Search results for: Data quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31529

Search results for: Data quality

27539 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
27538 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain

Authors: Sabri Serkan Güllüoğlu

Abstract:

Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.

Keywords: data mining, association rule mining, market basket analysis, purchasing

Procedia PDF Downloads 483
27537 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules

Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju

Abstract:

As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.

Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis

Procedia PDF Downloads 640
27536 A Guide to the Implementation of Ambisonics Super Stereo

Authors: Alessio Mastrorillo, Giuseppe Silvi, Francesco Scagliola

Abstract:

In this work, we introduce an Ambisonics decoder with an implementation of the C-format, also called Super Stereo. This format is an alternative to conventional stereo and binaural decoding. Unlike those, this format conveys audio information from the horizontal plane and works with stereo speakers and headphones. The two C-format channels can also return a reconstructed planar B-format. This work provides an open-source implementation for this format. We implement an all-pass filter for signal quadrature, as required by the decoding equations. This filter works with six Biquads in a cascade configuration, with values for control frequency and quality factor discovered experimentally. The phase response of the filter delivers a small error in the 20-14.000Hz range. The decoder has been tested with audio sources up to 192kHz sample rate, returning pristine sound quality and detailed stereo image. It has been included in the Envelop for Live suite and is available as an open-source repository. This decoder has applications in Virtual Reality and 360° audio productions, music composition, and online streaming.

Keywords: ambisonics, UHJ, quadrature filter, virtual reality, Gerzon, decoder, stereo, binaural, biquad

Procedia PDF Downloads 91
27535 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France

Authors: Aiman Mazhar Qureshi, Ahmed Rachid

Abstract:

Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.

Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation

Procedia PDF Downloads 148
27534 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 266
27533 Maternal Health Care Utilization and Its Effect on Pregnancy Outcome in Nepal

Authors: Adrita Banerjee, Ajeet Kumar Singh

Abstract:

Antenatal care (ANC) from a skilled provider is important to monitor the pregnancy and reduce the risk of morbidity for mother and baby during pregnancy and delivery. The quality of antenatal care can be monitored through the content of services received and the kind of information mothers are given during their visit. Objective: The paper tries to examine the association between ANC check-ups and size/ birth weight. It also focuses on investigating the relationship between utilization of recommended prenatal care for mothers and its effect on infant survival in Nepal. Data and methods: This paper uses data from Nepal demographic Health Survey 2011. To understand the relationship bi-variate statistical analysis and logistic regressions has been done. Maternal health care utilization include ANC check-ups i.e. the type of ante-natal care providers, the number and timing of the visit. The various components of the check-ups include intake of iron tablets/syrups, intestinal parasitic drugs, etc. Results: The results show that women who had no antenatal care visits about 40% had small sized babies at the time of birth compared to women to had at least 3 ANC check up. Women who had at least 3 check-ups 17% of the babies have a small size. It has also been found that about 50 % of the women prefer ANC check-ups during pregnancies which have resulted in lowering the infant mortality by about 40% during 1996-2011. Conclusion: Ante natal care check is care and monitoring of the pregnant woman and her foetus throughout pregnancy. ANC checks have an effect on the infant health and child survival. A woman who had at least three check-ups the possibilities of adverse effect on infant health and infant survival was significantly lower. The findings argue for a more enhanced focus on ANC check-ups for improving the maternal and child health in Nepal.

Keywords: maternal, health, pregnancy, outcome

Procedia PDF Downloads 242
27532 A Comparison of Efficacy of Two Drugs Combinations of 0.0625% Levobupivacaine with Fentanyl and 0.1% Ropivacaine with Fentanyl for Postoperative Analgesia after Cytoreductive Surgery with Hyperthermic Intraperotineal Chemotherapy (Crs + Hipec)

Authors: Vishal Bhatnagar

Abstract:

The objective of this study is to compare the efficacy of epidural analgesia of two amide local anesthetics, ropivacaine and levobupivacaine, with fentanyl for postoperative analgesia in major abdominal surgery CRS+HIPEC. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS+HIPEC) are done for primary peritoneal malignancies or peritoneal spread of malignant neoplasm. CRS and HIPEC are considered one of the most painful surgery among all major abdominal surgeries. Poorly managed postoperative pain elevates stress, increases anxiety, causes prolonged Hospital stay, increases opioid requirement and side effects, increases the cost of treatment and psychological effects on patient and family. It affects the quality of life of patients. The epidural technique provides better postoperative analgesia, earlier recovery of bowel function, fewer side effects, higher patient satisfaction, and an improvement in life quality in the postoperative days after abdominal surgery than other analgesic techniques.

Keywords: HIPEC, postoperative analgesia, cytoreductive surgery, VAS score, rescue analgesia

Procedia PDF Downloads 43
27531 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities

Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan

Abstract:

The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.

Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility

Procedia PDF Downloads 76
27530 Changes in the Subjective Interpretation of Poverty Due to COVID-19: The Case of a Peripheral County of Hungary

Authors: Eszter Siposne Nandori

Abstract:

The paper describes how the subjective interpretation of poverty changed during the COVID-19 pandemic. The results of data collection at the end of 2020 are compared to the results of a similar survey from 2019. The methods of systematic data collection are used to collect data about the beliefs of the population about poverty. The analysis is carried out in Borsod-Abaúj-Zemplén County, one of the most backward areas in Hungary. The paper concludes that poverty is mainly linked to material values, and it did not change from 2019 to 2020. Some slight changes, however, highlight the effect of the pandemic: poverty is increasingly seen as a generational problem in 2020, and another important change is that isolation became more closely related to poverty.

Keywords: Hungary, interpretation of poverty, pandemic, systematic data collection, subjective poverty

Procedia PDF Downloads 126
27529 Audit Management of Constipation According to National Institute for Health and Care Excellence Guideline

Authors: Areej Makeineldein Mustafa

Abstract:

The study evaluates the management processes and healthcare provider compliance with the National Institute for Health and Care Excellence recommendations for constipation management. We aimed to evaluate the adherence to National Institute for Health and Care Excellence guidelines in the management of constipation during the period from February to June 2023. We collected data from a random sample ( 51 patients) over 4 months with inclusion criteria for patients above 60 who were just admitted to the care of the elderly department during this period. Patient age, sex, medical records for constipation, acute or chronic constipation, or opioid-induced constipation, and treatment options were used to identify constipation and the type of treatment given. Our findings indicate that there is a gap between practice and National Institute for Health and Care Excellence guideline steps; only 3 patient was given medications according to National Institute for Health and Care Excellence guidelines in order of combination or steps of escalation. Addressing these gaps could potentially lead to enhanced patient outcomes and an overall improvement in the quality of care provided to individuals suffering from constipation.

Keywords: constipation, elderly, management, patient

Procedia PDF Downloads 89
27528 The Opportunities and Challenges of Adopting International Financial Reporting Standards in Saudi Capital Market

Authors: Abdullah Almulhim

Abstract:

The International Accounting Standards Board (IASB) was established in 2001 to develop International Financial Reporting Standards (IFRS) that bring transparency, accountability, and efficiency to financial markets around the world. In addition, the IFRS provide a unified accounting language, which is especially important in the era of globalization. However, the establishment of a single set of high-quality international accounting standards is a matter of growing importance, as participants in the increasingly integrated world capital market demand comparability and transparency of financial reporting worldwide. Saudi Arabia became the 149th member of the World Trade Organization (WTO) on 11 December 2005, which has increased the need to convert to IFRS. Currently, the Saudi Arabian Monetary Authority (SAMA) requires banks and insurance companies in Saudi Arabia to report under IFRS Standards. However, until the end of 2016, SOCPA standards were applied to all other companies, listed and unlisted. From 2017, listed Saudi companies would be required to report under IFRS Standards as adopted by SOCPA effective 2017. This paper is to investigate the expected benefits gained and highlight the challenges faced by adopting IFRS by the listed companies in the Saudi Stock Exchange. Questionnaires were used as the main method of data collection. They were distributed to listed companies in the Saudi Capital Market. Data obtained through the questionnaires have been imported into SPSS statistical software for analysis. The expected results of this study will show the benefits of adopting IFRS by Saudi Listed Companies. However, this study will investigate the challenges faced by adopting IFRS by the listed companies in the Saudi Arabian Stock Market. Findings will be discussed later upon completion of initial analysis.

