Search results for: wireless sensors networks
399 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 34398 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data
Authors: Adrian Priceputu, Elena Mihaela Stan
Abstract:
Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations
Procedia PDF Downloads 55397 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 473396 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine
Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski
Abstract:
The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization
Procedia PDF Downloads 386395 Buoyant Gas Dispersion in a Small Fuel Cell Enclosure: A Comparison Study Using Plain and Pressed Louvre Vent Passive Ventilation Schemes
Authors: T. Ghatauray, J. Ingram, P. Holborn
Abstract:
The transition from a ‘carbon rich’ fossil fuel dependent to a ‘sustainable’ and ‘renewable’ hydrogen based society will see the deployment of hydrogen fuel cells (HFC) in transport applications and in the generation of heat and power for buildings, as part of a decentralised power network. Many deployments will be low power HFCs for domestic combined heat and power (CHP) and commercial ‘transportable’ HFCs for environmental situations, such as lighting and telephone towers. For broad commercialisation of small fuel cells to be achieved there needs to be significant confidence in their safety in both domestic and environmental applications. Low power HFCs are housed in protective steel enclosures. Standard enclosures have plain rectangular ventilation openings intended for thermal management of electronics and not the dispersion of a buoyant gas. Degradation of the HFC or supply pipework in use could lead to a low-level leak and a build-up of hydrogen gas in the enclosure. Hydrogen’s wide flammable range (4-75%) is a significant safety concern, with ineffective enclosure ventilation having the potential to cause flammable mixtures to develop with the risk of explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations, but drains HFC power and is vulnerable to failure. This is undesirable in low power and remote installations and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow, with the size, shape and position of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. With environmentally sited enclosures, ventilation openings with pressed horizontal and angled louvres are preferred to protect the HFC and electronics inside. There is an economic cost to adding louvres, but also a safety concern. A question arises over whether the use of pressed louvre vents impairs enclosure passive ventilation performance, when compared to same opening area plain vents. Comparison small enclosure (0.144m³) tests of same opening area pressed louvre and plain vents were undertaken. A displacement ventilation arrangement was incorporated into the enclosure with opposing upper and lower ventilation openings. A range of vent areas were tested. Helium (used as a safe analogue for hydrogen) was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak at leak rates from 1 to 10 lpm. Helium sensors were used to record concentrations at eight heights in the enclosure. The enclosure was otherwise empty. These tests determined that the use of pressed and angled louvre ventilation openings on the enclosure impaired the passive ventilation flow and increased helium concentrations in the enclosure. High-level stratified buoyant gas layers were also found to be deeper than with plain vent openings and were within the flammable range. The presence of gas within the flammable range is of concern, particularly as the addition of the fuel cell and electronics in the enclosure would further reduce the available volume and increase concentrations. The opening area of louvre vents would need to be greater than equivalent plain vents to achieve comparable ventilation flows or alternative schemes would need to be considered.Keywords: enclosure, fuel cell, helium, hydrogen safety, louvre vent, passive ventilation
Procedia PDF Downloads 274394 Community Health Workers’ Performance and Their Influence in the Adoption of Strategies to Address Malaria Burden at a Subnational Level Health System in Cameroon
Authors: Tacho Rubby Kong
Abstract:
Community health workers’ performances are known to influence members’ behaviours and practices while translating policies into service delivery. However, little remains known about the extent to which this remains true within interventions aimed at addressing malaria burden in low-resource settings like Cameroon. The objective of this study was to examine the health workers’ performance and their influence on the adoption of strategies to address the malaria burden at a subnational level health system in Cameroon. A qualitative exploratory design was adopted on a purposively selected sample of 18 key informants. The study was conducted in Konye health district among sub-national health systems, managers, health facility in-charges, and frontline community health workers. Data was collected using semi-structured interview guides in a face-to-face interview with respondents. The analysis adopted a thematic approach utilising journals, credible authors, and peer review articles for data management. Participants acknowledged that workplace networks were influential during the implementation of policies to address malaria. The influence exerted was in form of linkage with other services, caution, and advice regarding strict adherence to policy recommendations, perhaps