Search results for: surface reaction rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15094

Search results for: surface reaction rate

11194 Contribution to the Study of Reproduction of Water Birds (Case of Marsh Bouessdra, North East Algeria)

Authors: Wahiba Boudraa, Khalil Draidi, Badis Bakhouch, Farah Chettibi, Meriem Aberkane, Zihad Bouslama, Moussa Houhamdi

Abstract:

The Gulf of Annaba, located at the extreme north eastern Algerian; our site of study is a marsh administratively it is part of the wilaya of Annaba, municipality of El-Bouni; extends on a surface from 55 hectare, the maximum depth is of less 2m. A scheme of work was adopted for an evaluation and characterization of the reproduction of the water nicheurs birds in the marsh of Boussedra. Some important parameters described by the scientific literature; According to standardized methods, variables were the object of a regular follow-up during the period of reproduction. These parameters were taken into account: the installation date of the nests, the vegetable support; blossoming of eggs, causes of the failure of the blossomings (predation or abandonment), characteristics of the nests (composition, internal diameter, external diameter, depth and heightening), measurements of the distances nest-nest nearest, Depth of water, the measurement of eggs, size of laying, size of laying. The follow-up in the marsh was carried out between March 2013 until the month of July 2014 at a rate of two outputs per weeks, one located and noted the nests to control them each week. The study on the reproduction of the water birds enables us to note that this site plays a very important part in the wintering and the reproduction of certain species important. This study opens broad prospects for study of several phenomena related to the ecology of the water birds, and the conservation of the wetlands.

Keywords: Algeria, Boussedra, nests, reproduction, water birds

Procedia PDF Downloads 244
11193 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 402
11192 Experimental Study on Flooding Phenomena in a Three-Phase Direct Contact Heat Exchanger for the Utilisation in Solar Pond Applications

Authors: Hameed B. Mahood, Ali Sh. Baqir, Alasdair N. Campbell

Abstract:

Experiments to study the limitation of flooding inception of three-phase direct contact condenser have been carried out in a counter-current small diameter vertical condenser. The total column height was 70 cm and 4 cm diameter. Only 48 cm has been used as an active three-phase direct contact condenser height. Vapour pentane with three different initial temperatures (40, 43.5 and 47.5 °C) and water with a constant temperature (19 °C) have been used as a dispersed phase and a continuous phase respectively. Five different continuous phase mass flow rate and four different dispersed phase mass flow rate have been tested throughout the experiments. Dimensionless correlation based on the previous common flooding correlation is proposed to calculate the up flow flooding inception of the three-phase direct contact condenser.

Keywords: Three-phase heat exchanger, condenser, solar energy, flooding phenomena

Procedia PDF Downloads 322
11191 Eco-Biological Study of Artemia salina (Branchiopoda, Anostraca) in Sahline Salt Lake, Tunisia

Authors: Khalil Trigui, Rafik Ben Said, Fourat Akrout, Neji Aloui

Abstract:

In this study, we examined in the first part the eco-biology of Artemia (A.salina) collected from Sahline Salt Lake (governorate of Monastir: Tunisia) during an annual cycle. The correlations between environmental factors and some biological parameters of Artemia were determined. The results obtained showed that the environmental factors affected the biology of Artemia. The highest abundance was recorded in May (550 ± 2,16 ind/l) and all life history stages existed with different seasonal proportions. The Artemia population is bisexual with ovoviviparous reproduction at the beginning and oviparous at the end of the life cycle. We also recorded the dominance of males at the start and the females at the end of the cycle. During all the study period, the size of mature females is bigger than that of males. The fertility obtained resulted in a significant production of cysts compared to the nauplii. A negative correlation with highly significant effect was deduced between environmental factors (temperature and salinity) and the production of nauplii (ovoviviparity) in contrast with dissolved oxygen. In the second part of our work is consecrated to the mastery of breeding Artemia. For this, we tested the effect of five external factors (temperature, salinity, dissolved oxygen, light intensity and food) on the survival of this crustacean. Thereby, the survival rates of Artemia were affected by the different values of studied factors. The recorded results showed that Artemia salina has an optimum temperature ranged from 25 to 27°C with a survival rate ranging from 84 to 88%. The optimal salinity to breed Artemia salina was 37 psu (62 ± 0,23%). Nevertheless, this crustacean was able to survive and withstand the salinity of 0 psu (freshwater). The optimum concentration of dissolved oxygen was 7mg/l with a survival rate of 87,11 ± 0,04%. An optimum light intensity of 10 lux revealed a survival rate equal to 85,33 ± 0,01%. The results also showed that the preferred micro-algae by Artemia is Dunaliella salina with a maximum survival rate of the order of 80 ± 0,15%. There is a significant effect for all experienced parameters on the survival of Artemia reared except the nature of food.