Keywords: challenges, IAS, IFRS, opportunities, Saudi, SOCPA

Procedia PDF Downloads 247
27527 Effect of Training and Development on Employee Performance in the Banking Industry: A Case Study of Some Selected Banks within Bauchi Metropolis

Authors: Sagir Abubakar

Abstract:

Organization must move along with the employees, because organization should adapt itself to the changing environment. The paper examines the effect of training and development on employee performance. Training and development has an important role in improve the performance, skills and attitude of employee in an organization. Training and development will also help an employee to do his present job or to prepare him for a higher position with increased responsibilities. The paper analyses the employee performance towards training and development conducted in some selected banks within Bauchi metropolis. Review of related literature was done on, training, training objectives, methods and development and its method. A census survey was carried out using staff of GTB and Skye Banks Bauchi branch where a total of 40 questionnaires were administered personally by the researcher and there were 100% responses. Correlation analysis was adopted for the analysis of data collected. The study concludes that 95% of respondents agreed that training and development are vital for both employee and organizations performance. They also suggest that training and development should be made compulsory for all categories of employee in an organization. Training and Development programmes are necessary in any organization for improving the quality of work of the employee.

Keywords: training, development, employee, performance, banks

Procedia PDF Downloads 470
27526 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification

Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone

Abstract:

This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.

Keywords: automation, data abstraction, maps, specification, tree, verification

Procedia PDF Downloads 166
27525 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 285
27524 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment

Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal

Abstract:

Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).

Keywords: flocculants, flocculation, olive oil mill wastewater, water quality

Procedia PDF Downloads 540
27523 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
27522 Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates

Authors: Fulya Ozbey, Ecehan Ozmehmet

Abstract:

Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year.

Keywords: Asian climate, indoor air quality, Mediterranean climate, natural ventilation simulation, thermal comfort

Procedia PDF Downloads 236
27521 Accounting and Auditing Standards Influence on Income Smoothing Perspective in Islamic Financial Institutions

Authors: Fatma Ezzahra Kateb, Neila Boulila Taktak, Mohamed Kabir Hassan

Abstract:

We examine the impact of Islamic accounting and auditing standards issued by the Accounting and Auditing Organization for Islamic Financial Institutions (AAOIFI) on the income smoothing perspective of Islamic financial institutions located in the Middle East and North Africa region between 2013 and 2018. Based on General Least square regression for panel data, we find a significant and positive relationship between intentional income smoothing and earning persistence and cash flow predictability in all models. However, we discovered that AAOIFI accounting standards (FAS) had a negative and significant effect on intentional income smoothing and earning persistence. As a result, the income smoothing efficiency is lower for IFIs that use FASs than IFIs that use IFRSs. Our findings emphasize the need for specific standards to enhance the relevance of financial reports disclosed by Islamic financial institutions.

Keywords: AAOIFI, financial reporting quality, income smoothing perspective, MENA countries

Procedia PDF Downloads 94
27520 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 245
27519 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology

Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco

Abstract:

Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.

Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning

Procedia PDF Downloads 70
27518 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data

Authors: Yuqing Chen, Ying Xu, Renfa Li

Abstract:

The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.

Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier

Procedia PDF Downloads 384
27517 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area

Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos

Abstract:

Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: particulate matter, emissions, fugitive, construction, air pollution

Procedia PDF Downloads 352
27516 Measuring Government’s Performance (Services) Oman Service Maturity Model (OSMM)

Authors: Angie Al Habib, Khalid Al Siyabi

Abstract:

To measure or asses any government’s efficiency we need to measure the performance of this government in regards to the quality of the service it provides. Using a technological platform in service provision became a trend and a public demand. It is also a public need to make sure these services are aligned to values and to the whole government’s strategy, vision and goals as well. Providing services using technology tools and channels can enhance the internal business process and also help establish many essential values to government services like transparency and excellence, since in order to establish e-services many standards and policies must be put in place to enable the handing over of decision making to a mature system oriented mechanism. There was no doubt that the Sultanate of Oman wanted to enhance its services and move it towards automation and establishes a smart government as well as links its services to life events. Measuring government efficiency is very essential in achieving social security and economic growth, since it can provide a clear dashboard of all projects and improvements. Based on this data we can improve the strategies and align the country goals to them.

Keywords: government, maturity, Oman, performance, service

Procedia PDF Downloads 366
27515 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
27514 Evaluation: Developing An Appropriate Survey Instrument For E-Learning

Authors: Brenda Ravenscroft, Ulemu Luhanga, Bev King

Abstract:

A comprehensive evaluation of online learning needs to include a blend of educational design, technology use, and online instructional practices that integrate technology appropriately for developing and delivering quality online courses. Research shows that classroom-based evaluation tools do not adequately capture the dynamic relationships between content, pedagogy, and technology in online courses. Furthermore, studies suggest that using classroom evaluations for online courses yields lower than normal scores for instructors, and may affect faculty negatively in terms of administrative decisions. In 2014, the Faculty of Arts and Science at Queen’s University responded to this evidence by seeking an alternative to the university-mandated evaluation tool, which is designed for classroom learning. The Faculty is deeply engaged in e-learning, offering large variety of online courses and programs in the sciences, social sciences, humanities and arts. This paper describes the process by which a new student survey instrument for online courses was developed and piloted, the methods used to analyze the data, and the ways in which the instrument was subsequently adapted based on the results. It concludes with a critical reflection on the challenges of evaluating e-learning. The Student Evaluation of Online Teaching Effectiveness (SEOTE), developed by Arthur W. Bangert in 2004 to assess constructivist-compatible online teaching practices, provided the starting point. Modifications were made in order to allow the instrument to serve the two functions required by the university: student survey results provide the instructor with feedback to enhance their teaching, and also provide the institution with evidence of teaching quality in personnel processes. Changes were therefore made to the SEOTE to distinguish more clearly between evaluation of the instructor’s teaching and evaluation of the course design, since, in the online environment, the instructor is not necessarily the course designer. After the first pilot phase, involving 35 courses, the results were analyzed using Stobart's validity framework as a guide. This process included statistical analyses of the data to test for reliability and validity, student and instructor focus groups to ascertain the tool’s usefulness in terms of the feedback it provided, and an assessment of the utility of the results by the Faculty’s e-learning unit responsible for supporting online course design. A set of recommendations led to further modifications to the survey instrument prior to a second pilot phase involving 19 courses. Following the second pilot, statistical analyses were repeated, and more focus groups were used, this time involving deans and other decision makers to determine the usefulness of the survey results in personnel processes. As a result of this inclusive process and robust analysis, the modified SEOTE instrument is currently being considered for adoption as the standard evaluation tool for all online courses at the university. Audience members at this presentation will be stimulated to consider factors that differentiate effective evaluation of online courses from classroom-based teaching. They will gain insight into strategies for introducing a new evaluation tool in a unionized institutional environment, and methodologies for evaluating the tool itself.

Keywords: evaluation, online courses, student survey, teaching effectiveness

Procedia PDF Downloads 266
27513 Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality

Authors: Ilze Beitane, Evita Straumite

Abstract:

The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage. The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties-aroma, taste, consistency and appearance-of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency, and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage.

Keywords: Barley flakes, malt extract, yoghurt, sensory analysis

Procedia PDF Downloads 300
27512 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 157
27511 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 461
27510 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga

Authors: M. F. Mamabolo

Abstract:

Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.

Keywords: Kaap river system, mines, heavy metals, sulphate

Procedia PDF Downloads 81