Search results for: rare-earth metal extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4213

Search results for: rare-earth metal extraction

283 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins

Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova

Abstract:

Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.

Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins

Procedia PDF Downloads 146
282 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 108
281 Impact of UV on Toxicity of Zn²⁺ and ZnO Nanoparticles to Lemna minor

Authors: Gabriela Kalcikova, Gregor Marolt, Anita Jemec Kokalj, Andreja Zgajnar Gotvajn

Abstract:

Since the 90’s, nanotechnology is one of the fastest growing fields of science. Nanomaterials are increasingly becoming part of many products and technologies. Metal oxide nanoparticles are among the most used nanomaterials. Zinc oxide nanoparticles (nZnO) is widely used due to its versatile properties; it has been used in products including plastics, paints, food, batteries, solar cells and cosmetic products. It is also a very effective photocatalyst used for water treatment. Such expanding application of nZnO increases their possible occurrence in the environment. In the aquatic ecosystem nZnO interact with natural environmental factors such as UV radiation, and thus it is essential to evaluate possible interaction between them. In this context, the aim of our study was to evaluate combined ecotoxicity of nZnO and Zn²⁺ on duckweed Lemna minor in presence or absence UV. Inhibition of vegetative growth of duckweed Lemna minor was monitored over a period of 7 days in multi-well plates. After the experiment, specific growth rate was determined. ZnO nanoparticles used were of primary size 13.6 ± 1.7 nm. The test was conducted with nominal nZnO and Zn²⁺ (in form of ZnCl₂) concentrations of 1, 10, 100 mg/L. Experiment was repeated with presence of natural intensity of UV (8h UV, 10 W/m² UVA, 0.5 W/m² UVB). Concentration of Zn during the test was determined by ICP-MS. In the regular experiment (absence of UV) the specific growth rate was slightly increased by low concentrations of nZnO and Zn²⁺ in comparison to control. However, 10 and 100 mg/L of Zn²⁺ resulted in 45% and 68% inhibition of the specific growth rate, respectively. In case of nZnO both concentrations (10 and 100 mg/L) resulted in similar ~ 30% inhibition and the response was not dose-dependent. The lack of the dose-response relationship is often observed in case of nanoparticles. The possible explanation is that the physical impact prevails instead of chemical ones. In the presence of UV the toxicity of Zn²⁺ was increased and 100 mg/L of Zn²⁺ caused total inhibition of the specific growth rate (100%). On the other hand, 100 mg/L of nZnO resulted in low inhibition (19%) in comparison to the experiment without UV (30%). It is thus expected, that tested nZnO is low photoactive, but could have a good UV absorption and/or reflective properties and thus protect duckweed against UV impacts. Measured concentration of Zn in the test suspension decreased only about 4% after 168h in the case of ZnCl₂. On the other hand concentration of Zn in nZnO test decreased by 80%. It is expected that nZnO were partially dissolved in the medium and at the same time agglomeration and sedimentation of particles took place and thus the concentration of Zn at the water level decreased. Results of our study indicated, that nZnO combined with UV of natural intensity does not increase toxicity of nZnO, but slightly protect the plant against UV negative effects. When Zn²⁺ and ZnO results are compared it seems that dissolved Zn plays a central role in the nZnO toxicity.

Keywords: duckweed, environmental factors, nanoparticles, toxicity

Procedia PDF Downloads 310
280 Methods Used to Achieve Airtightness of 0.07 Ach@50Pa for an Industrial Building

Authors: G. Wimmers

Abstract:

The University of Northern British Columbia needed a new laboratory building for the Master of Engineering in Integrated Wood Design Program and its new Civil Engineering Program. Since the University is committed to reducing its environmental footprint and because the Master of Engineering Program is actively involved in research of energy efficient buildings, the decision was made to request the energy efficiency of the Passive House Standard in the Request for Proposals. The building is located in Prince George in Northern British Columbia, a city located at the northern edge of climate zone 6 with an average low between -8 and -10.5 in the winter months. The footprint of the building is 30m x 30m with a height of about 10m. The building consists of a large open space for the shop and laboratory with a small portion of the floorplan being two floors, allowing for a mezzanine level with a few offices as well as mechanical and storage rooms. The total net floor area is 1042m² and the building’s gross volume 9686m³. One key requirement of the Passive House Standard is the airtight envelope with an airtightness of < 0.6 ach@50Pa. In the past, we have seen that this requirement can be challenging to reach for industrial buildings. When testing for air tightness, it is important to test in both directions, pressurization, and depressurization, since the airflow through all leakages of the building will, in reality, happen simultaneously in both directions. A specific detail or situation such as overlapping but not sealed membranes might be airtight in one direction, due to the valve effect, but are opening up when tested in the opposite direction. In this specific project, the advantage was the overall very compact envelope and the good volume to envelope area ratio. The building had to be very airtight and the details for the windows and doors installation as well as all transitions from walls to roof and floor, the connections of the prefabricated wall panels and all penetrations had to be carefully developed to allow for maximum airtightness. The biggest challenges were the specific components of this industrial building, the large bay door for semi-trucks and the dust extraction system for the wood processing machinery. The testing was carried out in accordance with EN 132829 (method A) as specified in the International Passive House Standard and the volume calculation was also following the Passive House guideline resulting in a net volume of 7383m3, excluding all walls, floors and suspended ceiling volumes. This paper will explore the details and strategies used to achieve an airtightness of 0.07 ach@50Pa, to the best of our knowledge the lowest value achieved in North America so far following the test protocol of the International Passive House Standard and discuss the crucial steps throughout the project phases and the most challenging details.