reflective of the level of trust in providers’ ability to adhere to policy provisions. At the district health management level and among non-state actors, support in perceived areas of weak performance in policy implementation was observed. In addition, timely initiation of contact and subsequent referral was another aspect where community health workers exerted influence while translating policies to address the malaria burden. While the level of support from among network peers was observed to influence community health workers’ adoption and implementation of strategies to address the malaria burden, different mechanisms triggered subsequent response and level of adherence to recommended policy aspects. Drawing from the elicited responses, it was infer that community health workers’ performance influence the direction and extent of success in policy implementation to address the malaria burden at the subnational level.Keywords: subnational, community, malaria, strategy
Procedia PDF Downloads 92393 Gender Supportive Systems-Key to Good Governance in Agriculture: Challenges and Strategies
Authors: Padmaja Kaja, Kiran Kumar Gellaboina
Abstract:
A lion’s share of agricultural work is contributed by women in India as it is the case in many developing countries, yet women are not securing the pride as a farmer. Many policies are supporting women empowerment in India, especially in agriculture sector considering the importance of sustainable food security. However these policies many times failed to achieve the targeted results of mainstreaming gender. Implementing the principles of governance would lead to gender equality in agriculture. This paper deals with the social norms and obligations prevailed with reference to Indian context which abstain women from having resources. This paper is formulated by using primary research done in eight districts of Telangana and Andhra Pradesh states of India supported by secondary research. Making amendments to Hindu Succession Act in united Andhra Pradesh much prior to the positioning of the amended act in the whole country lead to a better land holding a share of women in Andhra Pradesh. The policies like registering government distributed lands in the name of women in the state also have an added value. However, the women participation in decision-making process in agriculture is limited in elite families when compared to socially under privileged families, further too it was higher in drought affected districts like Mahbubnagar in Telangana when compared to resource-rich East Godavari district in Andhra Pradesh. Though National Gender Resource Centre for Agriculture (NGRCA) at centre and Gender Cells in the states were established a decade ago, extension reach to the women farmers is still lagging behind. Capturing the strength of women self groups in India especially in Andhra Pradesh to link up with agriculture extension might improve the extension reach of women farmers. Maintenance of micro level women data sets, creating women farmers networks with government departments like agriculture, irrigation, revenue and formal credit institutes would result in good governance to mainstream gender in agriculture. Further to add that continuous monitoring and impact assessments of the programmes and projects for gender inclusiveness would reiterate the government efforts.Keywords: food security, gender, governance, mainstreaming
Procedia PDF Downloads 245392 Household Earthquake Absorptive Capacity Impact on Food Security: A Case Study in Rural Costa Rica
Authors: Laura Rodríguez Amaya
Abstract:
The impact of natural disasters on food security can be devastating, especially in rural settings where livelihoods are closely tied to their productive assets. In hazards studies, absorptive capacity is seen as a threshold that impacts the degree of people’s recovery after a natural disaster. Increasing our understanding of households’ capacity to absorb natural disaster shocks can provide the international community with viable measurements for assessing at-risk communities’ resilience to food insecurities. The purpose of this study is to identify the most important factors in determining a household’s capacity to absorb the impact of a natural disaster. This is an empirical study conducted in six communities in Costa Rica affected by earthquakes. The Earthquake Impact Index was developed for the selection of the communities in this study. The households coded as total loss in the selected communities constituted the sampling frame from which the sample population was drawn. Because of the study area geographically dispersion over a large surface, the stratified clustered sampling hybrid technique was selected. Of the 302 households identified as total loss in the six communities, a total of 126 households were surveyed, constituting 42 percent of the sampling frame. A list of indicators compiled based on theoretical and exploratory grounds for the absorptive capacity construct served to guide the survey development. These indicators were included in the following variables: (1) use of informal safety nets, (2) Coping Strategy, (3) Physical Connectivity, and (4) Infrastructure Damage. A multivariate data analysis was conducted using Statistical Package for Social Sciences (SPSS). The results show that informal safety nets such as family and friends assistance exerted the greatest influence on the ability of households to absorb the impact of earthquakes. In conclusion, communities that experienced the highest environmental impact and human loss got disconnected from the social networks needed to absorb the shock’s impact. This resulted in higher levels of household food insecurity.Keywords: absorptive capacity, earthquake, food security, rural
