Search results for: computer vision
2775 Effectiveness of Computer-Based Cognitive Training in Improving Attention-Deficit/Hyperactivity Disorder Rehabilitation
Authors: Marjan Ghazisaeedi, Azadeh Bashiri
Abstract:
Background: Attention-Deficit/Hyperactivity Disorder(ADHD), is one of the most common psychiatric disorders in early childhood that in addition to its main symptoms provide significant deficits in the areas of educational, social and individual relationship. Considering the importance of rehabilitation in ADHD patients to control these problems, this study investigated the advantages of computer-based cognitive training in these patients. Methods: This review article has been conducted by searching articles since 2005 in scientific databases and e-Journals and by using keywords including computerized cognitive rehabilitation, computer-based training and ADHD. Results: Since drugs have short term effects and also they have many side effects in the rehabilitation of ADHD patients, using supplementary methods such as computer-based cognitive training is one of the best solutions. This approach has quick feedback and also has no side effects. So, it provides promising results in cognitive rehabilitation of ADHD especially on the working memory and attention. Conclusion: Considering different cognitive dysfunctions in ADHD patients, application of the computerized cognitive training has the potential to improve cognitive functions and consequently social, academic and behavioral performances in patients with this disorder.Keywords: ADHD, computer-based cognitive training, cognitive functions, rehabilitation
Procedia PDF Downloads 2802774 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 3402773 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6152772 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study
Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet
Abstract:
These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment
Procedia PDF Downloads 642771 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 2332770 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.Keywords: brain-computer interface, creative thinking, meditation, mental health
Procedia PDF Downloads 1292769 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.
Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis
Abstract:
Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8
Procedia PDF Downloads 1152768 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 2122767 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience
Authors: Karen C. Olufokunbi, Odetunji A. Odejobi
Abstract:
The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics
Procedia PDF Downloads 1662766 Innovative Technology to Sustain Food Security in Qatar
Authors: Sana Abusin
Abstract:
Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.Keywords: food security, innovative technology, sustainability, food waste, Qatar
Procedia PDF Downloads 1232765 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics
Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier
Abstract:
Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)
Procedia PDF Downloads 4832764 Contemporary Vision of Islamic Motifs in Decorating Products
Authors: Shuruq Ghazi Nahhas
Abstract:
Islamic art is a decorative art that depends on repeating motifs in various shapes to cover different surfaces. Each motif has its own characteristics and style that may reflect different Islamic periods, such as Umayyad, Abbasid, Fatimid, Seljuk, Nasrid, Ottoman, and Safavid. These periods were the most powerful periods which played an important role in developing the Islamic motifs. Most of these motifs of the Islamic heritage were not used in new applications. This research focused on reviving the vegetal Islamic motifs found on Islamic heritage and redesign them in a new format to decorate various products, including scarfs, cushions, coasters, wallpaper, wall art, and boxes. The scarf is chosen as one element of these decorative products because it is used as accessories to add aesthetic value to fashion. A descriptive-analytical method is used for this research. The process started with extracting and analyzing the original motifs. Then, creating the new motifs by simplifying, deleting, or adding elements based on the original structure. Then, creating repeated patterns and applying them to decorative products. The findings of this research indicated: repeating patterns based on different structures creates unlimited patterns. Also, changing the elements of the motifs of a pattern adds new characteristics to the pattern. Also, creating frames using elements from the repeated motifs adds aesthetic and contemporary value to decorative products. Finally, using various methods of combining colors creates unlimited variations of each pattern. At the end, reviving the Islamic motifs in contemporary vision enriches decorative products with aesthetic, artistic, and historical values of different Islamic periods. This makes the decorative products valuable that adds uniqueness to their surroundings.Keywords: Islamic motifs, contemporary patterns, scarfs, decorative products
Procedia PDF Downloads 1602763 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 672762 Concussion Prediction for Speed Skater Impacting on Crash Mats by Computer Simulation Modeling
