procedia PDF Downloads 204716 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nano Fiber and Nano Fiber/Nano Particle
Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon
Abstract:
Nanofibers are defined as fibers with diameters less than 100 nanometers. They can be produced by interfacial polymerization, electrospinning and electrostatic spinning. In this study, behaviours of activated carbon nano fiber (ACNF), carbon nano-fiber (CNF), Polyacrylonitrile/carbon nanotube (PAN/CNT), Polyvinyl alcohol/nano silver (PVA/Ag) in PEM fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. When the performances of these cells are compared to each other at 5x5 cm2 cell, it is found that the PVA/Ag exhibits the best performance among all. In this work, nano fiber and nano fiber/nano particles electrical conductivities have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag. The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.Keywords: proton exchange membrane fuel cells, electrospinning, carbon nano fiber, activate carbon nano-fiber, PVA fiber, PAN fiber, carbon nanotube, nano particle nanocomposites
Procedia PDF Downloads 388715 Molecular Docking of Marrubiin in Candida Rugosa Lipase
Authors: Benarous Khedidja, Yousfi Mohamed
Abstract:
Infections caused by Candida species manifest in a number of diseases, including candidemia, vulvovaginal candidiasis, endocarditis, and peritonitis. These Candida species have been reported to have lipolytic activity by secretion of lipolytic enzymes such as esterases, lipases and phospholipases. These Extracellular hydrolytic enzymes seem to play an important role in Candida overgrowth. Candidiasis is commonly treated with antimycotics such as clotrimazole and nystatin, which bind to a major component of the fungal cell membrane (ergosterol). This binding forms pores in the membrane that lead to death of the fungus. Due to their secondary effects, scientists have thought of another treatment basing on lipase inhibition but we haven’t found any lipase inhibitors used as candidiasis treatment. In this work, we are interested to lipases inhibitors such as alkaloids as another candidiasis treatment. In the first part, we have proceeded to optimize the alkaloid structures and protein 3D structure using Hyperchem software. Secondly, we have docked inhibitors using Genetic algorithm with GOLD software. The results have shown ten possibilities of binding inhibitor to Candida rugosa lipase (CRL) but only one possibility has been accepted depending on the weakest binding energy.Keywords: marrubiin, candida rugosa lipase, docking, gold
Procedia PDF Downloads 243714 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.Keywords: molecular dynamics, high-intensity, nanosecond, electroporation
Procedia PDF Downloads 110713 Effect of Prophylactic Oxytocin Therapy on Duration of Retained Fetal Membrane (RFM) in Periparturient Dairy Cows
Authors: Hamid Ghasemzadeh- Nava, Maziar Kaveh Baghbadorani, Amin Tamadon
Abstract:
Considering response of uterus to ecbolic effect of oxytocin near the time of parturition, this study was done for investigating the effect of prophylactic administration of this hormone on duration of fetal membrane retention, time interval to first detectable estrus, time interval to first service, and conception rate at first service in cases of both normal parturition and dystocia. For this reason cows with (n=18) and without (n=18) dystocia assigned randomly to treatment (n=12) or control (n=6) groups and received intramuscular injection of 100 IU of oxytocin or 10 mL of normal saline respectively. Further observations and investigations indicate that duration of fetal retention is significantly shorter in treatment group cows compared to control groups, regardless of having dystocia (P=0.002) or normal spontaneous calving (P=0.001). The same trend exists for conception rate at first service in which cows in treatment groups had significantly higher conception rate (CR) in comparison to cows in control groups with (P=0.0003) or without dystocia (P=0.017). The time interval to first detected heat and first service didn’t show any difference between groups.Keywords: conception rate, oxytocin, RFM, time to first service
Procedia PDF Downloads 433712 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application
Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang
Abstract:
A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance
Procedia PDF Downloads 508711 Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere
Authors: Md. Hasan Zahir
Abstract:
Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes.Keywords: ceramic membrane, gas separation, hydrothermal stability, rare earth doped-Silica
Procedia PDF Downloads 256710 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays
Authors: Anca Maria Cimpean, Serban Comsa
Abstract:
Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment
Procedia PDF Downloads 191709 Bacteriological Analysis of Logan's Branch Rowan County, Kentucky Utilizing Membrane Filtration Method
Authors: Elizabeth G. Hereford, Geoffrey W. Gearner
Abstract:
Logan’s Branch, within the Triplett Creek Watershed of Rowan County, Kentucky, is a waterway located near important agricultural and residential areas. Part of Logan’s Branch flows over an exposed black shale formation with elevated radioactivity and heavy metals. Three sites were chosen in relation to the formation and sampled five times over a thirty-day period during the recreational season. A fourth site in North Fork in Rowan County, Kentucky was also sampled periodically as it too has contact with the shale formation. These sites were then sampled monthly. All samples are analyzed for concentrations of Escherichia coli, heterotrophic bacteria, and total coliform bacteria utilizing the membrane filtration method and various culture media. Current data suggests that the radioactivity of the shale formation influences the bacteriological growth present in the waterway; however, further data will be collected and compared with that of my colleagues to confirm this trend.Keywords: bacteriological analysis, Escherichia coli, heterotrophic bacteria, radioactive black shale formation, water quality
Procedia PDF Downloads 186708 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)
Authors: Cheng-Yen Lu, Chin-Yuan Hsu
Abstract:
Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome
Procedia PDF Downloads 458707 Light and Scanning Electron Microscopic Studies on Corneal Ontogeny in Buffalo
Authors: M. P. S. Tomar, Neelam Bansal
Abstract:
Histomorphological, histochemical and scanning electron microscopic observations were recorded in developing cornea of buffalo fetuses. The samples from fetal cornea were collected in appropriate fixative from slaughter house and Veterinary Clinics, GADVASU, Ludhiana. The microscopic slides were stained for detailed histomorphological and histochemical studies. The scanning electron microscopic studies were performed at Electron microscopy & Nanobiology Lab, PAU Ludhiana. In present study, it was observed that, in 36 days (d) fetus, the corneal epithelium was well marked single layered structure which was placed on stroma mesenchyme. Cornea appeared as the continuation of developing sclera. The thickness of cornea and its epithelium increased as well as the epithelium started becoming double layered in 47d fetus at corneo-scleral junction. The corneal thickness in this stage suddenly increased thus easily distinguished from developing sclera. The separation of corneal endothelium from stroma was evident as a single layered epithelium. The stroma possessed numerous fibroblasts in 49d stage eye. Descemet’s membrane was appeared at 52d stage. The limbus area was separated by a depression from the developing cornea in 61d stage. In 65d stage, the Bowman’s layer was more developed. Fibroblasts were arranged parallel to each other as well as parallel to the surface of developing cornea in superficial layers. These fibroblasts and fibers were arranged in wavy pattern in the center of stroma. Corneal epithelium started to be stratified as a double layered epithelium was present in this age of fetal eye. In group II (>120 Days), the corneal epithelium was stratified towards a well marked irido-corneal angle. The stromal fibroblasts followed a complete parallel arrangement in its entire thickness. In full term fetuses, a well developed cornea was observed. It was a fibrous layer which had five distinct layers. From outside to inwards were described as the outer most layer was the 7-8 layered corneal epithelial, subepithelial basement membrane (Bowman’s membrane), substantia propria or stroma, posterior limiting membrane (Descemet’s membrane) and the posterior epithelium (corneal endothelium). The corneal thickness and connective tissue elements were continued to be increased. It was 121.39 + 3.73µ at 36d stage which increased to 518.47 + 4.98 µ in group III fetuses. In fetal life, the basement membrane of corneal epithelium and endothelium depicted strong to intense periodic Acid Schiff’s (PAS) reaction. At the irido-corneal angle, the endothelium of blood vessels was also positive for PAS activity. However, cornea was found mild positive for alcian blue reaction. The