Procedia PDF Downloads 253391 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 40390 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 48389 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications
Authors: Omojokun Gabriel Aju
Abstract:
Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)
Procedia PDF Downloads 358388 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 65387 The Sustainable Development for Coastal Tourist Building
Authors: D. Avila
Abstract:
The tourism industry is a phenomenon that has become a growing presence in international socio-economic dynamics, which in most cases exceeds the control parameters in the various environmental regulations and sustainability of existing resources. Because of this, the effects on the natural environment at the regional and national levels represent a challenge, for which a number of strategies are necessary to minimize the environmental impact generated by the occupation of the territory. The hotel tourist building and sustainable development in the coastal zone, have an important impact on the environment and on the physical and psychological health of the inhabitants. Environmental quality associated with the comfort of humans to the sustainable development of natural resources; applied to the hotel architecture this concept involves the incorporation of new demands on all of the constructive process of a building, changing customs of developers and users. The methodology developed provides an initial analysis to determine and rank the different tourist buildings, with the above it will be feasible to establish methods of study and environmental impact assessment. Finally, it is necessary to establish an overview regarding the best way to implement tourism development on the coast, containing guidelines to improve and protect the natural environment. This paper analyzes the parameters and strategies to reduce environmental impacts derived from deployments tourism on the coast, through a series of recommendations towards sustainability, in the context of the Bahia de Banderas, Puerto Vallarta, Jalisco. The environmental impact caused by the implementation of tourism development, perceived in a coastal environment, forcing a series of processes, ranging from the identification of impacts, prediction and evaluation of them. For this purpose are described below, different techniques and valuation procedures: Identification of impacts. Methods for the identification of damage caused to the environment pursue general purpose to obtain a group of negative indicators that are subsequently used in the study of environmental impact. There are several systematic methods to identify the impacts caused by human activities. In the present work, develops a procedure based and adapted from the Ministry of works public urban reference in studies of environmental impacts, the representative methods are: list of contrast, arrays, and networks, method of transparencies and superposition of maps.Keywords: environmental impact, physical health, sustainability, tourist building
Procedia PDF Downloads 329386 Development of Adaptive Proportional-Integral-Derivative Feeding Mechanism for Robotic Additive Manufacturing System
Authors: Andy Alubaidy
Abstract:
In this work, a robotic additive manufacturing system (RAMS) that is capable of three-dimensional (3D) printing in six degrees of freedom (DOF) with very high accuracy and virtually on any surface has been designed and built. One of the major shortcomings in existing 3D printer technology is the limitation to three DOF, which results in prolonged fabrication time. Depending on the techniques used, it usually takes at least two hours to print small objects and several hours for larger objects. Another drawback is the size of the printed objects, which is constrained by the physical dimensions of most low-cost 3D printers, which are typically small. In such cases, large objects are produced by dividing them into smaller components that fit the printer’s workable area. They are then glued, bonded or otherwise attached to create the required object. Another shortcoming is material constraints and the need to fabricate a single part using different materials. With the flexibility of a six-DOF robot, the RAMS has been designed to overcome these problems. A feeding mechanism using an adaptive Proportional-Integral-Derivative (PID) controller is utilized along with a national instrument compactRIO (NI cRIO), an ABB robot, and off-the-shelf sensors. The RAMS have the ability to 3D print virtually anywhere in six degrees of freedom with very high accuracy. It is equipped with an ABB IRB 120 robot to achieve this level of accuracy. In order to convert computer-aided design (CAD) files to digital format that is acceptable to the robot, Hypertherm Robotic Software Inc.’s state-of-the-art slicing software called “ADDMAN” is used. ADDMAN is capable of converting any CAD file into RAPID code (the programing language for ABB robots). The robot uses the generated code to perform the 3D printing. To control the entire process, National Instrument (NI) compactRIO (cRio 9074), is connected and communicated with the robot and a feeding mechanism that is designed and fabricated. The feeding mechanism consists of two major