Search results for: industrial wireless network (IWN)
4270 Social Data Aggregator and Locator of Knowledge (STALK)
Authors: Rashmi Raghunandan, Sanjana Shankar, Rakshitha K. Bhat
Abstract:
Social media contributes a vast amount of data and information about individuals to the internet. This project will greatly reduce the need for unnecessary manual analysis of large and diverse social media profiles by filtering out and combining the useful information from various social media profiles, eliminating irrelevant data. It differs from the existing social media aggregators in that it does not provide a consolidated view of various profiles. Instead, it provides consolidated INFORMATION derived from the subject’s posts and other activities. It also allows analysis over multiple profiles and analytics based on several profiles. We strive to provide a query system to provide a natural language answer to questions when a user does not wish to go through the entire profile. The information provided can be filtered according to the different use cases it is used for.Keywords: social network, analysis, Facebook, Linkedin, git, big data
Procedia PDF Downloads 4464269 Measuring of the Volume Ratio of Two Immiscible Liquids Using Electrical Impedance Tomography
Authors: Jiri Primas, Michal Malik, Darina Jasikova, Michal Kotek, Vaclav Kopecky
Abstract:
Authors of this paper discuss the measuring of volume ratio of two immiscible liquids in the homogenous mixture using the industrial Electrical Impedance Tomography (EIT) system ITS p2+. In the first part of the paper, the principle of EIT and the basic theory of conductivity of mixture of two components are stated. In the next part, the experiment with water and olive oil mixed with Rushton turbine is described, and the measured results are used to verify the theory. In the conclusion, the results are discussed in detail, and the accuracy of the measuring method and its advantages are also mentioned.Keywords: conductivity, electrical impedance tomography, homogenous mixture, mixing process
Procedia PDF Downloads 4054268 Bread-Making Properties of Rice Flour Dough Using Fatty Acid Salt
Authors: T. Hamaishi, Y. Morinaga, H. Morita
Abstract:
Introduction: Rice consumption in Japan has decreased, and Japanese government has recommended use of rice flour in order to expand the consumption of rice. There are two major protein components present in flour, called gliadin and glutenin. Gluten forms when water is added to flour and is mixed. As mixing continues, glutenin interacts with gliadin to form viscoelastic matrix of gluten. Rice flour bread does not expand as much as wheat flour bread. Because rice flour is not included gluten, it cannot construct gluten network in the dough. In recent years, some food additives have been used for dough-improving agent in bread making, especially surfactants has effect in order to improve dough extensibility. Therefore, we focused to fatty acid salt which is one of anionic surfactants. Fatty acid salt is a salt consist of fatty acid and alkali, it is main components of soap. According to JECFA(FAO/WHO Joint Expert Committee on Food Additives), salts of Myristic(C14), Palmitic(C16) and Stearic(C18) could be used as food additive. They have been evaluated ADI was not specified. In this study, we investigated to improving bread-making properties of rice flour dough adding fatty acid salt. Materials and methods: The sample of fatty acid salt is myristic (C14) dissolved in KOH solution to a concentration of 350 mM and pH 10.5. Rice dough was consisted of 100 g of flour using rice flour and wheat gluten, 5 g of sugar, 1.7 g of salt, 1.7g of dry yeast, 80 mL of water and fatty acid salt. Mixing was performed for 500 times by using hand. The concentration of C14K in the dough was 10 % relative to flour weight. Amount of gluten in the dough was 20 %, 30 % relative to flour weight. Dough expansion ability test was performed to measure physical property of bread dough according to the methods of Baker’s Yeast by Japan Yeast Industry Association. In this test, 150 g of dough was filled from bottom of the cylinder and fermented at 30 °C,85 % humidity for 120 min on an incubator. The height of the expansion in the dough was measured and determined its expansion ability. Results and Conclusion: Expansion ability of rice dough with gluten content of 20 %, 30% showed 316 mL, 341 mL for 120 min. When C14K adding to the rice dough, dough expansion abilities were 314 mL, 368 mL for 120 min, there was no significant difference. Conventionally it has been known that the rice flour dough contain gluten of 20 %. The considerable improvement of dough expansion ability was achieved when added C14K to wheat flour. The experimental result shows that c14k adding to the rice dough with gluten content more than 20 % was not improving bread-making properties. In conclusion, rice bread made with gluten content more than 20 % without C14K has been suggested to contribute to the formation of the sufficient gluten network.Keywords: expansion ability, fatty acid salt, gluten, rice flour dough
Procedia PDF Downloads 2484267 Real Estate Trend Prediction with Artificial Intelligence Techniques
Authors: Sophia Liang Zhou
Abstract:
For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.Keywords: linear regression, random forest, artificial neural network, real estate price prediction
Procedia PDF Downloads 1044266 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 1634265 Predictions of Values in a Causticizing Process
Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge
Abstract:
An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.Keywords: causticizing, lime, prediction, process
Procedia PDF Downloads 3584264 RAPD Analysis of Genetic Diversity of Castor Bean
Authors: M. Vivodík, Ž. Balážová, Z. Gálová
Abstract:
The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.Keywords: dendrogram, polymorphism, RAPD technique, Ricinus communis L.