developing cornea showed strong reaction for basic proteins in outer epithelium and the inner endothelium layers. Under low magnification scanning electron microscope, cornea showed two types of cells viz. light cells and dark cells. The light cells were smaller in size and had less number of microvilli in their surface than in the dark cells. Despite these surface differences between light and dark cells, the corneal surface showed the same general pattern of microvilli studding all exposed surfaces out to the cell margin. which were long (with variable height), slight tortuous slender and possessed a micro villus shaft with a very prominent knob.Keywords: buffalo, cornea, eye, fetus, ontogeny, scanning electron microscopy
Procedia PDF Downloads 149706 Microporous 3D Aluminium Metal-Organic Frameworks in Chitosan Based Mixed Matrix Membrane for Ethanol/Water Separation
Authors: Madhan Vinu, Yue-Chun Jiang, Yi-Feng Lin, Chia-Her Lin
Abstract:
An effective approach to enhance the ethanol/water pervaporation of mixed matrix membranes prepared from three microporous aluminium based metal-organic frameworks (MOFs), [Al(OH)(BPDC)] (DUT-5), [Al(OH)(NDC)] (DUT-4) and [Al(OH)(BzPDC)] (CAU-8) have been synthesized by employing solvothermal reactions. Interestingly, all Al-MOFs showed attractive surface area with microporous 12.3, 10.2 and 8.0 Å for DUT-5, DUT-4 and CAU-8 MOFs which are confirmed through N₂ gas sorption measurements. All the microporous compounds are highly stable as confirmed by thermogravimetric analysis and temperature-dependent powder X-ray diffraction measurements. Furthermore, the synthesized microporous MOF particles of DUT-5, DUT-4, and CAU-8 were successfully incorporated into biological chitosan (CS) membranes to form DUT-5@CS, DUT-4@CS, and CAU-8@CS membranes. The different MOF loadings such as 0.1, 0.15, and 0.2 wt% in CS networks have been prepared, and the same were used to separate mixtures of water and ethanol at 25ºC in the pervaporation process. In particular, when 0.15 wt% of DUT-5 was loaded, MOF@CS membrane displayed excellent permeability and selectivity in ethanol/water separation than that of the previous literature. These CS based membranes separation through functionalized microporous MOFs reveals the key governing factors that are essential for designing novel MOF membranes for bioethanol purification.Keywords: metal-organic framework, microporous materials, separation, chitosan membranes
Procedia PDF Downloads 219705 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer
Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani
Abstract:
Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.Keywords: diffusion, gases crosover, steady state, Fick’s law
Procedia PDF Downloads 328704 Anticancer and Anti-Apoptotic Potential of Tridham and 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in MCF-7 Breast Cancer Cell Line
Authors: R. Stalin, D. Karthick, H. Haseena Banu, T. P. Sachidanandam, P. Shanthi
Abstract:
Background: Breast cancer is emerging as one of the leading cause of cancer related deaths and hence there arises the need to look out for drugs which are more targets specific with minimal side effects. In recent times, there is a shift towards alternative medicine due to low cost and less side effects. Siddha system of medicine is one the oldest system of medicine practiced against various ailments. Tridham (TD) is a herbal formulation prepared in our laboratory consisting of Terminalia chebula, Elaeocarpus ganitrus and Prosopis cineraria in a definite ratio (TD) and its anticancer potential is evaluated in terms of induction of apoptosis. Objective: The present study was designed to investigate the anti proliferative effect of TD and 1,2,3,4,6-penta-O-galloyl-b-D-glucose (PGG), a pure compound isolated from TD on human mammary carcinoma cell line (MCF-7). Materials and Methods: Cell viability was studied using MTT analysis and trypan blue staining. Mitochondrial membrane potential was studied using DAPI staining. The protein and mRNA expressions of pro-apoptotic and anti- apoptotic markers namely Bax, Bad, Bcl-2 and caspases were also assessed by Western Blotting and RT PCR. Results: Viability studies of TD and PGG treated MCF-7 cells showed an inhibition in cell growth in time and dose dependent manner. The alteration in mitochondrial membrane potential was restored through treatment with TD and PGG which was confirmed by DAPI staining. The protein and mRNA expression of pro-apoptotic markers was found to be significantly increased in TD and PGG treated cells with a concomitant decrease in anti-apoptotic markers. Conclusion: The results of the study suggest that TD and PGG exhibit their anticancer effect through its membrane stabilizing property and activation of apoptotic cascade in MCF-7 cells.Keywords: apoptosis, mammary carcinoma, MCF-7, penta galloyl glucose, Tridham
