Search results for: active body weight
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10270

Search results for: active body weight

6340 Reinforced Concrete Design Construction Issues and Earthquake Failure-Damage Responses

Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz

Abstract:

Earthquakes are the natural disasters that threat several countries. Turkey is situated on a very active earthquake zone. During the recent earthquakes, thousands of people died due to failure of reinforced concrete structures. Although Turkey has a very sufficient earthquake code, the design and construction mistakes were repeated for old structures. Lack of the control mechanism during the construction process may be the most important reason of failure. The quality of the concrete and poor detailing of steel or reinforcement is the most important headings. In this paper, the reasons of failure of reinforced concrete structures were summarized with relevant photos. The paper is beneficial for civil engineers as well as architect who are in the process of construction and design of structures in earthquake zones.

Keywords: earthquake, reinforced concrete structure, failure, material

Procedia PDF Downloads 369
6339 Fostering Students’ Cultural Intelligence: A Social Media Experiential Project

Authors: Lorena Blasco-Arcas, Francesca Pucciarelli

Abstract:

Business contexts have become globalised and digitalised, which requires that managers develop a strong sense of cross-cultural intelligence while working in geographically distant teams by means of digital technologies. How to better equip future managers on these kinds of skills has been put forward as a critical issue in Business Schools. In pursuing these goals, higher education is shifting from a passive lecture approach, to more active and experiential learning approaches that are more suitable to learn skills. For example, through the use of case studies, proposing plausible business problem to be solved by students (or teams of students), these institutions have focused for long in fostering learning by doing. Though, case studies are no longer enough as a tool to promote active teamwork and experiential learning. Moreover, digital advancements applied to educational settings have enabled augmented classrooms, expanding the learning experience beyond the class, which increase students’ engagement and experiential learning. Different authors have highlighted the benefits of digital engagement in order to achieve a deeper and longer-lasting learning and comprehension of core marketing concepts. Clickers, computer-based simulations and business games have become fairly popular between instructors, but still are limited by the fact that are fictional experiences. Further exploration of real digital platforms to implement real, live projects in the classroom seem relevant for marketing and business education. Building on this, this paper describes the development of an experiential learning activity in class, in which students developed a communication campaign in teams using the BuzzFeed platform, and subsequently implementing the campaign by using other social media platforms (e.g. Facebook, Instagram, Twitter…). The article details the procedure of using the project for a marketing module in a Bachelor program with students located in France, Italy and Spain campuses working on multi-campus groups. Further, this paper describes the project outcomes in terms of students’ engagement and analytics (i.e. visits achieved). the project included a survey in order to analyze and identify main aspects related to how the learning experience is influenced by the cultural competence developed through working in geographically distant and culturally diverse teamwork. Finally, some recommendations to use project-based social media tools while working with virtual teamwork in the classroom are provided.

Keywords: cultural competences, experiential learning, social media, teamwork, virtual group work

Procedia PDF Downloads 183
6338 Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon

Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Martin Búda

Abstract:

The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, the maximum gross weight of the train, the maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of the train consisting of a new type of wagons.

Keywords: loading units, theoretical capacity model, train capacity, wagon for intermodal transport

Procedia PDF Downloads 505
6337 Determining Coordinates of Ultra-Light Drones Based on the Time Difference of Arrival (TDOA) Method

Authors: Nguyen Huy Hoang, Do Thanh Quan, Tran Vu Kien

Abstract:

The use of the active radar to measure the coordinates of ultra-light drones is frequently difficult due to long-distance, absolutely small radar cross-section (RCS) and obstacles. Since ultra-light drones are usually controlled by the Time Difference of Arrival (RF), the paper proposed a method to measure the coordinates of ultra-light drones in the space based on the arrival time of the signal at receiving antennas and the time difference of arrival (TDOA). The experimental results demonstrate that the proposed method is really potential and highly accurate.