parts, cold-end and hot-end. The cold-end consists of what is conventionally known as an extruder. Typically, a stepper-motor is used to control the push on the material, however, for optimum control, a DC motor is used instead. The hot-end consists of a melt-zone, nozzle, and heat-brake. The melt zone ensures a thorough melting effect and consistent output from the nozzle. Nozzles are made of brass for thermo-conductivity while the melt-zone is comprised of a heating block and a ceramic heating cartridge to transfer heat to the block. The heat-brake ensures that there is no heat creep-up effect as this would swell the material and prevent consistent extrusion. A control system embedded in the cRio is developed using NI Labview which utilizes adaptive PID to govern the heating cartridge in conjunction with a thermistor. The thermistor sends temperature feedback to the cRio, which will issue heat increase or decrease based on the system output. Since different materials have different melting points, our system will allow us to adjust the temperature and vary the material.Keywords: robotic, additive manufacturing, PID controller, cRIO, 3D printing
Procedia PDF Downloads 217385 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 135384 A Method To Assess Collaboration Using Perception of Risk from the Architectural Engineering Construction Industry
Authors: Sujesh F. Sujan, Steve W. Jones, Arto Kiviniemi
Abstract:
The use of Building Information Modelling (BIM) in the Architectural-Engineering-Construction (AEC) industry is a form of systemic innovation. Unlike incremental innovation, (such as the technological development of CAD from hand based drawings to 2D electronically printed drawings) any form of systemic innovation in Project-Based Inter-Organisational Networks requires complete collaboration and results in numerous benefits if adopted and utilised properly. Proper use of BIM involves people collaborating with the use of interoperable BIM compliant tools. The AEC industry globally has been known for its adversarial and fragmented nature where firms take advantage of one another to increase their own profitability. Due to the industry’s nature, getting people to collaborate by unifying their goals is critical to successful BIM adoption. However, this form of innovation is often being forced artificially in the old ways of working which do not suit collaboration. This may be one of the reasons for its low global use even though the technology was developed more than 20 years ago. Therefore, there is a need to develop a metric/method to support and allow industry players to gain confidence in their investment into BIM software and workflow methods. This paper departs from defining systemic risk as a risk that affects all the project participants at a given stage of a project and defines categories of systemic risks. The need to generalise is to allow method applicability to any industry where the category will be the same, but the example of the risk will depend on the industry the study is done in. The method proposed seeks to use individual perception of an example of systemic risk as a key parameter. The significance of this study lies in relating the variance of individual perception of systemic risk to how much the team is collaborating. The method bases its notions on the claim that a more unified range of individual perceptions would mean a higher probability that the team is collaborating better. Since contracts and procurement devise how a project team operates, the method could also break the methodological barrier of highly subjective findings that case studies inflict, which has limited the possibility of generalising between global industries. Since human nature applies in all industries, the authors’ intuition is that perception can be a valuable parameter to study collaboration which is essential especially in projects that utilise systemic innovation such as BIM.Keywords: building information modelling, perception of risk, systemic innovation, team collaboration
Procedia PDF Downloads 185383 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI
Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal
Abstract:
Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.Keywords: fMRI, functional connectivity, task-based, beta series correlation
Procedia PDF Downloads 270382 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 106381 Theoretical Study of the Photophysical Properties and Potential Use of Pseudo-Hemi-Indigo Derivatives as Molecular Logic Gates
Authors: Christina Eleftheria Tzeliou, Demeter Tzeli
Abstract:
Introduction: Molecular Logic Gates (MLGs) are molecular machines that can perform complex work, such as solving logic operations. Molecular switches, which are molecules that can experience chemical changes are examples of successful types of MLGs. Recently, Quintana-Romero and Ariza-Castolo studied experimentally six stable pseudo-hemi-indigo-derived MLGs capable of solving complex logic operations. The MLG design relies on a molecular switch that experiences Z and E isomerism, thus the molecular switch's axis has to be a double bond. The hemi-indigo structure was preferred for the assembly of molecular switches due to its interaction with visible light. Z and E pseudo-hemi-indigo isomers can also be utilized for selective isomerization as they have distinct absorption spectra. Methodology: Here, the photophysical properties of pseudo-hemi-indigo derivatives are examined, i.e., derivatives of molecule 1 