Procedia PDF Downloads 4754263 Impact of Neuron with Two Dendrites in Heart Behavior
Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue
Abstract:
Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.Keywords: neural networks, neuron, dendrites, heart behavior, ECG
Procedia PDF Downloads 884262 Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application
Authors: Er-Yuan Chuang
Abstract:
Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies.Keywords: protein based, in vitro study, in vivo study, biomaterials
Procedia PDF Downloads 1924261 Real-time Rate and Rhythms Feedback Control System in Patients with Atrial Fibrillation
Authors: Mohammad A. Obeidat, Ayman M. Mansour
Abstract:
Capturing the dynamic behavior of the heart to improve control performance, enhance robustness, and support diagnosis is very important in establishing real time models for the heart. Control Techniques and strategies have been utilized to improve system costs, reliability, and estimation accuracy for different types of systems such as biomedical, industrial, and other systems that required tuning input/output relation and/or monitoring. Simulations are performed to illustrate potential applications of the technology. In this research, a new control technology scheme is used to enhance the performance of the Af system and meet the design specifications.Keywords: atrial fibrillation, dynamic behavior, closed loop, signal, filter
Procedia PDF Downloads 4244260 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies
Authors: Amina Jibrin Ahmed
Abstract:
The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities
Procedia PDF Downloads 5214259 Facial Emotion Recognition Using Deep Learning
Authors: Ashutosh Mishra, Nikhil Goyal
Abstract:
A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.Keywords: facial recognition, computational intelligence, convolutional neural network, depth map
Procedia PDF Downloads 2334258 Active Disturbance Rejection Control for Wind System Based on a DFIG
Authors: R. Chakib, A. Essadki, M. Cherkaoui
Abstract:
This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.Keywords: doubly fed induction generator (DFIG), active disturbance rejection control (ADRC), vector control, MPPT, extended state observer, back-to-back converter, wind turbine
Procedia PDF Downloads 4894257 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor
Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro
Abstract:
Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.Keywords: control, DC motor, discrete PID, discrete state feedback
Procedia PDF Downloads 2684256 Internet Protocol Television: A Research Study of Undergraduate Students Analyze the Effects
Authors: Sabri Serkan Gulluoglu
Abstract:
The study is aimed at examining the effects of internet marketing with IPTV on human beings. Internet marketing with IPTV is emerging as an integral part of business strategies in today’s technologically advanced world and the business activities all over the world are influences with the emergence of this modern marketing tool. As the population of the Internet and on-line users’ increases, new research issues have arisen concerning the demographics and psychographics of the on-line user and the opportunities for a product or service. In recent years, we have seen a tendency of various services converging to the ubiquitous Internet Protocol based networks. Besides traditional Internet applications such as web browsing, email, file transferring, and so forth, new applications have been developed to replace old communication networks. IPTV is one of the solutions. In the future, we expect a single network, the IP network, to provide services that have been carried by different networks today. For finding some important effects of a video based technology market web site on internet, we determine to apply a questionnaire on university students. Recently some researches shows that in Turkey the age of people 20 to 24 use internet when they buy some electronic devices such as cell phones, computers, etc. In questionnaire there are ten categorized questions to evaluate the effects of IPTV when shopping. There were selected 30 students who are filling the question form after watching an IPTV channel video for 10 minutes. This sample IPTV channel is “buy.com”, it look like an e-commerce site with an integrated IPTV channel on. The questionnaire for the survey is constructed by using the Likert scale that is a bipolar scaling method used to measure either positive or negative response to a statement (Likert, R) it is a common system that is used is the surveys. By following the Likert Scale “the respondents are asked to indicate their degree of agreement with the statement or any kind of subjective or objective evaluation of the statement. Traditionally a five-point scale is used under this methodology”. For this study also the five point scale system is used and the respondents were asked to express their opinions about the given statement by picking the answer from the given 5 options: “Strongly disagree, Disagree, Neither agree Nor disagree, Agree and Strongly agree”. These points were also rates from 1-5 (Strongly disagree, Disagree, Neither disagree Nor agree, Agree, Strongly agree). On the basis of the data gathered from the questionnaire some results are drawn in order to get the figures and graphical representation of the study results that can demonstrate the outcomes of the research clearly.Keywords: IPTV, internet marketing, online, e-commerce, video based technology
Procedia PDF Downloads 2424255 The Usefulness and Usability of a Linkedin Group for the Maintenance of a Community of Practice among Hand Surgeons Worldwide