Keywords: ultra-light drone, TDOA, radar cross-section (RCS), RF

Procedia PDF Downloads 211
6336 Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group

Authors: Vida Jodaeian, Behzad Sani

Abstract:

Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds.

Keywords: nanoparticles, carrageenan, seaweed, nitro aromatic compound

Procedia PDF Downloads 402
6335 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block

Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali

Abstract:

In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.

Keywords: foamed concrete, oil palm ash, strength, interlocking block

Procedia PDF Downloads 265
6334 Construction of Green Aggregates from Waste Processing

Authors: Fahad K. Alqahtani

Abstract:

Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.

Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate

Procedia PDF Downloads 234
6333 Partial Differential Equation-Based Modeling of Brain Response to Stimuli

Authors: Razieh Khalafi

Abstract:

The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.

Keywords: brain, stimuli, partial differential equation, response, EEG signal

Procedia PDF Downloads 557
6332 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 264
6331 Kinematical Analysis of Tai Chi Chuan Players during Gait and Balance Test and Implication in Rehabilitation Exercise

Authors: Bijad Alqahtani, Graham Arnold, Weijie Wang

Abstract:

Background—Tai Chi Chuan (TCC) is a type of traditional Chinese martial art and is considered a benefiting physical fitness. Advanced techniques of motion analysis have been routinely used in the clinical assessment. However, so far, little research has been done on the biomechanical assessment of TCC players in terms of gait and balance using motion analysis. Objectives—The aim of this study was to investigate whether TCC improves the lower limb conditions and balance ability using the state of the art motion analysis technologies, i.e. motion capture system, electromyography and force platform. Methods—Twenty TCC (9 male, 11 female) with age between (42-77) years old and weight (56.2-119 Kg), and eighteen Non-TCC participants (7 male, 11 female), weight (50-110 Kg) with age (43- 78) years old at the matched age as a control group were recruited in this study. Their gait and balance were collected using Vicon Nexus® to obtain the gait parameters, and kinematic parameters of hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 5 trials of single-leg balance for the dominant side. Also, the participants performed 3 trials of four square step balance and 10 trials of walking. From the recorded trials, three good ones were analyzed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g. walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Result— The temporal-spatial variables of TCC subjects were compared with the Non-TCC subjects, it was found that there was a significant difference (p < 0.05) between the groups. Moreover, it was observed that participants of TCC have significant differences in ankle, hip, and knee joints’ kinematics in the sagittal, coronal, and transverse planes such as ankle angle (19.90±19.54 deg) for TCC while (15.34±6.50 deg) for Non-TCC, and knee angle (14.96±6.40 deg) for TCC while (17.63±5.79 deg) for Non-TCC in the transverse plane. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g. maintaining single leg stance time in the TCC participants showed longer duration (20.85±10.53 s) in compared to Non-TCC people group (13.39±8.78 s). While the result showed that there was no significant difference between groups in the four square step balance. Conclusion—Our result showed that there are significant differences between Tai Chi Chuan and Non-Tai Chi Chuan participants in the various aspects of gait analysis and balance test, as a consequence of these findings some of biomechanical parameters such as joints kinematics, gait parameters and single leg stance balance test, the Tai Chi Chuan could improve the lower limb conditions and could reduce a risk of fall for the elderly with ageing.

Keywords: gait analysis, kinematics, single leg stance, Tai Chi Chuan

Procedia PDF Downloads 131
6330 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 283
6329 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.

Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS

Procedia PDF Downloads 200
6328 Home-Based Care with Follow-Up at Outpatient Unit or Community-Follow-Up Center with/without Food Supplementation and/or Psychosocial Stimulation of Children with Moderate Acute Malnutrition in Bangladesh

Authors: Md Iqbal Hossain, Tahmeed Ahmed, Kenneth H. Brown

Abstract:

Objective: To assess the effect of community-based follow up, with or without food-supplementation and/or psychosocial stimulation, as an alternative to current hospital-based follow-up of children with moderate-acute-malnutrition (WHZ < -2 to -3) (MAM). Design/methods: The study was conducted at the ICDDR,B Dhaka Hospital and in four urban primary health care centers of Dhaka, Bangladesh during 2005-2007. The efficacy of five different randomly assigned interventions was compared with respect to the rate of completion of follow-up, growth and morbidity in 227 MAM children aged 6-24 months who were initially treated at ICDDR,B for diarrhea and/or other morbidities. The interventions were: 1) Fortnightly follow-up care (FFC) at the ICDDR,B’s outpatient-unit, including growth monitoring, health education, and micro-nutrient supplementation (H-C, n=49). 2) FFC at community follow-up unit (CNFU) [established in the existing urban primary health-care centers close to the residence of the child] but received the same regimen as H-C (C-C, n=53). 3) As per C-C plus cereal-based supplementary food (SF) (C-SF, n=49). The SF packets were distributed on recruitment and at every visit in CNFU [@1 packet/day for 6–11 and 2 packets/day for 12-24 month old children. Each packet contained 20g toasted rice-powder, 10g toasted lentil-powder, 5g molasses, and 3g soy bean oil, to provide a total of ~ 150kcal with 11% energy from protein]. 4) As per C-C plus psychosocial stimulation (PS) (C-PS, n=43). PS consisted of child-stimulation and parental-counseling conducted by trained health workers. 5) As per C-C plus both SF+PS (C-SF+PS, n=33). Results: A total of 227children (48.5% female), with a mean ± SD age of 12.6 ±3.8 months, and WHZ of - 2.53±0.28 enrolled. Baseline characteristics did not differ by treatment group. The rate of spontaneous attendance at scheduled follow-up visits gradually decreased in all groups. Follow-up attendance and gain in weight and length were greater in groups C-SF, C-SF+PS, and C-PS than C-C, and these indicators were observed least in H-C. Children in the H-C group more often suffered from diarrhea (25 % vs. 4-9%) and fever (28% vs. 8-11%) than other groups (p < 0.05). Children who attended at least five of the total six scheduled follow-up visits gained more in weight (median: 0.86 vs. 0.62 kg, p=0.002), length (median: 2.4 vs. 2.0 cm, p=0.009) than those who attended fewer. Conclusions: Community-based service delivery, especially including supplementary food with or without psychosocial stimulation, permits better rehabilitation of children with MAM compared to current hospital outpatients-based care. By scaling the community-based follow-up including food supplementation with or without psychosocial stimulation, it will be possible to rehabilitate a greater number of MAM children in a better way.

Keywords: community-based management, moderate acute malnutrition, psychosocial stimulation, supplementary food

Procedia PDF Downloads 443
6327 Different Cathode Buffer Layers in Organic Solar Cells

Authors: Radia Kamel

Abstract:

Considerable progress has been made in the development of bulk-heterojunction organic solar cells (OSCs) based on a blend of p-type and n-type organic semiconductors. To optimize the interfacial properties between the active layer and the electrode, a cathode buffer layer (CBL) is introduced. This layer can reduce the leakage current, increasing the open-circuit voltage and the fill factor while improving the OSC stability. In this work, the performance of PM6:Y6 OSC with 1-Chloronaphthalene as an additive is examined. To accomplish this, three CBLs PNDIT-F3N-Br, ZrAcac, and PDINO, are compared using the conventional configuration. The device with PNDIT-F3N-Br as CBL exhibits the highest power conversion efficiency of 16.04%. The results demonstrate that modifying the cathode buffer layer is crucial for achieving high-performance OSCs.

Keywords: bulk heterojunction, cathode buffer layer, efficiency, organic solar cells

Procedia PDF Downloads 171
6326 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets

Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.

Abstract:

The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.

Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction

Procedia PDF Downloads 123
6325 The Impact of Globalization on the Development of Israel Advanced Changes

Authors: Erez Cohen

Abstract:

The study examines the socioeconomic impact of development of an advanced industry in Israel. The research method is based on data collected from the Israel Central Bureau of Statistics and from the National Insurance Institute (NII) databases, which provided information that allows to examine the Economic and Social Changes during the 1990s. The study examined the socioeconomic effects of the development of advanced industry in Israel. The research findings indicate that as a result of globalization processes, the weight of traditional industry began to diminish as a result of factory closures and the laying off of workers. These circumstances led to growing unemployment among the weaker groups in Israeli society, detracting from their income and thus increasing inequality among different socioeconomic groups in Israel and enhancement of social disparities.

Keywords: globalization, Israeli advanced industry, public policy, socio-economic indicators

Procedia PDF Downloads 168
6324 Theoretical Study of the Structural and Elastic Properties of Semiconducting Rare Earth Chalcogenide Sm1-XEuXS under Pressure

Authors: R. Dubey, M. Sarwan, S. Singh

Abstract:

We have investigated the phase transition pressure and associated volume collapse in Sm1– X EuX S alloy (0≤x≤1) which shows transition from discontinuous to continuous as x is reduced. The calculated results from present approach are in good agreement with experimental data available for the end point members (x=0 and x=1). The results for the alloy counter parts are also in fair agreement with experimental data generated from the vegard’s law. An improved interaction potential model has been developed which includes coulomb, three body interaction, polarizability effect and overlap repulsive interaction operative up to second neighbor ions. It is found that the inclusion of polarizability effect has improved our results.

Keywords: elastic constants, high pressure, phase transition, rare earth compound

Procedia PDF Downloads 424
6323 Mesquite (Prosopis juliflora) Pods as a Local Alternative to Feed Poultry

Authors: Abdulrahman Al-Soqeer, Osamah Fahmy

Abstract:

This research was aimed to investigate the possibility of using Prosopis juliflora pods as a fodder source for poultry. The study have shown that the inclusion of ground Prosopis pods in a broiler diet added some positive effects on broiler performance such as improving carcasses weight and reducing the weights of the inedible parts. The obtained results encourage repeating the experiment with an increased percentage of Prosopis supplementation in the broiler diets, using some treatments on the Prosopis pods to reduce the undesirable effects of the antinutritional factors in the pods and to increase the percentage of the essential amino acids present in the pods (lysine, methionine, arginine, histidine, isoleucine, leucine and phenylealanine) up to the limits recommended for broilers by NRC 1990.

Keywords: amino acids, arginine, broilers, lysine, methionine

Procedia PDF Downloads 245
6322 Numerical Analysis and Parametric Study of Granular Anchor Pile on Expansive Soil Using Finite Element Method: Case of Addis Ababa, Bole Sub-City

Authors: Abdurahman Anwar Shfa

Abstract:

Addis Ababa is among the fastest-growing urban areas in the country. There are many new constructions of public and private condominiums and large new low rising residential buildings for residents. But the wide range of heaving problems of expansive soil in the city become a major difficulty for the construction sector, especially in low rising buildings, by causing different problems such as distortion and cracking of floor slabs, cracks in grade beams, and walls, jammed or misaligned Doors and Windows; failure of blocks supporting grade beams. Hence an attractive and economical design solution may be required for such type of problem. Therefore, this research works to publicize a recent innovation called the Granular Anchor Pile system for the reduction of the heave effect of expansive soil. This research is written for the objective of numerical investigation of the behavior of Granular Anchor Pile under the heave using Finite element analysis PLAXIS 3D program by means of studying the effect of different parameters like length of the pile, diameter of pile, and pile group by applying prescribed displacement of 10% of pile diameter at the center of granular pile anchor. An additional objective is examining the suitability of Granular Anchor Pile as an alternative solution for heave problems in expansive soils mostly for low rising buildings found in Addis Ababa City, especially in Bole Sub-City, by considering different factors such as the local availability of construction materials, economy for the construction, installation process condition, environmental benefit, time consumption and performance of the pile. Accordingly, the performance of the pile improves when the length of the pile increases. This is due to an increase in the self-weight of the pile and friction mobilized between the pile and soil interface. Additionally, the uplift capacity of the pile decreases when increasing the pile diameter and spacing between the piles in the group due to a reduction in the number of piles in the group. But, few cases show that the uplift capacity of the pile increases with increasing the pile diameter for a constant number of piles in the group and increasing the spacing between the pile and in the case of single pile capacity. This is due to the increment of piles' self-weight and surface area of the pile group and also the decrement of stress overlap in the soil caused by piles respectively. According to the suitability analysis, it is observed that Granular Anchor Pile is sensible or practical to apply for the actual problem of Expansive soil in a low rising building constructed in the country because of its convenience for all considerations.