with anthracene, naphthalene, phenanthrene, pyrene, and pyrrole. In conjunction with some trials that were conducted, the level of theory mentioned subsequently was determined. The structures under study were optimized in both cis and trans conformations at the PBE0/6-31G(d,p) level of theory. The absorption spectra of the structures were calculated at PBE0/DEF2TZVP. In all cases, the absorption spectra of the studied systems were calculated including up to 50 singlet- and triplet-spin excited electronic states. Transition states (cis → cis, cis → trans, and trans → trans) were obtained in cases where it was possible, with PBE0/6-31G(d,p) for the optimization of the transition states and PBE0/DEF2TZVP for the respective absorption spectra. Emission spectra were obtained for the first singlet state of each molecule in cis both and trans conformations in PBE0/DEF2TZVP as well. All studies were performed in chloroform solvent that was added as a dielectric constant and the polarizable continuum model was also employed. Findings: Shifts of up to 25 nm are observed in the absorption spectra due to cis-trans isomerization, while the transition state is shifted up to about 150 nm. The electron density distribution is also examined, where charge transfer and electron transfer phenomena are observed regarding the three excitations of interest, i.e., H-1 → L, H → L and H → L+1. Emission spectra calculations were also carried out at PBE0/DEF2TZVP for the complete investigation of these molecules. Using protonation as input, selected molecules act as MLGs. Conclusion: Theoretical data so far indicate that both cis-trans isomerization, and cis-cis and trans-trans conformer isomerization affect the UV-visible absorption and emission spectra. Specifically, shifts of up to 30 nm are observed, while the transition state is shifted up to about 150 nm in cis-cis isomerization. The computational data obtained are in agreement with available experimental data, which have predicted that the pyrrole derivative is a MLG at 445 nm and 400 nm using protonation as input, while the anthracene derivative is a MLG that operates at 445 nm using protonation as input. Finally, it was found that selected molecules are candidates as MLG using protonation and light as inputs. These MLGs could be used as chemical sensors or as particular intracellular indicators, among several other applications. Acknowledgements: The author acknowledges the Hellenic Foundation for Research and Innovation for the financial support of this project (Fellowship Number: 21006).Keywords: absorption spectra, DFT calculations, isomerization, molecular logic gates
Procedia PDF Downloads 22380 Yield Loss Estimation Using Multiple Drought Severity Indices
Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed
Abstract:
Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.Keywords: grapes, composite drought index, yield loss, satellite remote sensing
Procedia PDF Downloads 157379 Open Source Cloud Managed Enterprise WiFi
Authors: James Skon, Irina Beshentseva, Michelle Polak
Abstract:
Wifi solutions come in two major classes. Small Office/Home Office (SOHO) WiFi, characterized by inexpensive WiFi routers, with one or two service set identifiers (SSIDs), and a single shared passphrase. These access points provide no significant user management or monitoring, and no aggregation of monitoring and control for multiple routers. The other solution class is managed enterprise WiFi solutions, which involve expensive Access Points (APs), along with (also costly) local or cloud based management components. These solutions typically provide portal based login, per user virtual local area networks (VLANs), and sophisticated monitoring and control across a large group of APs. The cost for deploying and managing such managed enterprise solutions is typically about 10 fold that of inexpensive consumer APs. Low revenue organizations, such as schools, non-profits, non-government organizations (NGO's), small businesses, and even homes cannot easily afford quality enterprise WiFi solutions, though they may need to provide quality WiFi access to their population. Using available lower cost Wifi solutions can significantly reduce their ability to provide reliable, secure network access. This project explored and created a new approach for providing secured managed enterprise WiFi based on low cost hardware combined with both new and existing (but modified) open source software. The solution provides a cloud based management interface which allows organizations to aggregate the configuration and management of small, medium and large WiFi solutions. It utilizes a novel approach for user management, giving each user a unique passphrase. It provides unlimited SSID's across an unlimited number of WiFI zones, and the ability to place each user (and all their devices) on their own VLAN. With proper configuration it can even provide user local services. It also allows for users' usage and quality of service to be monitored, and for users to be added, enabled, and disabled at will. As inferred above, the ultimate goal is to free organizations with limited resources from the expense of a commercial enterprise WiFi, while providing them with most of the qualities of such a more expensive managed solution at a fraction of the cost.Keywords: wifi, enterprise, cloud, managed
Procedia PDF Downloads 97378 The Psychosocial Issues and Support Needs of Patients with Chronic Kidney Disease Undergoing Hemodialysis: A Qualitative Study from Nepal