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Concussion for speed skaters often occurs when skaters fall on the ice and impact the crash mats during practices and competition races. Gaining insight into the impact of interactions is of essential interest as it is directly related to skaters’ potential health risks and injuries. Precise concussion measurements are challenging and very difficult, making computer simulation the only reliable way to analyze accidents. This research aims to create the crash mat and skater’s multi-body model using Solidworks, develop a computer simulation model for skater-mat impact using ANSYS software, and predict the skater’s concussion degree by evaluating the “head injury criteria” (HIC) through the resulting accelerations. The developed method and results help understand the relationship between impact parameters and concussion risk for speed skaters and inform the design of crash mats and skating rink layouts more specifically by considering athletes’ health risks.Keywords: computer simulation modeling, concussion, impact, speed skater
Procedia PDF Downloads 1412761 Stimulating Young Children Social Interaction Behaviour through Computer Play Activities: The Role of Teachers and Parents Support
Authors: Mahani Razali, Nordin Mamat
Abstract:
The purpose of the study is to explore how computer technology is integrated into pre-school activities and its relationship with children’s social interaction behaviour in pre-school classroom. The major question of interest in the present study is to investigate the social interaction behaviour of children when using computers in the Malaysian pre-school classroom. This research is based on three main objectives which are to identify children`s social interaction during computer play activities, teacher’s role and parent’s participation to develop children`s social interaction. This qualitative study was carried out among 25 pre-school children, three teachers and three parents as the research sample. On the other hand, parent’s support was obtained from their discussions, supervisions and communication at home. The data collection procedures involved structured observation which was to identify social interaction behaviour among pre-school children through computer play activities; as for semi-structured interviews, it was done to study the perception of the teachers and parents on the acquired social interaction behaviour among the children. Besides, documentation analysis method was used as to triangulate acquired information with observations and interviews. In this study, the qualitative data analysis was tabulated in descriptive manner with frequency and percentage format. This study primarily focused on social interaction behaviour elements among the pre-school children. Findings revealed that the children showed positive outcomes on the social interaction behaviour during their computer play. This research summarizes that teacher’s role and parent’s support can improve children`s social interaction behaviour through computer play activities. As a whole, this research highlighted the significance of computer play activities as to stimulate social interaction behavior among the pre-school children.Keywords: early childhood, emotional development, parent support, play
Procedia PDF Downloads 3702760 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 2182759 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 822758 3 Dimensional (3D) Assesment of Hippocampus in Alzheimer’s Disease
Authors: Mehmet Bulent Ozdemir, Sultan Çagirici, Sahika Pinar Akyer, Fikri Turk
Abstract:
Neuroanatomical appearance can be correlated with clinical or other characteristics of illness. With the introduction of diagnostic imaging machines, producing 3D images of anatomic structures, calculating the correlation between subjects and pattern of the structures have become possible. The aim of this study is to examine the 3D structure of hippocampus in cases with Alzheimer disease in different dementia severity. For this purpose, 62 female and 38 male- 68 patients’s (age range between 52 and 88) MR scanning were imported to the computer. 3D model of each right and left hippocampus were developed by a computer aided propramme-Surf Driver 3.5. Every reconstruction was taken by the same investigator. There were different apperance of hippocampus from normal to abnormal. In conclusion, These results might improve the understanding of the correlation between the morphological changes in hippocampus and clinical staging in Alzheimer disease.Keywords: Alzheimer disease, hippocampus, computer-assisted anatomy, 3D
Procedia PDF Downloads 4812757 An Anthropometric and Postural Risk Assessment of Students in Computer Laboratories of a State University
Authors: Sarah Louise Cruz, Jemille Venturina
Abstract:
Ergonomics considers the capabilities and limitations of a person as they interact with tools, equipment, facilities and tasks in their work environment. Workplace is one example of physical work environment, be it a workbench or a desk. In school laboratories, sitting is the most common working posture of the students. Students maintain static sitting posture as they perform different computer-aided activities. The College of Engineering and College of Information and Communication Technology of a State University consist of twenty-two computer laboratories. Normally, students aren’t usually aware of the importance of sustaining proper sitting posture while doing their long hour computer laboratory activities. The study evaluates the perceived discomfort and working postures of students as they are exposed on current workplace design of computer laboratories. The current study utilizes Rapid Upper Limb Assessment (RULA), Body Discomfort Chart using Borg’s CR-10 Scale Rating and Quick Exposure Checklist in order to assess the posture and the current working condition. The result of the study may possibly minimize the body discomfort experienced by the students. The researchers redesign the individual workstations which includes working desk, sitting stool and other workplace design components. Also, the economic variability of each alternative was considered given that the study focused on improvement of facilities of a state university.Keywords: computer workstation, ergonomics, posture, students, workplace
Procedia PDF Downloads 3122756 A Study on the Impacts of Computer Aided Design on the Architectural Design Process
Authors: Halleh Nejadriahi, Kamyar Arab
Abstract:
Computer-aided design (CAD) tools have been extensively used by the architects for the several decades. It has evolved from being a simple drafting tool to being an intelligent architectural software and a powerful means of communication for architects. CAD plays an essential role in the profession of architecture and is a basic tool for any architectural firm. It is not possible for an architectural firm to compete without taking the advantage of computer software, due to the high demand and competition in the architectural industry. The aim of this study is to evaluate the impacts of CAD on the architectural design process from conceptual level to final product, particularly in architectural practice. It examines the range of benefits of integrating CAD into the industry and discusses the possible defects limiting the architects. Method of this study is qualitatively based on data collected from the professionals’ perspective. The identified benefits and limitations of CAD on the architectural design process will raise the awareness of professionals on the potentials of CAD and proper utilization of that in the industry, which would result in a higher productivity along with a better quality in the architectural offices.Keywords: architecture, architectural practice, computer aided design (CAD), design process
Procedia PDF Downloads 3612755 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs
Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude
Abstract:
Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision
Procedia PDF Downloads 112754 A Comparative Study of Virus Detection Techniques
Authors: Sulaiman Al amro, Ali Alkhalifah
Abstract:
The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.Keywords: computer viruses, virus detection, signature-based, behaviour-based, heuristic-based
Procedia PDF Downloads 4862753 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Zdeněk Veselý, Milan Honner, Jiří Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source
Procedia PDF Downloads 3952752 Information Technology Approaches to Literature Text Analysis
Authors: Ayse Tarhan, Mustafa Ilkan, Mohammad Karimzadeh
Abstract:
Science was considered as part of philosophy in ancient Greece. By the nineteenth century, it was understood that philosophy was very inclusive and that social and human sciences such as literature, history, and psychology should be separated and perceived as an autonomous branch of science. The computer was also first seen as a tool of mathematical science. Over time, computer science has grown by encompassing every area in which technology exists, and its growth compelled the division of computer science into different disciplines, just as philosophy had been divided into different branches of science. Now there is almost no branch of science in which computers are not used. One of the newer autonomous disciplines of computer science is digital humanities, and one of the areas of digital humanities is literature. The material of literature is words, and thanks to the software tools created using computer programming languages, data that a literature researcher would need months to complete, can be achieved quickly and objectively. In this article, three different tools that literary researchers can use in their work will be introduced. These studies were created with the computer programming languages Python and R and brought to the world of literature. The purpose of introducing the aforementioned studies is to set an example for the development of special tools or programs on Ottoman language and literature in the future and to support such initiatives. The first example to be introduced is the Stylometry tool developed with the R language. The other is The Metrical Tool, which is used to measure data in poems and was developed with Python. The latest literature analysis tool in this article is Voyant Tools, which is a multifunctional and easy-to-use tool.Keywords: DH, literature, information technologies, stylometry, the metrical tool, voyant tools
Procedia PDF Downloads 1532751 Management and Evaluation of Developing Medical Device Software in Compliance with Rules