Keywords: expansive soil, granular anchor pile, PLAXIS, suitability analysis

Procedia PDF Downloads 41
6321 The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablous, Mofied M. Elnemry

Abstract:

The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content.

Keywords: proportion of carbon in the steel, corrosion rate, erosion, corrosion resistance in carbon-steel

Procedia PDF Downloads 608
6320 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite

Authors: Dolly Selikane, Thandi Gumede

Abstract:

Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.

Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite

Procedia PDF Downloads 129
6319 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures

Authors: Olesia Mikhailova, Pavel Rovnaník

Abstract:

In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.

Keywords: geopolymer, mechanical properties, metakaolin, microstructure, polymer admixtures, porosity

Procedia PDF Downloads 239
6318 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications

Authors: Ashima Sharma, Tapan K. Chaudhuri

Abstract:

Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.

Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing

Procedia PDF Downloads 349
6317 Lightweight Synergy IoT Framework for Smart Home Healthcare for the Elderly

Authors: Huawei Ma, Wencai Du, Shengbin Liang

Abstract:

Smart Home Healthcare technologies for the elderly represent a transformative paradigm that leverages emerging technologies to provide the elderly’ health indicators and daily life monitoring, emergency calls, environmental monitoring, behavior perception, and other services to ensure the health and safety of the elderly who are aging in their own home. However, the excessive complexity in the main adopted framework has affected the acceptance and adoption of the elderly. Therefore, this paper proposes a lightweight synergy architecture of IoT data and service for elderly home smart health environment. It includes the modeling of IoT applications and their workflows, data interoperability, interaction, and storage paradigms to meet the growing needs of older people so that they can lead an active, fulfilling, and quality life.

Keywords: smart home healthcare, IoT, independent living, lightweight framework

Procedia PDF Downloads 57
6316 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language

Authors: Wenjun Hou, Marek Perkowski

Abstract:

The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.

Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language

Procedia PDF Downloads 194
6315 Mutual Authentication for Sensor-to-Sensor Communications in IoT Infrastructure

Authors: Shadi Janbabaei, Hossein Gharaee Garakani, Naser Mohammadzadeh

Abstract:

Internet of things is a new concept that its emergence has caused ubiquity of sensors in human life, so that at any time, all data are collected, processed and transmitted by these sensors. In order to establish a secure connection, the first challenge is authentication between sensors. However, this challenge also requires some features so that the authentication is done properly. Anonymity, untraceability, and being lightweight are among the issues that need to be considered. In this paper, we have evaluated the authentication protocols and have analyzed the security vulnerabilities found in them. Then an improved light weight authentication protocol for sensor-to-sensor communications is presented which uses the hash function and logical operators. The analysis of protocol shows that security requirements have been met and the protocol is resistant against various attacks. In the end, by decreasing the number of computational cost functions, it is argued that the protocol is lighter than before.

Keywords: anonymity, authentication, Internet of Things, lightweight, un-traceability

Procedia PDF Downloads 297
6314 Energy Efficient Firefly Algorithm in Wireless Sensor Network

Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab

Abstract:

Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.