Authors: Akriti Kafle Baral, Ruixing Zhang, Dzifa K Lalit, Manthar M Alli
Abstract:
Introduction: Hemodialysis is the most common type of dialysis globally approximately million are reported to receive this type of dialysis. Psychosocial issues in hemodialysis are the psychological and socioeconomic burdens emanating from the initiation and course of treatment and have the potential for gross deterioration in the quality of life and general well-being of patients. Understanding the psychosocial issues and needs of patients undergoing hemodialysis could pave the way for comprehensive support and therapies designed to reduce stress, improve social support, and foster mental resilience. Objectives: The aim of this study was to explore the psychosocial issues and support needs of patients undergoing hemodialysis at a tertiary care center in Nepal. Methods: A qualitative descriptive study was conducted among 20 purposefully selected patients attending hemodialysis treatment at Pokhara Academy of Health Sciences, Nepal. Data was analyzed via thematic analysis. Results: The study resulted in three major themes which included Emotional, psychological, and spiritual struggles, Social and economic impacts, and Support and information needs. Moreover, 16 sub-themes emerged which are Frustration with daily life, Constant fear of death, Thoughts of self-harm, Perceived Burden on Family, Sense of Divine Punishment, Sense of Unfairness, Fear about future uncertainties, Social avoidance, Social stigmatization, Loss of employment, Financial strain, Transportation challenges, Need for early, clear and comprehensive information, Need for support and reassurance from family, Support through peer connections, and Reassurance from healthcare providers. Conclusion: The findings of this study indicate that patients undergoing hemodialysis in Nepal experience numerous hardships and multifaceted struggles that require support from different dimensions. Establishing robust support systems that include family involvement, peer networks, and effective communication from healthcare professionals can significantly mitigate feelings of anxiety and isolation.Keywords: hemodialysis, psychosocial issues, support needs, chronic kidney disease, end stage renal disease, Nepal
Procedia PDF Downloads 10377 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 112376 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses
Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan
Abstract:
Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis
Procedia PDF Downloads 367375 The Gezi Park Protests in the Columns
Authors: Süleyman Hakan Yilmaz, Yasemin Gülsen Yilmaz
Abstract:
The Gezi Park protests of 2013 have significantly changed the Turkish agenda and its effects have been felt historically. The protests, which rapidly spread throughout the country, were triggered by the proposal to recreate the Ottoman Army Barracks to function as a shopping mall on Gezi Park located in Istanbul’s Taksim neighbourhood despite the oppositions of several NGOs and when trees were cut in the park for this purpose. Once the news that construction vehicles entered the park on May 27 spread on social media, activists moved into the park to stop the demolition, against whom the police used disproportioned force. With this police intervention and the then prime-minister Tayyip Erdoğan's insistent statements about the construction plans, the protests turned into anti-government demonstrations, which then spread to the rest of the country, mainly in big cities like Ankara and Izmir. According to the Ministry of Internal Affairs’ June 23rd reports, 2.5 million people joined the demonstrations in 79 provinces, that is all of them, except for the provinces of Bayburt and Bingöl, while even more people shared their opinions via social networks. As a result of these events, 8 civilians and 2 security personnel lost their lives, namely police chief Mustafa Sarı, police officer Ahmet Küçükdağ, citizens Mehmet Ayvalıtaş, Abdullah Cömert, Ethem Sarısülük, Ali İsmail Korkmaz, Ahmet Atakan, Berkin Elvan, Burak Can Karamanoğlu, Mehmet İstif, and Elif Çermik, and 8163 more were injured. Besides being a turning point in Turkish history, the Gezi Park protests also had broad repercussions in both in Turkish and in global media, which focused on Turkey throughout the events. Our study conducts content analysis of three Turkish reporting newspapers with varying ideological standpoints, Hürriyet, Cumhuriyet ve Yeni Şafak, in order to reveal their basic approach to columns casting in context of the Gezi Park protests. Columns content relating to the Gezi protests were treated and analysed for this purpose. The aim of this study is to understand the social effects of the Gezi Park protests through media samples with varying political attitudes towards news casting.Keywords: Gezi Park, media, news casting, columns
Procedia PDF Downloads 433374 A POX Controller Module to Collect Web Traffic Statistics in SDN Environment