Keywords: air changes, airtightness, envelope design, industrial building, passive house

Procedia PDF Downloads 132
279 Global Experiences in Dealing with Biological Epidemics with an Emphasis on COVID-19 Disease: Approaches and Strategies

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: The World Health Organization has identified COVID-19 as a public health emergency and is urging governments to stop the virus transmission by adopting appropriate policies. In this regard, authorities have taken different approaches to cut the chain or controlling the spread of the disease. Now, the questions we are facing include what these approaches are? What tools should be used to implement each preventive protocol? In addition, what is the impact of each approach? Objective: The aim of this study was to determine the approaches to biological epidemics and related prevention tools with an emphasis on COVID-19 disease. Data sources: Databases including ISI web of science, PubMed, Scopus, Science Direct, Ovid, and ProQuest were employed for data extraction. Furthermore, authentic sources such as the WHO website, the published reports of relevant countries, as well as the Worldometer website were evaluated for gray studies. The time-frame of the study was from 1 December 2019 to 30 May 2020. Methods: The present study was a systematic study of publications related to the prevention strategies for the COVID-19 disease. The study was carried out based on the PRISMA guidelines and CASP for articles and AACODS for grey literature. Results: The study findings showed that in order to confront the COVID-19 epidemic, in general, there are three approaches of "mitigation", "active control" and "suppression" and four strategies of "quarantine", "isolation", "social distance" and "lockdown" in both individual and social dimensions to deal with epidemics. Selection and implementation of each approach requires specific strategies and has different effects when it comes to controlling and inhibiting the disease. Key finding: One possible approach to control the disease is to change individual behavior and lifestyle. In addition to prevention strategies, use of masks, observance of personal hygiene principles such as regular hand washing and non-contact of contaminated hands with the face, as well as an observance of public health principles such as sneezing and coughing etiquettes, safe extermination of personal protective equipment, must be strictly observed. Have not been included in the category of prevention tools. However, it has a great impact on controlling the epidemic, especially the new coronavirus epidemic. Conclusion: Although the use of different approaches to control and inhibit biological epidemics depends on numerous variables, however, despite these requirements, global experience suggests that some of these approaches are ineffective. The use of previous experiences in the world, along with the current experiences of countries, can be very helpful in choosing the accurate approach for each country in accordance with the characteristics of that country and lead to the reduction of possible costs at the national and international levels.

Keywords: novel corona virus, COVID-19, approaches, prevention tools, prevention strategies

Procedia PDF Downloads 108
278 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols

Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene

Abstract:

The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon

Procedia PDF Downloads 216
277 Making Beehives More 'Intelligent'- The Case of Capturing, Reducing, and Managing Bee Pest Infestation in Hives through Modification of Hive Entrance Holes and the Installation of Multiple In-Hive Bee Pest Traps

Authors: Prince Amartey

Abstract:

Bees are clever creatures, thus, capturing bees implies that the hives are intelligent in the sense that they have all of the required circumstances to attract and trap the bees. If the hive goes above and beyond to keep the bees in the hive and to keep the activities of in-hive pests to a minimal in order for the bees to develop to their maximum potential, the hive is becoming or is more 'intelligent'. Some bee pests, such as tiny beehive beetles, are endemic to Africa; however, the way we now extract honey by cutting off the combs and pressing for honey prevents the spread of these bees' insect enemies. However, when we explore entering the commercialization. When freshly collected combs are returned to the hives following the adoption of the frame and other systems, there is a need to consider putting in strategies to manage the accompanying pest concerns that arise with unprotected combs.The techniques for making hives more'intelligent' are thus more important presently, given that the African apicultural business does not wish to encourage the use of pesticides in the hives. This include changing the hive's entrance holes in order to improve the bees' own mechanism for defending the entry sites, as well as collecting pests by setting exterior and in-hive traps to prevent pest infiltration into hives by any means feasible. Material and Methods: The following five (5) mechanisms are proposed to make the hives more 'intelligent.' i. The usage of modified frames with five (5) beetle traps positioned horizontally on the vertical 'legs' to catch the beetle along the combs' surfaces-multiple bee ii. Baited bioelectric frame traps, which has both vertical sections of frame covered with a 3mm mesh that allows pest entry but not bees. The pest is attracted by strips of combs of honey, open brood, pollen on metal plates inserted horizontally on the vertical ‘legs’ of the frames. An electrical ‘mine’ system in place that electrocutes the pests as they step on the wires in the trap to enter the frame trap iii. The ten rounded hive entry holes are adapted as the bees are able to police the entrance to prevent entry of pest. The holes are arranged in two rows, with one on top of the other What Are the Main Contributions of Your Research?-Results Discussions and Conclusions The techniques implemented decrease pest ingress, while in-hive traps capture those that escape entry into the hives. Furthermore, the stand alteration traps larvae and stops their growth into adults. As beekeeping commercialization grows throughout Africa, these initiatives will minimize insect infestation in hives and necessarily enhance honey output.

Keywords: bee pests, modified frames, multiple beetle trap, Baited bioelectric frame traps

Procedia PDF Downloads 57
276 The Genus Bacillus, Effect on Commercial Crops of Colombia

Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo

Abstract:

The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.

Keywords: genus bacillus, biological control, PGPRs, biochemical potential

Procedia PDF Downloads 422
275 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil

Procedia PDF Downloads 160
274 Mental Health and Secondary Trauma in Service Providers Working with Refugees

Authors: Marko Živanović, Jovana Bjekić, Maša Vukčević Marković

Abstract:

Professionals and volunteers involved in refugee protection and support are on a daily basis faced with people who have experienced numerous traumatic experiences and, as such, are subjected to secondary traumatization (ST). The aim of this study was to provide insight into risk factors for ST in helpers working with refugees in Serbia. A total of 175 participants working with refugees fulfilled: Secondary Traumatization Questionnaire, checklist of refugees’ traumatic experiences, Hopkins Symptoms Checklist (HSCL) assessing depression and anxiety symptoms, quality of life questionnaire (MANSA), HEXACO personality inventory, and COPE assessing coping mechanisms. In addition, participants provided information on work-related problems. Qualitative analysis of answers to the question about most difficult part of their job has shown that burnout-related issues are clustered around three recurrent topics that can be considered as the most prominent generators of stress, namely: ‘lack of organization and cooperation’, ‘not been able to do enough’, and ‘hard to take it and to process it’. Factor analysis (Maximum likelihood extraction, Promax rotation) have shown that ST comprises of two correlated factors (r = .533, p < .01), namely Psychological deficits and Intrusions. Results have shown that risk factor for ST could be find in three interrelated sources: 1) work-related problems; 2) personality-related risk factors and 3) clients’ traumatic experiences. Among personality related factors, it was shown that risk factor for Intrusions could be find in – high Emotionality (β = .221, p < .05), and Altruism (β = .322, p < .01), while low Extraversion (β = -.365, p < .01) represents risk factor for Psychological deficits. In addition, usage of maladaptive coping mechanisms –mental disengagement (r = .253, p < .01), behavioral disengagement (r = .274, p < .01), focusing on distress and venting of emotions (r = .220, p < .05), denial (r = .164, p < .05), and substance use (r = .232, p < .01) correlate with Psychological deficits while Intrusions corelate with Mental disengagement (r = .251, p < .01) and denial (r = .183, p < .05). Regarding clients’ traumatic experiences it was shown that both quantity of traumatic events in country of origin (for Deficits r = .226, p < .01; for Intrusions r = .174, p < .05) and in transit (for Deficits r = .288, p < .01), as well as certain content-related features of such experiences (especially experiences which are severely dislocated from ‘everyday reality’) are related to ST. In addition, Psychological deficits and Intrusions have shown to be accompanied by symptoms of depression (r = .760, p < .01; r = .552, p < .01) and anxiety (r = .740, p < .01; r = .447, p < .01) and overall lower life quality (r = -.454, p < .01; r = .256, p < .01). Results indicate that psychological vulnerability of persons who are working with traumatized individuals can be found in certain personality traits, and usage of maladaptive coping mechanisms, which disable one to deal with work-related issues, and to cope with quantity and quality of traumatic experiences they were faced with, affecting ones’ psychological well-being. Acknowledgement: This research was funded by IRC Serbia.