Keywords: wireless network, SN, Firefly, energy efficiency

Procedia PDF Downloads 389
6313 Hydrogen Storage in Carbonized Coconut Meat (Kernel)

Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava

Abstract:

Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.

Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca

Procedia PDF Downloads 426
6312 Selective Conversion of Biodiesel Derived Glycerol to 1,2-Propanediol over Highly Efficient γ-Al2O3 Supported Bimetallic Cu-Ni Catalyst

Authors: Smita Mondal, Dinesh Kumar Pandey, Prakash Biswas

Abstract:

During past two decades, considerable attention has been given to the value addition of biodiesel derived glycerol (~10wt.%) to make the biodiesel industry economically viable. Among the various glycerol value-addition methods, hydrogenolysis of glycerol to 1,2-propanediol is one of the attractive and promising routes. In this study, highly active and selective γ-Al₂O₃ supported bimetallic Cu-Ni catalyst was developed for selective hydrogenolysis of glycerol to 1,2-propanediol in the liquid phase. The catalytic performance was evaluated in a high-pressure autoclave reactor. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. Experimental results demonstrated that bimetallic copper-nickel catalyst was more active and selective to 1,2-PDO as compared to monometallic catalysts due to bifunctional behavior. To verify the effect of calcination temperature on the formation of Cu-Ni mixed oxide phase, the calcination temperature of 20wt.% Cu:Ni(1:1)/Al₂O₃ catalyst was varied from 300°C-550°C. The physicochemical properties of the catalysts were characterized by various techniques such as specific surface area (BET), X-ray diffraction study (XRD), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The BET surface area and pore volume of the catalysts were in the range of 71-78 m²g⁻¹, and 0.12-0.15 cm³g⁻¹, respectively. The peaks at the 2θ range of 43.3°-45.5° and 50.4°-52°, was corresponded to the copper-nickel mixed oxidephase [JCPDS: 78-1602]. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. The crystallite size decreased with increasing the calcination temperature up to 450°C. Further, the crystallite size was increased due to agglomeration. Smaller crystallite size of 16.5 nm was obtained for the catalyst calcined at 400°C. Total acidic sites of the catalysts were determined by NH₃-TPD, and the maximum total acidic of 0.609 mmol NH₃ gcat⁻¹ was obtained over the catalyst calcined at 400°C. TPR data suggested the maximum of 75% degree of reduction of catalyst calcined at 400°C among all others. Further, 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst calcined at 400°C exhibited highest catalytic activity ( > 70%) and 1,2-PDO selectivity ( > 85%) at mild reaction condition due to highest acidity, highest degree of reduction, smallest crystallite size. Further, the modified Power law kinetic model was developed to understand the true kinetic behaviour of hydrogenolysis of glycerol over 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst. Rate equations obtained from the model was solved by ode23 using MATLAB coupled with Genetic Algorithm. Results demonstrated that the model predicted data were very well fitted with the experimental data. The activation energy of the formation of 1,2-PDO was found to be 45 kJ mol⁻¹.

Keywords: glycerol, 1, 2-PDO, calcination, kinetic

Procedia PDF Downloads 152
6311 Multilayer System of Thermosetting Polymers and Specific Confining, Application to the Walls of the Hospital Unit

Authors: M. Bouzid, A. Djadi, C. Aribi, A. Irekti, B. Bezzazi, F. Halouene

Abstract:

The nature of materials structuring our health institutions promote the development of germs. The sustainability of nosocomial infections remains significant (12% and 15%). One of the major factors is the portland cement which is brittle and porous. As part of a national plan to fight nosocomial infections, led by the University Hospital of Blida, we opted for a composite coating, application by multilayer model, composed of epoxy-polyester resin as a binder and calcium carbonate as mineral fillers. The application of composite materials reinforce the wall coating of hospital units and eliminates the hospital infectious areas. The resistance to impact, chemicals, raising temperature and to a biologically active environment gives satisfactory results.

Keywords: nosocomial infection, microbial load, composite materials, portland cement

Procedia PDF Downloads 391