Keywords: Artemia salina, biology, breeding, ecology, Sahline salt lake

Procedia PDF Downloads 345
11190 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)

Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan

Abstract:

Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.

Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification

Procedia PDF Downloads 301
11189 Cryogenic Grinding of Mango (Mangifera indica L.) Peel and Its Effect on Chemical and Morphological Characteristics

Authors: Bhupinder Kaur, P. P. Srivastav

Abstract:

The fruit and vegetable industries are responsible for producing huge amount of waste, which is a problem to environmental safety and should be utilized efficiently. Mango (Mangifera indica L.) is an important commercially grown fruit and referred as the “King of fruits”. In 2015, India was the largest producer (18.506 MT) of mangoes and out of which 9.16 % lost during post-harvest handling. The mango kernel and peel represent approximately 17-22% and 7-22% of the overall mass of fruit respectively and discarded as waste. Hence, an attempt has been made with three mango cultivars (Langra, Dashehari, Fazli) to investigate the effect of cryogenic grinding on various characteristics of mango peel powder (MPP). The cryogenic grinding is an emerging technology which is used for retention of beneficial volatile and bioactive components. The feed rate was highest for Langra followed by Chausa. The samples have 2-4% fat along with significant amount of protein (4-6%) and crude fiber (9-13%). Mango peel is also a good source of minerals such as calcium, potassium, manganese, iron, copper, zinc, and magnesium. Interestingly, the significant amount of essential minerals like phosphorus and chlorine in all the varieties was found with the highest value in Langra (phosphorus 10.83% and chlorine 2.41%) which are not reported earlier. SEM analysis revealed the surface morphology and shape of the particles. Waste utilization is a promising measure from both an environmental and economic point of view. Chemical characterization of the samples indicated its potential to be used for the fortification of food products which in turn reduces hazards due to waste and improve functional quality of the foods.

Keywords: cryogenic grinding, morphological, mineral composition, SEM

Procedia PDF Downloads 215
11188 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field

Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso

Abstract:

Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.

Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate

Procedia PDF Downloads 247
11187 Comparative Study on the Evaluation of Patient Safety in Malaysian Retail Pharmacy Setup

Authors: Palanisamy Sivanandy, Tan Tyng Wei, Tan Wee Loon, Lim Chong Yee

Abstract:

Background: Patient safety has become a major concern over recent years with elevated medication errors; particularly prescribing and dispensing errors. Meticulous prescription screening and diligent drug dispensing is therefore important to prevent drug-related adverse events from inflicting harm to patients. Hence, pharmacists play a significant role in this scenario. The evaluation of patient safety in a pharmacy setup is crucial to contemplate current practices, attitude and perception of pharmacists towards patient safety. Method: The questionnaire for Pharmacy Survey on Patient Safety Culture developed by the Agency for Healthcare and Research Quality (AHRQ) was used to assess patient safety. Main objectives of the study was to evaluate the attitude and perception of pharmacists towards patient safety in retail pharmacies setup in Malaysia. Results: 417 questionnaire were distributed via convenience sampling in three different states of Malaysia, where 390 participants were responded and the response rate was 93.52%. The overall positive response rate (PRR) was ranged from 31.20% to 87.43% and the average PRR was found to be 67%. The overall patient safety grade for our pharmacies was appreciable and it ranges from good to very good. The study found a significant difference in the perception of senior and junior pharmacists towards patient safety. The internal consistency of the questionnaire contents /dimensions was satisfactory (Cronbach’s alpha - 0.92). Conclusion: Our results reflect that there was positive attitude and perception of retail pharmacists towards patient safety. Despite this, various efforts can be implemented in the future to amplify patient safety in retail pharmacies setup.