Authors: Arash Sepehri bonab
Abstract:
One of the regions of critical development in medical devices has been the part of the software - as an indispensable component of a therapeutic device, as a standalone device, and more as of late, as applications on portable gadgets. The chance related to a breakdown of the standalone computer program utilized inside healthcare is in itself not a model for its capability or not as a medical device. It is, subsequently, fundamental to clarify a few criteria for the capability of a stand-alone computer program as a medical device. The number of computer program items and therapeutic apps is persistently expanding and so as well is used in wellbeing education (e. g., in clinics and doctors' surgeries) for determination and treatment. Within the last decade, the use of information innovation in healthcare has taken a developing part. In reality, the appropriation of an expanding number of computer devices has driven several benefits related to the method of quiet care and permitted simpler get to social and health care assets. At the same time, this drift gave rise to modern challenges related to the usage of these modern innovations. The program utilized in healthcare can be classified as therapeutic gadgets depending on the way they are utilized and on their useful characteristics. In the event that they are classified as therapeutic gadgets, they must fulfill particular directions. The point of this work is to show a computer program improvement system that can permit the generation of secure and tall, quality restorative gadget computer programs and to highlight the correspondence between each program advancement stage and the fitting standard and/or regulation.Keywords: medical devices, regulation, software, development, healthcare
Procedia PDF Downloads 1082750 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 972749 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission
Authors: Tingwei Shu, Dong Zhou, Chengjun Guo
Abstract:
Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.Keywords: semantic communication, transformer, wavelet transform, data processing
Procedia PDF Downloads 792748 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications
Authors: Jacob Wahl, Jane Zhang
Abstract:
This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming
Procedia PDF Downloads 1402747 Higher Education for Knowledge and Technology Transfer in Egypt
Authors: M. A. Zaki Ewiss, S. Afifi
Abstract:
Nahda University (NUB) believes that internationalisation of higher educational is able to provide global society with an education that meets current needs and that can respond efficiently to contemporary demands and challenges, which are characterized by globalisation, interdependence, and multiculturalism. In this paper, we will discuss the the challenges of the Egyptian Higher Education system and the future vision to improve this system> In this report, the following issues will be considered: Increasing knowledge on the development of specialized programs of study at the university. Developing international cooperation programs, which focus on the development of the students and staff skills, and providing academic culture and learning opportunities. Increasing the opportunities for student mobility, and research projects for faculty members. Increased opportunities for staff, faculty and students to continue to learn foreign universities, and to benefit from scholarships in various disciplines. Taking the advantage of the educational experience and modern teaching methods; Providing the opportunities to study abroad without increasing the period of time required for graduation, and through greater integration in the curricula and programs; More cultural interaction through student exchanges.Improving and providing job opportunities for graduates through participation in the global labor market. This document sets out NUB strategy to move towards that vision. We are confident that greater explicit differentiation, greater freedom and greater collaboration are the keys to delivering the further improvement in quality we shall need to retain and strengthen our position as one of the world’s leading higher education systems.Keywords: technology transfer higher education, knowledge transfer, internationalisation, mobility
Procedia PDF Downloads 4392746 The Use of Computer-Aided Design in Small Contractors in a Local Area of Korea
Authors: Myunghoun Jang
Abstract:
A survey of small-size contractors in Jeju was conducted to investigate college graduate's computer-aided design (CAD) competence. Most of small-size contractors use CAD software to review and update drawings submitted from an architect. This research analyzed the curriculum of the architectural engineering in several national universities. The CAD classes have 4 or 6 hours per week and use AutoCAD primarily. This paper proposes that a CAD class needs 6 hours per week, 2D drawing is the main theme in the curriculum, and exercises to make 3D models are also included in the CAD class. An improved method, for example Internet cafe and real time feedbacks using smartphones, to evaluate the reports and exercise results is necessary.Keywords: CAD (Computer Aided Design), CAD education, education improvement, small-size contractor
Procedia PDF Downloads 268