Keywords: mental health, refugees, secondary traumatization, traumatic experiences

Procedia PDF Downloads 207
273 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 244
272 The Effect of Elapsed Time on the Cardiac Troponin-T Degradation and Its Utility as a Time Since Death Marker in Cases of Death Due to Burn

Authors: Sachil Kumar, Anoop K.Verma, Uma Shankar Singh

Abstract:

It’s extremely important to study postmortem interval in different causes of death since it assists in a great way in making an opinion on the exact cause of death following such incident often times. With diligent knowledge of the interval one could really say as an expert that the cause of death is not feigned hence there is a great need in evaluating such death to have been at the CRIME SCENE before performing an autopsy on such body. The approach described here is based on analyzing the degradation or proteolysis of a cardiac protein in cases of deaths due to burn as a marker of time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (Department of Forensic Medicine and Toxicology), King George’s Medical University, Lucknow India, after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC) for different time periods (~7.30, 18.20, 30.30, 41.20, 41.40, 54.30, 65.20, and 88.40 Hours). The cases included were the subjects of burn without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. As time postmortem progresses the intact cTnT band degrades to fragments that are easily detected by the monoclonal antibodies. A decreasing trend in the level of cTnT (% of intact) was found as the PM hours increased. A significant difference was observed between <15 h and other PM hours (p<0.01). Significant difference in cTnT level (% of intact) was also observed between 16-25 h and 56-65 h & >75 h (p<0.01). Western blot data clearly showed the intact protein at 42 kDa, three major (28 kDa, 30kDa, 10kDa) fragments, three additional minor fragments (12 kDa, 14kDa, and 15 kDa) and formation of low molecular weight fragments. Overall, both PMI and cardiac tissue of burned corpse had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 41.40 Hrs and after it intact protein slowly disappears. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the time postmortem. A strong significant positive correlation was found between cTnT and PM hours (r=0.87, p=0.0001). The regression analysis showed a good variability explained (R2=0.768) The post-mortem Troponin-T fragmentation observed in this study reveals a sequential, time-dependent process with the potential for use as a predictor of PMI in cases of burning.

Keywords: burn, degradation, postmortem interval, troponin-T

Procedia PDF Downloads 426
271 High-Pressure Polymorphism of 4,4-Bipyridine Hydrobromide

Authors: Michalina Aniola, Andrzej Katrusiak

Abstract:

4,4-Bipyridine is an important compound often used in chemical practice and more recently frequently applied for designing new metal organic framework (MoFs). Here we present a systematic high-pressure study of its hydrobromide salt. 4,4-Bipyridine hydrobromide monohydrate, 44biPyHBrH₂O, at ambient-pressure is orthorhombic, space group P212121 (phase a). Its hydrostatic compression shows that it is stable to 1.32 GPa at least. However, the recrystallization above 0.55 GPa reveals a new hidden b-phase (monoclinic, P21/c). Moreover, when the 44biPyHBrH2O is heated to high temperature the chemical reactions of this compound in methanol solution can be observed. High-pressure experiments were performed using a Merrill-Bassett diamond-anvil cell (DAC), modified by mounting the anvils directly on the steel supports, and X-ray diffraction measurements were carried out on a KUMA and Excalibur diffractometer equipped with an EOS CCD detector. At elevated pressure, the crystal of 44biPyHBrH₂O exhibits several striking and unexpected features. No signs of instability of phase a were detected to 1.32 GPa, while phase b becomes stable at above 0.55 GPa, as evidenced by its recrystallizations. Phases a and b of 44biPyHBrH2O are partly isostructural: their unit-cell dimensions and the arrangement of ions and water molecules are similar. In phase b the HOH-Br- chains double the frequency of their zigzag motifs, compared to phase a, and the 44biPyH+ cations change their conformation. Like in all monosalts of 44biPy determined so far, in phase a the pyridine rings are twisted by about 30 degrees about bond C4-C4 and in phase b they assume energy-unfavorable planar conformation. Another unusual feature of 44biPyHBrH2O is that all unit-cell parameters become longer on the transition from phase a to phase b. Thus the volume drop on the transition to high-pressure phase b totally depends on the shear strain of the lattice. Higher temperature triggers chemical reactions of 44biPyHBrH2O with methanol. When the saturated methanol solution compound precipitated at 0.1 GPa and temperature of 423 K was required to dissolve all the sample, the subsequent slow recrystallization at isochoric conditions resulted in disalt 4,4-bipyridinium dibromide. For the 44biPyHBrH2O sample sealed in the DAC at 0.35 GPa, then dissolved at isochoric conditions at 473 K and recrystallized by slow controlled cooling, a reaction of N,N-dimethylation took place. It is characteristic that in both high-pressure reactions of 44biPyHBrH₂O the unsolvated disalt products were formed and that free base 44biPy and H₂O remained in the solution. The observed reactions indicate that high pressure destabilized ambient-pressure salts and favors new products. Further studies on pressure-induced reactions are carried out in order to better understand the structural preferences induced by pressure.