Keywords: patient safety, attitude, perception, positive response rate, medication errors

Procedia PDF Downloads 309
11186 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning

Authors: ChoLiang Chung, YuMin Chen

Abstract:

C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.

Keywords: carbon, TiO2, chitosan, electrospinning

Procedia PDF Downloads 247
11185 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept

Authors: Ahmed El Naggar, Homyan Saleh

Abstract:

Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.

Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy

Procedia PDF Downloads 72
11184 Sensing Characteristics of Gold Nanoparticles Decorated Sputtered Tin Oxide Thin Films as Nitrogen Oxide Sensor

Authors: Qasem Drmosh, Zain Yamai, Amar Mohamedkhair, Abdulmajid Hendi

Abstract:

In recent years, there has been a growing interest in the reduction of the nitrogen oxides NOx (NO2, NO) gases resulting from automotive or combustion emissions. Recently, metal additives in nanometer dimension onto the surface of SnO2 nanorods, nanowires and nanotubes sensitizer to further increase the sensor response have been used. In contrast, there is a lack study focused on modifying the surface of SnO2 thin films by nanoparticles. The challenge in case of thin films is how to fabricate these nanoparticles on the surfaces in cost-effective method, high purity as well as without hampering electrical and topographical properties. Here in this report, a simple and facile strategy has been demonstrated to acquire high sensitive and fast response NO2 gas sensor. Structural, electrical, morphological, optical, and compositional properties of the fabricated sensors were investigated through different analytical technique including X-ray diffraction (XRD), Field emission scanning emission microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). The sensing performance of the prepared sensors are studied at different temperatures for various concentrations of NO2 and compared with pristine SnO2 film.

Keywords: NO2 sensor, SnO2, sputtering, thin films

Procedia PDF Downloads 196
11183 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 349
11182 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria

Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai

Abstract:

Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.

Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon

Procedia PDF Downloads 706
11181 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity

Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido

Abstract:

Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.

Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens

Procedia PDF Downloads 272
11180 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 318
11179 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers

Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang

Abstract:

Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.

Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction

Procedia PDF Downloads 315
11178 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 494
11177 Testing Immunochemical Method for the Bacteriological Diagnosis of Bovine Tuberculosis

Authors: Assiya Madenovna Borsynbayeva, Kairat Altynbekovich Turgenbayev, Nikolay Petrovich Ivanov

Abstract:

In this article presents the results of rapid diagnostics of tuberculosis in comparison with classical bacteriological method. The proposed method of rapid diagnosis of tuberculosis than bacteriological method allows shortening the time of diagnosis to 7 days, to visualize the growth of mycobacteria in the semi-liquid medium and differentiate the type of mycobacterium. Fast definition of Mycobacterium tuberculosis and its derivatives in the culture medium is a new and promising direction in the diagnosis of tuberculosis.

Keywords: animal diagnosis of tuberculosis, bacteriological diagnostics, antigen, specific antibodies, immunological reaction

Procedia PDF Downloads 327
11176 Globalisation, Growth and Sustainability in Sub-Saharan Africa

Authors: Ourvashi Bissoon

Abstract:

Sub-Saharan Africa in addition to being resource rich is increasingly being seen as having a huge growth potential and as a result, is increasingly attracting MNEs on its soil. To empirically assess the effectiveness of GDP in tracking sustainable resource use and the role played by MNEs in Sub-Saharan Africa, a panel data analysis has been undertaken for 32 countries over thirty-five years. The time horizon spans the period 1980-2014 to reflect the evolution from before the publication of the pioneering Brundtland report on sustainable development to date. Multinationals’ presence is proxied by the level of FDI stocks. The empirical investigation first focuses on the impact of trade openness and MNE presence on the traditional measure of economic growth namely the GDP growth rate, and then on the genuine savings (GS) rate, a measure of weak sustainability developed by the World Bank, which assumes the substitutability between different forms of capital and finally, the impact on the adjusted Net National Income (aNNI), a measure of green growth which caters for the depletion of natural resources is examined. For countries with significant exhaustible natural resources and important foreign investor presence, the adjusted net national income (aNNI) can be a better indicator of economic performance than GDP growth (World Bank, 2010). The issue of potential endogeneity and reverse causality is also addressed in addition to robustness tests. The findings indicate that FDI and openness contribute significantly and positively to the GDP growth of the countries in the sample; however there is a threshold level of institutional quality below which FDI has a negative impact on growth. When the GDP growth rate is substituted for the GS rate, a natural resource curse becomes evident. The rents being generated from the exploitation of natural resources are not being re-invested into other forms of capital namely human and physical capital. FDI and trade patterns may be setting the economies in the sample on a unsustainable path of resource depletion. The resource curse is confirmed when utilising the aNNI as well, thus implying that GDP growth measure may not be a reliable to capture sustainable development.