Procedia PDF Downloads 309703 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes
Authors: Seyedeh Pardis Hosseini
Abstract:
With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability
Procedia PDF Downloads 25702 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells
Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau
Abstract:
Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability
Procedia PDF Downloads 70701 Water Desalination by Membrane Distillation with MFI Zeolite Membranes
Authors: Angelo Garofalo, Laura Donato, Maria Concetta Carnevale, Enrico Drioli, Omar Alharbi, Saad Aljlil, Alessandra Criscuoli, Catia Algieri
Abstract:
Nowadays, water scarcity may be considered one of the most important and serious questions concerning our community: in fact, there is a remarkable mismatch between water supply and water demand. Exploitation of natural fresh water resources combined with higher water demand has led to an increased requirement for alternative water resources. In this context, desalination provides such an alternative source, offering water otherwise not accessible for irrigational, industrial and municipal use. Considering the various drawbacks of the polymeric membranes, zeolite membranes represent a potential device for water desalination owing to their high thermal and chemical stability. In this area wide attention was focused on the MFI (silicalite, ZSM-5) membranes, having a pore size lower (about 5.5 Å) than the major kinetic diameters of hydrated ions. In the present work, a scale-up for the preparation of supported silicalite membranes was performed. Therefore, tubular membranes 30 cm long were synthesized by using the secondary growth method coupled with the cross flow seeding procedure. The secondary growth presents two steps: seeding and growth of zeolite crystals on the support. This process, decoupling zeolite nucleation from crystals growth, permits to control the conditions of each step separately. The seeding procedure consists of a cross-flow filtration through a porous support coupled with the support rotation and tilting. The combination of these three different aspects allows a homogeneous and uniform coverage of the support with the zeolite seeds. After characterization by scanning electron microscope (SEM), X-ray diffractometry (XRD) and Energy-dispersive X-ray (EDX) analysis, the prepared membranes were tested by means of single gas permeation and then by Vacuum Membrane Distillation (VMD) using both deionized water and NaCl solutions. The experimental results evidenced the possibility to perform the scale up for the preparation of almost defect free silicalite membranes. VMD tests indicated the possibility to prepare membranes that exhibit interesting performance in terms of fluxes and salt rejections for concentrations from 0.2 M to 0.9 M. Furthermore, it was possible to restore the original performance of the membrane after an identified cleaning procedure. Acknowledgements: The authors gratefully acknowledge the support of the King Abdulaziz City for Science and Technology (KACST) for funding the research Project 895/33 entitled ‘Preparation and Characterization of Zeolite Membranes for Water Treatment’.Keywords: desalination, MFI membranes, secondary growth, vacuum membrane distillation
Procedia PDF Downloads 253700 Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions
Authors: M. A. Hasnat, M. Amirul Islam, M. A. Rashed, Jamil. Safwan, M. Mahabubul Alam
Abstract:
Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions.Keywords: membrane, nitrate, electrocatalysis, voltammetry, electrolysis
Procedia PDF Downloads 265699 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red
Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan
Abstract:
The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration
Procedia PDF Downloads 262698 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis
Authors: Hamad Rafique
Abstract:
The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.Keywords: oat protein, active peptide, neuroprotective, gut-brain axis
Procedia PDF Downloads 25697 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber
Authors: Seyed Mohammad Asgharzadeh, Moein Biglari
Abstract:
Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.Keywords: SAMI, sand asphalt, crumb rubber, indirect tensile test
Procedia PDF Downloads 226