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a new norm of networks. It is designed to facilitate the way of managing, measuring, debugging and controlling the network dynamically, and to make it suitable for the modern applications. Generally, measurement methods can be divided into two categories: Active and passive methods. Active measurement method is employed to inject test packets into the network in order to monitor their behaviour (ping tool as an example). Meanwhile the passive measurement method is used to monitor the traffic for the purpose of deriving measurement values. The measurement methods, both active and passive, are useful for the collection of traffic statistics, and monitoring of the network traffic. Although there has been a work focusing on measuring traffic statistics in SDN environment, it was only meant for measuring packets and bytes rates for non-web traffic. In this study, a feasible method will be designed to measure the number of packets and bytes in a certain time, and facilitate obtaining statistics for both web traffic and non-web traffic. Web traffic refers to HTTP requests that use application layer; while non-web traffic refers to ICMP and TCP requests. Thus, this work is going to be more comprehensive than previous works. With a developed module on POX OpenFlow controller, information will be collected from each active flow in the OpenFlow switch, and presented on Command Line Interface (CLI) and wireshark interface. Obviously, statistics that will be displayed on CLI and on wireshark interfaces include type of protocol, number of bytes and number of packets, among others. Besides, this module will show the number of flows added to the switch whenever traffic is generated from and to hosts in the same statistics list. In order to carry out this work effectively, our Python module will send a statistics request message to the switch requesting its current ports and flows statistics in every five seconds; while the switch will reply with the required information in a message called statistics reply message. Thus, POX controller will be notified and updated with any changes could happen in the entire network in a very short time. Therefore, our aim of this study is to prepare a list for the important statistics elements that are collected from the whole network, to be used for any further researches; particularly, those that are dealing with the detection of the network attacks that cause a sudden rise in the number of packets and bytes like Distributed Denial of Service (DDoS).Keywords: mininet, OpenFlow, POX controller, SDN
Procedia PDF Downloads 235373 The Comparative Study of Attitudes toward Entrepreneurial Intention between ASEAN and Europe: An Analysis Using GEM Data
Authors: Suchart Tripopsakul
Abstract:
This paper uses data from the Global Entrepreneurship Monitor (GEM) to investigate the difference of attitudes towards entrepreneurial intention (EI). EI is generally assumed to be the single most relevant predictor of entrepreneurial behavior. The aim of this paper is to examine a range of attitudes effect on individual’s intent to start a new venture. A cross-cultural comparison between Asia and Europe is used to further investigate the possible differences between potential entrepreneurs from these distinct national contexts. The empirical analysis includes a GEM data set of 10 countries (n = 10,306) which was collected in 2013. Logistic regression is used to investigate the effect of individual’s attitudes on EI. Independent variables include individual’s perceived capabilities, the ability to recognize business opportunities, entrepreneurial network, risk perceptions as well as a range of socio-cultural attitudes. Moreover, a cross-cultural comparison of the model is conducted including six ASEAN (Malaysia, Indonesia, Philippines, Singapore, Vietnam and Thailand) and four European nations (Spain, Sweden, Germany, and the United Kingdom). The findings support the relationship between individual’s attitudes and their entrepreneurial intention. Individual’s capability, opportunity recognition, networks and a range of socio-cultural perceptions all influence EI significantly. The impact of media attention on entrepreneurship and was found to influence EI in ASEAN, but not in Europe. On the one hand, Fear of failure was found to influence EI in Europe, but not in ASEAN. The paper develops and empirically tests attitudes toward Entrepreneurial Intention between ASEAN and Europe. Interestingly, fear of failure was found to have no significant effect in ASEAN, and the impact of media attention on entrepreneurship and was found to influence EI in ASEAN. Moreover, the resistance of ASEAN entrepreneurs to the otherwise high rates of fear of failure and high impact of media attention are proposed as independent variables to explain the relatively high rates of entrepreneurial activity in ASEAN as reported by GEM. The paper utilizes a representative sample of 10,306 individuals in 10 countries. A range of attitudes was found to significantly influence entrepreneurial intention. Many of these perceptions, such as the impact of media attention on entrepreneurship can be manipulated by government policy. The paper also suggests strategies by which Asian economy in particular can benefit from their apparent high impact of media attention on entrepreneurship.Keywords: an entrepreneurial intention, attitude, GEM, ASEAN and Europe
Procedia PDF Downloads 311372 Intelligent Crop Circle: A Blockchain-Driven, IoT-Based, AI-Powered Sustainable Agriculture System
Authors: Mishak Rahul, Naveen Kumar, Bharath Kumar
Abstract:
Conceived as a high-end engine to revolutionise sustainable agri-food production, the intelligent crop circle (ICC) aims to incorporate the Internet of Things (IoT), blockchain technology and artificial intelligence (AI) to bolster resource efficiency and prevent waste, increase the volume of production and bring about sustainable solutions with long-term ecosystem conservation as the guiding principle. The operating principle of the ICC relies on bringing together multidisciplinary bottom-up collaborations between producers, researchers and consumers. Key elements of the framework include IoT-based smart sensors for sensing soil moisture, temperature, humidity, nutrient and air quality, which provide short-interval and timely data; blockchain technology for data storage on a private chain, which maintains data integrity, traceability and transparency; and AI-based predictive analysis, which actively predicts resource utilisation, plant growth and environment. This data and AI insights are built into the ICC platform, which uses the resulting DSS (Decision Support System) outlined as help in decision making, delivered through an easy-touse mobile app or web-based interface. Farmers are assumed to use such a decision-making aid behind the power of the logic informed by the data pool. Building on existing data available in the farm management systems, the ICC platform is easily interoperable with other IoT devices. ICC facilitates connections and information sharing in real-time between users, including farmers, researchers and industrial partners, enabling them to cooperate in farming innovation and knowledge exchange. Moreover, ICC supports sustainable practice in agriculture by integrating gamification techniques to stimulate farm adopters, deploying VR technologies to model and visualise 3D farm environments and farm conditions, framing the field scenarios using VR headsets and Real-Time 3D engines, and leveraging edge technologies to facilitate secure and fast communication and collaboration between users involved. And through allowing blockchain-based marketplaces, ICC offers traceability from farm to fork – that is: from producer to consumer. It empowers informed decision-making through tailor-made recommendations generated by means of AI-driven analysis and technology democratisation, enabling small-scale and resource-limited farmers to get their voice heard. It connects with traditional knowledge, brings together multi-stakeholder interactions as well as establishes a participatory ecosystem to incentivise continuous growth and development towards more sustainable agro-ecological food systems. This integrated approach leverages the power of emerging technologies to provide sustainable solutions for a resilient food system, ensuring sustainable agriculture worldwide.Keywords: blockchain, internet of things, artificial intelligence, decision support system, virtual reality, gamification, traceability, sustainable agriculture
Procedia PDF Downloads 44371 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 73370 A Survey Proposal towards Holistic Management of Schizophrenia
Authors: Pronab Ganguly, Ahmed A. Moustafa
Abstract:
Holistic management of schizophrenia involves mainstream pharmacological intervention, complimentary medicine intervention, therapeutic intervention and other psychosocial factors such as accommodation, education, job training, employment, relationship, friendship, exercise, overall well-being, smoking, substance abuse, suicide prevention, stigmatisation, recreation, entertainment, violent behaviour, arrangement of public trusteeship and guardianship, day-day-living skill, integration with community, and management of overweight due to medications and other health complications related to medications amongst others. Our review shows that there is no integrated survey by combining all these factors. An international web-based survey was conducted to evaluate the significance of all these factors and present them in a unified manner. It is believed this investigation will contribute positively towards holistic management of schizophrenia. There will be two surveys. In the pharmacological intervention survey, five popular drugs for schizophrenia will be chosen and their efficacy as well as harmful side effects will be evaluated on a scale of 0 -10. This survey will be done by psychiatrists. In the second survey, each element of therapeutic intervention and psychosocial factors will be evaluated according to their significance on a scale of 0 - 10. This survey will be done by care givers, psychologists, case managers and case workers. For the first survey, professional bodies of psychiatrists in English speaking countries will be contacted to request them to ask their members to participate in the survey. For the second survey, professional bodies of clinical psychologist and care givers in English speaking countries will be contacted to request them to ask their members to participate in the survey. Additionally, for both the surveys, relevant professionals will be contacted through personal contact networks. For both the surveys, mean, mode, median, standard deviation and net promoter score will be calculated for each factor and then presented in a statistically significant manner. Subsequently each factor will be ranked according to their statistical significance. Additionally, country specific variation will be highlighted to identify the variation pattern. The results of these surveys will identify the relative significance of each type of pharmacological intervention, each type of therapeutic intervention and each type of psychosocial factor. The determination of this relative importance will definitely contribute to the improvement in quality of life for individuals with schizophrenia.Keywords: schizophrenia, holistic management, antipsychotics, quality of life
Procedia PDF Downloads 150