Keywords: FDI, sustainable development, genuine savings, sub-Saharan Africa

Procedia PDF Downloads 202
11175 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan

Abstract:

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

Keywords: outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD

Procedia PDF Downloads 433
11174 Impact of Varying Malting and Fermentation Durations on Specific Chemical, Functional Properties, and Microstructural Behaviour of Pearl Millet and Sorghum Flour Using Response Surface Methodology

Authors: G. Olamiti; TK. Takalani; D. Beswa, AIO Jideani

Abstract:

The study investigated the effects of malting and fermentation times on some chemical, functional properties and microstructural behaviour of Agrigreen, Babala pearl millet cultivars and sorghum flours using response surface methodology (RSM). Central Composite Rotatable Design (CCRD) was performed on two independent variables: malting and fermentation times (h), at intervals of 24, 48, and 72, respectively. The results of dependent parameters such as pH, titratable acidity (TTA), Water absorption capacity (WAC), Oil absorption capacity (OAC), bulk density (BD), dispersibility and microstructural behaviour of the flours studied showed a significant difference in p < 0.05 upon malting and fermentation time. Babala flour exhibited a higher pH value at 4.78 at 48 h malted and 81.9 fermentation times. Agrigreen flour showed a higher TTA value at 0.159% at 81.94 h malted and 48 h fermentation times. WAC content was also higher in malted and fermented Babala flour at 2.37 ml g-1 for 81.94 h malted and 48 h fermentation time. Sorghum flour exhibited the least OAC content at 1.67 ml g-1 at 14 h malted and 48 h fermentation times. Agrigreen flour recorded the least bulk density, at 0.53 g ml-1 for 72 h malted and 24 h fermentation time. Sorghum flour exhibited a higher content of dispersibility, at 56.34%, after 24 h malted and 72 h fermented time. The response surface plots showed that increased malting and fermentation time influenced the dependent parameters. The microstructure behaviour of malting and fermentation times of pearl millet varieties and sorghum flours showed isolated, oval, spherical, or polygonal to smooth surfaces. The optimal processing conditions, such as malting and fermentation time for Agrigreen, were 32.24 h and 63.32 h; 35.18 h and 34.58 h for Babala; and 36.75 h and 47.88 h for sorghum with high desirability of 1.00. The validation of the optimum processing malting and fermentation times (h) on the dependent improved the experimented values. Food processing companies can use the study's findings to improve food processing and quality.

Keywords: Pearl millet, malting, fermentation, microstructural behaviour

Procedia PDF Downloads 54
11173 Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone

Authors: Niranjan Mukherjee, Burga Braun, Ulrich Szewzyk

Abstract:

Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals.

Keywords: iopromide, hyporheic zone, recalcitrant pharmaceutical, redox gradients

Procedia PDF Downloads 110
11172 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 395
11171 Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments

Authors: Daniel Adjei, Mesfin Getachew Ayele, Przemyslaw Wachulak, Andrzej Bartnik, Luděk Vyšín, Henryk Fiedorowicz, Inam Ul Ahad, Lukasz Wegrzynski, Anna Wiechecka, Janusz Lekki, Wojciech M. Kwiatek

Abstract:

Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed.