Keywords: conformation, high-pressure, negative area compressibility, polymorphism

Procedia PDF Downloads 223
270 Dietary Flaxseed Decreases Central Blood Pressure and the Concentrations of Plasma Oxylipins Associated with Hypertension in Patients with Peripheral Arterial Disease

Authors: Stephanie PB Caligiuri, Harold M Aukema, Delfin Rodriguez-Leyva, Amir Ravandi, Randy Guzman, Grant N. Pierce

Abstract:

Background: Hypertension leads to cardiac and cerebral events and therefore is the leading risk factor attributed to death in the world. Oxylipins may be mediators in these events as they can regulate vascular tone and inflammation. Oxylipins are derived from fatty acids. Dietary flaxseed is rich in the n3 fatty acid, alpha-linolenic acid, and, therefore, may have the ability to change the substrate profile of oxylipins. As a result, this could alter blood pressure. Methods: A randomized, double-blinded, controlled clinical trial, the Flax-PAD trial, was used to assess the impact of dietary flaxseed on blood pressure (BP), and to also assess the relationship of plasma oxylipins to BP in 81 patients with peripheral arterial disease (PAD). Patients with PAD were chosen for the clinical trial as they are at an increased risk for hypertension and cardiac and cerebral events. Thirty grams of ground flaxseed were added to food products to consume on a daily basis for 6 months. The control food products contained wheat germ, wheat bran, and mixed dietary oils instead of flaxseed. Central BP, which is more significantly associated to organ damage, cardiac, and cerebral events versus brachial BP, was measured by pulse wave analysis at baseline and 6 months. A plasma profile of 43 oxylipins was generated using solid phase extraction, HPLC-MS/MS, and stable isotope dilution quantitation. Results: At baseline, the central BP (systolic/diastolic) in the placebo and flaxseed group were, 131/73 ± 2.5/1.4 mmHg and 128/71 ± 2.6/1.4 mmHg, respectively. After 6 months of intervention, the flaxseed group exhibited a decrease in blood pressure of 4.0/1.0 mmHg. The 6 month central BP in the placebo and flaxseed groups were, 132/74 ± 2.9/1.8 mmHg and 124/70 ± 2.6/1.6 mmHg (P<0.05). Correlation and logistic regression analyses between central blood pressure and oxylipins were performed. Significant associations were observed between central blood pressure and 17 oxylipins, primarily produced from arachidonic acid. Every 1 nM increase in 16-hydroxyeicosatetraenoic acid (HETE) increased the odds of having high central systolic BP by 15-fold, of having high central diastolic BP by 6-fold and of having high central mean arterial pressure by 15-fold. In addition, every 1 nM increase in 5,6-dihydroxyeicosatrienoic acid (DHET) and 11,12-DHET increased the odds of having high central mean arterial pressure by 45- and 18-fold, respectively. Flaxseed induced a significant decrease in these as well as 4 other vasoconstrictive oxylipins. Conclusion: Dietary flaxseed significantly lowered blood pressure in patients with PAD and hypertension. Plasma oxylipins were strongly associated with central blood pressure and may have mediated the flaxseed-induced decrease in blood pressure.

Keywords: hypertension, flaxseed, oxylipins, peripheral arterial disease

Procedia PDF Downloads 446
269 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature

Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi

Abstract:

The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.

Keywords: hardness, powder metallurgy, spark plasma sintering, wear

Procedia PDF Downloads 247
268 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 50
267 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime

Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda

Abstract:

Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.

Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels

Procedia PDF Downloads 104
266 MBES-CARIS Data Validation for the Bathymetric Mapping of Shallow Water in the Kingdom of Bahrain on the Arabian Gulf

Authors: Abderrazak Bannari, Ghadeer Kadhem

Abstract:

The objectives of this paper are the validation and the evaluation of MBES-CARIS BASE surface data performance for bathymetric mapping of shallow water in the Kingdom of Bahrain. The latter is an archipelago with a total land area of about 765.30 km², approximately 126 km of coastline and 8,000 km² of marine area, located in the Arabian Gulf, east of Saudi Arabia and west of Qatar (26° 00’ N, 50° 33’ E). To achieve our objectives, bathymetric attributed grid files (X, Y, and depth) generated from the coverage of ship-track MBSE data with 300 x 300 m cells, processed with CARIS-HIPS, were downloaded from the General Bathymetric Chart of the Oceans (GEBCO). Then, brought into ArcGIS and converted into a raster format following five steps: Exportation of GEBCO BASE surface data to the ASCII file; conversion of ASCII file to a points shape file; extraction of the area points covering the water boundary of the Kingdom of Bahrain and multiplying the depth values by -1 to get the negative values. Then, the simple Kriging method was used in ArcMap environment to generate a new raster bathymetric grid surface of 30×30 m cells, which was the basis of the subsequent analysis. Finally, for validation purposes, 2200 bathymetric points were extracted from a medium scale nautical map (1:100 000) considering different depths over the Bahrain national water boundary. The nautical map was scanned, georeferenced and overlaid on the MBES-CARIS generated raster bathymetric grid surface (step 5 above), and then homologous depth points were selected. Statistical analysis, expressed as a linear error at the 95% confidence level, showed a strong correlation coefficient (R² = 0.96) and a low RMSE (± 0.57 m) between the nautical map and derived MBSE-CARIS depths if we consider only the shallow areas with depths of less than 10 m (about 800 validation points). When we consider only deeper areas (> 10 m) the correlation coefficient is equal to 0.73 and the RMSE is equal to ± 2.43 m while if we consider the totality of 2200 validation points including all depths, the correlation coefficient is still significant (R² = 0.81) with satisfactory RMSE (± 1.57 m). Certainly, this significant variation can be caused by the MBSE that did not completely cover the bottom in several of the deeper pockmarks because of the rapid change in depth. In addition, steep slopes and the rough seafloor probably affect the acquired MBSE raw data. In addition, the interpolation of missed area values between MBSE acquisition swaths-lines (ship-tracked sounding data) may not reflect the true depths of these missed areas. However, globally the results of the MBES-CARIS data are very appropriate for bathymetric mapping of shallow water areas.

Keywords: bathymetry mapping, multibeam echosounder systems, CARIS-HIPS, shallow water

Procedia PDF Downloads 364
265 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique

Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi

Abstract:

The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.

Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)

Procedia PDF Downloads 172
264 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 226
263 Aquatic Sediment and Honey of Apis mellifera as Bioindicators of Pesticide Residues

Authors: Luana Guerra, Silvio C. Sampaio, Vladimir Pavan Margarido, Ralpho R. Reis

Abstract:

Brazil is the world's largest consumer of pesticides. The excessive use of these compounds has negative impacts on animal and human life, the environment, and food security. Bees, crucial for pollination, are exposed to pesticides during the collection of nectar and pollen, posing risks to their health and the food chain, including honey contamination. Aquatic sediments are also affected, impacting water quality and the microbiota. Therefore, the analysis of aquatic sediments and bee honey is essential to identify environmental contamination and monitor ecosystems. The aim of this study was to use samples of honey from honeybees (Apis mellifera) and aquatic sediment as bioindicators of environmental contamination by pesticides and their relationship with agricultural use in the surrounding areas. The sample collections of sediment and honey were carried out in two stages. The first stage was conducted in the Bituruna municipality region in the second half of the year 2022, and the second stage took place in the regions of Laranjeiras do Sul, Quedas do Iguaçu, and Nova Laranjeiras in the first half of the year 2023. In total, 10 collection points were selected, with 5 points in the first stage and 5 points in the second stage, where one sediment sample and one honey sample were collected for each point, totaling 20 samples. The honey and sediment samples were analyzed at the Laboratory of the Paraná Institute of Technology, with ten samples of honey and ten samples of sediment. The selected extraction method was QuEChERS, and the analysis of the components present in the sample was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The pesticides Azoxystrobin, Epoxiconazole, Boscalid, Carbendazim, Haloxifope, Fomesafen, Fipronil, Chlorantraniliprole, Imidacloprid, and Bifenthrin were detected in the sediment samples from the study area in Laranjeiras do Sul, Paraná, with Carbendazim being the compound with the highest concentration (0.47 mg/kg). The honey samples obtained from the apiaries showed satisfactory results, as they did not show any detection or quantification of the analyzed pesticides, except for Point 9, which had the fungicide tebuconazole but with a concentration Keywords: contamination, water research, agrochemicals, beekeeping activity

Procedia PDF Downloads 21
262 Characterization of Phenolic Compounds from Carménère Wines during Aging with Oak Wood (Staves, Chips and Barrels)

Authors: E. Obreque-Slier, J. Laqui-Estaña, A. Peña-Neira, M. Medel-Marabolí

Abstract:

Wine is an important source of polyphenols. Red wines show important concentrations of nonflavonoid (gallic acid, ellagic acid, caffeic acid and coumaric acid) and flavonoid compounds [(+)-catechin, (-)-epicatechin, (+)-gallocatechin and (-)-epigallocatechin]. However, a significant variability in the quantitative and qualitative distribution of chemical constituents in wine has to be expected depending on an array of important factors, such as the varietal differences of Vitis vinifera and cultural practices. It has observed that Carménère grapes present a differential composition and evolution of phenolic compounds when compared to other varieties and specifically with Cabernet Sauvignon grapes. Likewise, among the cultural practices, the aging in contact with oak wood is a high relevance factor. Then, the extraction of different polyphenolic compounds from oak wood into wine during its ageing process produces both qualitative and quantitative changes. Recently, many new techniques have been introduced in winemaking. One of these involves putting new pieces of wood (oak chips or inner staves) into inert containers. It offers some distinct and previously unavailable flavour advantages, as well as new options in wine handling. To our best knowledge, there is not information about the behaviour of Carménère wines (Chilean emblematic cultivar) in contact with oak wood. In addition, the effect of aging time and wood product (barrels, chips or staves) on the phenolic composition in Carménère wines has not been studied. This study aims at characterizing the condensed and hydrolyzable tannins from Carménère wines during the aging with staves, chips and barrels from French oak wood. The experimental design was completely randomized with two independent assays: aging time (0-12 month) and different formats of wood (barrel, chips and staves). The wines were characterized by spectrophotometric (total tannins and fractionation of proanthocyanidins into monomers, oligomers and polymers) and HPLC-DAD (ellagitannins) analysis. The wines in contact with different products of oak wood showed a similar content of total tannins during the study, while the control wine (without oak wood) presented a lower content of these compounds. In addition, it was observed that the polymeric proanthocyanidin fraction was the most abundant, while the monomeric fraction was the less abundant fraction in all treatments in two sample. However, significative differences in each fractions were observed between wines in contact from barrel, chips, and staves in two sample dates. Finally, the wine from barrels presented the highest content of the ellagitannins from the fourth to the last sample date. In conclusion, the use of alternative formats of oak wood affects the chemical composition of wines during aging, and these enological products are an interesting alternative to contribute with tannins to wine.

Keywords: enological inputs, oak wood aging, polyphenols, red wine

Procedia PDF Downloads 142
261 Analysis of Shrinkage Effect during Mercerization on Himalayan Nettle, Cotton and Cotton/Nettle Yarn Blends

Authors: Reena Aggarwal, Neha Kestwal

Abstract:

The Himalayan Nettle (Girardinia diversifolia) has been used for centuries as fibre and food source by Himalayan communities. Himalayan Nettle is a natural cellulosic fibre that can be handled in the same way as other cellulosic fibres. The Uttarakhand Bamboo and Fibre Development Board based in Uttarakhand, India is working extensively with the nettle fibre to explore the potential of nettle for textile production in the region. The fiber is a potential resource for rural enterprise development for some high altitude pockets of the state and traditionally the plant fibre is used for making domestic products like ropes and sacks. Himalayan Nettle is an unconventional natural fiber with functional characteristics of shrink resistance, degree of pathogen and fire resistance and can blend nicely with other fibres. Most importantly, they generate mainly organic wastes and leave residues that are 100% biodegradable. The fabrics may potentially be reused or re-manufactured and can also be used as a source of cellulose feedstock for regenerated cellulosic products. Being naturally bio- degradable, the fibre can be composted if required. Though a lot of research activities and training are directed towards fibre extraction and processing techniques in different craft clusters villagers of different clusters of Uttarkashi, Chamoli and Bageshwar of Uttarakhand like retting and Degumming process, very little is been done to analyse the crucial properties of nettle fiber like shrinkage and wash fastness. These properties are very crucial to obtain desired quality of fibre for further processing of yarn making and weaving and in developing these fibers into fine saleable products. This research therefore is focused towards various on-field experiments which were focused on shrinkage properties conducted on cotton, nettle and cotton/nettle blended yarn samples. The objective of the study was to analyze the scope of the blended fiber for developing into wearable fabrics. For the study, after conducting the initial fiber length and fineness testing, cotton and nettle fibers were mixed in 60:40 ratio and five varieties of yarns were spun in open end spinning mill having yarn count of 3s, 5s, 6s, 7s and 8s. Samples of 100% Nettle 100% cotton fibers in 8s count were also developed for the study. All the six varieties of yarns were tested with shrinkage test and results were critically analyzed as per ASTM method D2259. It was observed that 100% Nettle has a least shrinkage of 3.36% while pure cotton has shrinkage approx. 13.6%. Yarns made of 100% Cotton exhibits four times more shrinkage than 100% Nettle. The results also show that cotton and Nettle blended yarn exhibit lower shrinkage than 100% cotton yarn. It was thus concluded that as the ratio of nettle increases in the samples, the shrinkage decreases in the samples. These results are very crucial for Uttarakhand people who want to commercially exploit the abundant nettle fiber for generating sustainable employment.