Authors: Vaikunthan Rajaratnam
Abstract:
Maintaining continuous professional development among clinicians has been a challenge. Hand surgery is a unique speciality with the coming together of orthopaedics, plastics and trauma surgeons. The requirements for a team-based approach to care with the inclusion of other experts such as occupational, physiotherapist and orthotic and prosthetist provide the impetus for the creation of communities of practice. This study analysed the community of practice in hand surgery that was created through a social networking website for professionals. The main objectives were to discover the usefulness of this community of practice created in the platform of the group function of LinkedIn. The second objective was to determine the usability of this platform for the purposes of continuing professional development among members of this community of practice. The methodology used was one of mixed methods which included a quantitative analysis on the usefulness of the social network website as a community of practice, using the analytics provided by the LinkedIn platform. Further qualitative analysis was performed on the various postings that were generated by the community of practice within the social network website. This was augmented by a respondent driven survey conducted online to assess the usefulness of the platform for continuous professional development. A total of 31 respondents were involved in this study. This study has shown that it is possible to create an engaging and interactive community of practice among hand surgeons using the group function of this professional social networking website LinkedIn. Over three years the group has grown significantly with members from multiple regions and has produced engaging and interactive conversations online. From the results of the respondents’ survey, it can be concluded that there was satisfaction of the functionality and that it was an excellent platform for discussions and collaboration in the community of practice with a 69 % of satisfaction. Case-based discussions were the most useful functions of the community of practice. This platform usability was graded as excellent using the validated usability tool. This study has shown that the social networking site LinkedIn’s group function can be easily used as a community of practice effectively and provides convenience to professionals and has made an impact on their practice and better care for patients. It has also shown that this platform was easy to use and has a high level of usability for the average healthcare professional. This platform provided the improved connectivity among professionals involved in hand surgery care which allowed for the community to grow and with proper support and contribution of relevant material by members allowed for a safe environment for the exchange of knowledge and sharing of experience that is the foundation of a community practice.Keywords: community of practice, online community, hand surgery, lifelong learning, LinkedIn, social media, continuing professional development
Procedia PDF Downloads 3174254 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds
Authors: N. Stevulova, I. Schwarzova
Abstract:
The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties
Procedia PDF Downloads 3514253 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method
Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi
Abstract:
Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.Keywords: hydrothermal growth, sol-gel, zinc dioxide, biosensors
Procedia PDF Downloads 3044252 Effect of Swelling Pressure on Drug Release from Polyelectrolyte Micro-Hydrogel Particles
Authors: Mina Boroujerdi, Javad Tavakoli
Abstract:
Hydrogels are extensively studied as matrices for the controlled release of drugs. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. In this contribution, an electronic device for swelling pressure measurement during drug release from hydrogel network was developed. Also, poly acrylic acid micro particles were prepared for prolonged and sustained controlled acetaminophen release. Effect of swelling pressure on drug release from micro particles studied under different environment pH in order to predict release profile in gastro-intestine medium. Swelling ratio and swelling pressure were measured in different pH.Keywords: swelling pressure, drug delivery, hydrogel, polyelectrolyte
Procedia PDF Downloads 3044251 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 164250 The Effect of Microfinance on Labor Productivity of SME - The Case of Iran
Authors: Sayyed Abdolmajid Jalaee Esfand Abadi, Sepideh Samimi
Abstract:
Since one of the major difficulties to develop small manufacturing enterpriser in developing countries is the limitations of financing activities, this paper want to answer the question: “what is the role and status of micro finance in improving the labor productivity of small industries in Iran?” The results of panel data estimation show that micro finance in Iran has not yet been able to work efficiently and provide the required credit and investment. Also, reducing economy’s dependence on oil revenues reduced and increasing its reliance on domestic production and exports of industrial production can increase the productivity of workforce in Iranian small industries.Keywords: microfinance, small manufacturing enterprises (SME), workforce productivity, Iran, panel data
Procedia PDF Downloads 4244249 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.Keywords: business processes, discrete-event simulation, management, trading industry
Procedia PDF Downloads 3474248 A Horn Antenna Loaded with SIW FSS of Crossed Dipoles
Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam
Abstract:
In this article analysis and investigation of the effect of loading a horn antenna with substrate integrated waveguide frequency selective surface (SIW FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524mm and loss tangent 0.004. This structure is called a filtering antenna (filtenna). Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite SIW FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.3 GHz (0.955–0.985 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.Keywords: antenna, filtenna, frequency-selective surface (FSS), horn antennas
Procedia PDF Downloads 2894247 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting
Authors: Aswathi Thrivikraman, S. Advaith
Abstract:
The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.Keywords: LSTM, autoencoder, forecasting, seq2seq model
Procedia PDF Downloads 1584246 A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG
Authors: Rahman Dashti, Ehsan Gord
Abstract:
In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.Keywords: distribution network, fault section determination, distributed generation units, distribution protection equipment
Procedia PDF Downloads 4044245 Preparation of hydrophobic silica membranes supported on alumina hollow fibers for pervaporation applications
Authors: Ami Okabe, Daisuke Gondo, Akira Ogawa, Yasuhisa Hasegawa, Koichi Sato, Sadao Araki, Hideki Yamamoto
Abstract:
Membrane separation draws attention as the energy-saving technology. Pervaporation (PV) uses hydrophobic ceramic membranes to separate organic compounds from industrial wastewaters. PV makes it possible to separate organic compounds from azeotropic mixtures and from aqueous solutions. For the PV separation of low concentrations of organics from aqueous solutions, hydrophobic ceramic membranes are expected to have high separation performance compared with that of conventional hydrophilic membranes. Membrane separation performance is evaluated based on the pervaporation separation index (PSI), which depends on both the separation factor and the permeate flux. Ingenuity is required to increase the PSI such that the permeate flux increases without reducing the separation factor or to increase the separation factor without reducing the flux. A thin separation layer without defects and pinholes is required. In addition, it is known that the flux can be increased without reducing the separation factor by reducing the diffusion resistance of the membrane support. In a previous study, we prepared hydrophobic silica membranes by a molecular templating sol−gel method using cetyltrimethylammonium bromide (CTAB) to form pores suitable for permitting the passage of organic compounds through the membrane. We separated low-concentration organics from aqueous solutions by PV using these membranes. In the present study, hydrophobic silica membranes were prepared on a porous alumina hollow fiber support that is thinner than the previously used alumina support. Ethyl acetate (EA) is used in large industrial quantities, so it was selected as the organic substance to be separated. Hydrophobic silica membranes were prepared by dip-coating porous alumina supports with a -alumina interlayer into a silica sol containing CTAB and vinyltrimethoxysilane (VTMS) as the silica precursor. Membrane thickness increases with the lifting speed of the sol in the dip-coating process. Different thicknesses of the γ-alumina layer were prepared by dip-coating the support into a boehmite sol at different lifting speeds (0.5, 1, 3, and 5 mm s-1). Silica layers were subsequently formed by dip-coating using an immersion time of 60 s and lifting speed of 1 mm s-1. PV measurements of the EA (5 wt.%)/water system were carried out using VTMS hydrophobic silica membranes prepared on -alumina layers of different thicknesses. Water and EA flux showed substantially constant value despite of the change of the lifting speed to form the γ-alumina interlayer. All prepared hydrophobic silica membranes showed the higher PSI compared with the hydrophobic membranes using the previous alumina support of hollow fiber.Keywords: membrane separation, pervaporation, hydrophobic, silica
Procedia PDF Downloads 4054244 Block Mining: Block Chain Enabled Process Mining Database
Authors: James Newman
Abstract:
Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.Keywords: blockchain, process mining, memory optimization, protocol
Procedia PDF Downloads 1064243 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3
Procedia PDF Downloads 2994242 Study of the Kinetic of the Reduction of Alpha and Beta PbO2 in H2SO4 on the Microcavity Electrode
Authors: N. Chahmana, I. Zerroual
Abstract:
The aim of our work is the contribution to the improvement of the performances of the positive plate of the lead acid battery. For that, we synthesized two varieties of PbO2 used in industry, alpha and beta PbO2 by electrochemical way starting from the not formed industrial plates. We studied the kinetics of reduction of the alpha varieties and PbO2 beta on electrode with microcavity in sulphuric medium. The electrochemical study of the powders of α and β-PbO2 was made by cyclic voltamperometry with sweeping of potential by using a traditional assembly with three electrodes. Values of the coefficient of diffusion of the proton in α and β-PbO2 are respectively equal to 0.498*10-8cm2 /s and 0.793*10-8 cm2 /s. During the cycling of the two varieties of PbO2, we obtain a clear increase in the capacity.Keywords: lead accumulator, α and β - PbO2, synthesis, kinetics, cyclic voltametry, coefficient of diffusion
Procedia PDF Downloads 5814241 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control
Procedia PDF Downloads 482