Keywords: laser produced plasma, soft X-rays, radio biology experiments, dosimetry

Procedia PDF Downloads 574
11170 Organic Co-Polymer Monolithic Columns for Liquid Chromatography Mixed Mode Protein Separations

Authors: Ahmed Alkarimi, Kevin Welham

Abstract:

Organic mixed mode monolithic columns were fabricated from; glycidyl methacrylate-co-ethylene dimethacrylate-co-stearyl methacrylate, using glycidyl methacrylate and stearyl methacrylate as co monomers representing 30% and 70% respectively of the liquid volume with ethylene dimethacrylate crosslinker and 2,2-dimethoxy-2-phenylacetophenone as the free radical initiator. The monomers were mixed with a binary porogenic solvent, comprising propan-1-ol, and methanol (0.825 mL each). The monolith was formed by photo polymerization (365 nm) inside a borosilicate glass tube (1.5 mm ID and 3 mm OD x 50 mm length). The monolith was observed to have formed correctly by optical examination and generated reasonable backpressure, approximately 650 psi at a flow rate of 0.2 mL min⁻¹ 50:50 acetonitrile: water. The morphological properties of the monolithic columns were investigated using scanning electron microscopy images, and Brunauer-Emmett-Teller analysis, the results showed that the monolith was formed properly with 19.98 ± 0.01 mm² surface area, 0.0205 ± 0.01 cm³ g⁻¹ pore volume and 6.93 ± 0.01 nm average pore size. The polymer monolith formed was further investigated using proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The monolithic columns were investigated using high-performance liquid chromatography to test their ability to separate different samples with a range of properties. The columns displayed both hydrophobic/hydrophilic and hydrophobic/ion exchange interactions with the compounds tested indicating that true mixed mode separations. The mixed mode monolithic columns exhibited significant separation of proteins.

Keywords: LC separation, proteins separation, monolithic column, mixed mode

Procedia PDF Downloads 149
11169 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: Klara Krizova, Rudolf Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further.

Keywords: concrete, compressive strength, modulus of elasticity, EuroCode 2

Procedia PDF Downloads 436
11168 Evaluation of Top-down and Bottom-up Leadership Development Programs in a Finnish Company

Authors: Kati Skarp, Keijo Varis, Juha Kettunen

Abstract:

The purpose of this paper is to examine and evaluate the top-down and bottom-up leadership development programs focused on human capital that improve the performance of a company. This study reports on the external top-down leadership development program supported by a consulting company and the internal participatory action research of the bottom-up program. The sickness rate and the lost time incident failure rate decreased and the ideas produced for cost savings improved, leading to increased earnings during the top-down program. The estimated cost savings potential of the bottom-up program was 3.8 million euro based on the cost savings of meeting habits, maintenance practices and the way of working in production. The results of this study are useful for those who plan and evaluate leadership development and human capital productivity consultation programs to improve the performance of a company.

Keywords: leadership, development, human resources, company, indicators, evaluation

Procedia PDF Downloads 316
11167 Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test

Authors: Abdul Murad Zainal Abidin, Azahar Mohd, Nor Idayu Arifin, Siti Nor Azila Khalid, Mohd Julzaha Zahari Mohamad Yusof

Abstract:

A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages.

Keywords: energy efficiency, thermoelectric cooling, pre-cooling device, heat flow meter, sustainable technology, thermal conductivity

Procedia PDF Downloads 144
11166 Electrokinetics and Stability of Solder Powders in Aqueous Media

Authors: Terence Lucero F. Menor, Manolo G. Mena, Herman D. Mendoza

Abstract:

Solder pastes are widely used in creating mechanical, thermal and electrical connection between electronic components. Continued miniaturization of consumer electronics drives manufacturers to achieve smaller, lighter, and faster electronic packages at low cost. This faces them to the difficult challenge of dispensing solder pastes in extremely precise and repeatable manner. The most common problem in solder paste dispensing is the clogging of dispensers which results from agglomeration and settling of solder powders leading to increase on the effective particle size and uneven distribution of particles in the mixture. In this work, microelectrophoresis was employed to investigate the effect of pH and KNO₃ concentration on the electrokinetic behavior and stability of SAC305, PbSn5Ag2.5 and Sn powders in aqueous media. Results revealed that the electrokinetic behavior of the three types of solder powders are similar, which was attributed to high SnO₂ content on the surface of the particles. Electrokinetic measurements showed that the zeta potentials of the solder powders are highly dependent on pH and KNO₃ concentration with isoelectric points ranging from 3.5 to 5.5. Results were verified using stability tests.

Keywords: electrokinetic behavior, isoelectric point, solder powder, stability, surface analysis

Procedia PDF Downloads 216
11165 Surfactant-Free O/W-Emulsion as Drug Delivery System

Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk

Abstract:

Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.

Keywords: emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability

Procedia PDF Downloads 471