Keywords: Himalayan nettle, sustainable, shrinkage, blending

Procedia PDF Downloads 214
260 Alternative Fuel Production from Sewage Sludge

Authors: Jaroslav Knapek, Kamila Vavrova, Tomas Kralik, Tereza Humesova

Abstract:

The treatment and disposal of sewage sludge is one of the most important and critical problems of waste water treatment plants. Currently, 180 thousand tonnes of sludge dry matter are produced in the Czech Republic, which corresponds to approximately 17.8 kg of stabilized sludge dry matter / year per inhabitant of the Czech Republic. Due to the fact that sewage sludge contains a large amount of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the Czech Republic since 2023. One of the tested methods of sludge liquidation is the production of alternative fuel from sludge from sewage treatment plants and paper production. The paper presents an analysis of economic efficiency of alternative fuel production from sludge and its use for fluidized bed boiler with nominal consumption of 5 t of fuel per hour. The evaluation methodology includes the entire logistics chain from sludge extraction, through mechanical moisture reduction to about 40%, transport to the pelletizing line, moisture drying for pelleting and pelleting itself. For economic analysis of sludge pellet production, a time horizon of 10 years corresponding to the expected lifetime of the critical components of the pelletizing line is chosen. The economic analysis of pelleting projects is based on a detailed analysis of reference pelleting technologies suitable for sludge pelleting. The analysis of the economic efficiency of pellet is based on the simulation of cash flows associated with the implementation of the project over the life of the project. For the entered value of return on the invested capital, the price of the resulting product (in EUR / GJ or in EUR / t) is searched to ensure that the net present value of the project is zero over the project lifetime. The investor then realizes the return on the investment in the amount of the discount used to calculate the net present value. The calculations take place in a real business environment (taxes, tax depreciation, inflation, etc.) and the inputs work with market prices. At the same time, the opportunity cost principle is respected; waste disposal for alternative fuels includes the saved costs of waste disposal. The methodology also respects the emission allowances saved due to the displacement of coal by alternative (bio) fuel. Preliminary results of testing of pellet production from sludge show that after suitable modifications of the pelletizer it is possible to produce sufficiently high quality pellets from sludge. A mixture of sludge and paper waste has proved to be a more suitable material for pelleting. At the same time, preliminary results of the analysis of the economic efficiency of this sludge disposal method show that, despite the relatively low calorific value of the fuel produced (about 10-11 MJ / kg), this sludge disposal method is economically competitive. This work has been supported by the Czech Technology Agency within the project TN01000048 Biorefining as circulation technology.

Keywords: Alternative fuel, Economic analysis, Pelleting, Sewage sludge

Procedia PDF Downloads 110
259 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 408
258 Viability of Permaculture Principles to Sustainable Agriculture Enterprises in Malta

Authors: Byron Baron

Abstract:

Malta is a Mediterranean archipelago presenting a combination of environmental conditions which are less suitable for agriculture. This has resulted in a heavy dependence on agricultural chemicals, as well as over-extraction of groundwater, compounded by concomitant destruction of natural habitat surrounding the land areas used for agriculture. Such prolonged intensive land use has resulted in even greater degradation of Maltese soils. This study was thus designed with the goal of assessing the viability of implementing a sustainable agricultural system based on permaculture practices compared to the traditional local practices applied for intensive farming. The permaculture model was implemented over a period of two years for a number of locally-grown staple crops. The tangible targets included improved soil health, reduced water consumption, increased reliance on renewable energy, increased wild plant and insect diversity, and sustained crop yield. To achieve this in the permaculture test area, numerous practices were introduced. In line with permaculture principles land, tillage was reduced, only natural fertilisers were used, no herbicides or pesticides were used, irrigation was linked to a desalination system with sensors for monitoring soil parameters, mulching was practiced, and a photovoltaic system was installed. Furthermore, areas for wild plants were increased and controlled only by trimming, not mowing. A variety of environmental parameters were measured at regular intervals as well as crop yield (in kilos of produce) in order to quantify if any improvements in crop output and environmental conditions were obtained. The results obtained show a very slight improvement in overall soil health due to the brevity of the test period. Water consumption was reduced by over 50% with no apparent losses or ill effects on the crops. Renewable energy was sufficient to provide all electric power on-site, so apart from the initial investment costs, there were no limitations. Moreover, surrounding the commercial crops with borders of wild plants whilst only taking up less than 15% of the total land area assisted pollination, increased animal visitors, and did not give rise to any pest infestations. The conclusion from this study was that whilst results are promising, more detailed and long-term studies are required to understand the full extent of the implications brought about by such a transition, which hints towards the untapped potential of investing in the available resources on the island with the goal of improving the balance between economic prosperity and ecological sustainability.

Keywords: agronomic measures, ecological amplification, sustainability, permaculture

Procedia PDF Downloads 82
257 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 197
256 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 133
255 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 60
254 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 161