Search results for: interdisciplinary production processes
8643 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well
Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar
Abstract:
During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.Keywords: pin end, microstructure, grain size, stress corrosion cracks
Procedia PDF Downloads 808642 Gathering Space after Disaster: Understanding the Communicative and Collective Dimensions of Resilience through Field Research across Time in Hurricane Impacted Regions of the United States
Authors: Jack L. Harris, Marya L. Doerfel, Hyunsook Youn, Minkyung Kim, Kautuki Sunil Jariwala
Abstract:
Organizational resilience refers to the ability to sustain business or general work functioning despite wide-scale interruptions. We focus on organization and businesses as a pillar of their communities and how they attempt to sustain work when a natural disaster impacts their surrounding regions and economies. While it may be more common to think of resilience as a trait possessed by an organization, an emerging area of research recognizes that for organizations and businesses, resilience is a set of processes that are constituted through communication, social networks, and organizing. Indeed, five processes, robustness, rapidity, resourcefulness, redundancy, and external availability through social media have been identified as critical to organizational resilience. These organizing mechanisms involve multi-level coordination, where individuals intersect with groups, organizations, and communities. Because the nature of such interactions are often networks of people and organizations coordinating material resources, information, and support, they necessarily require some way to coordinate despite being displaced. Little is known, however, if physical and digital spaces can substitute one for the other. We thus are guided by the question, is digital space sufficient when disaster creates a scarcity of physical space? This study presents a cross-case comparison based on field research from four different regions of the United States that were impacted by Hurricanes Katrina (2005), Sandy (2012), Maria (2017), and Harvey (2017). These four cases are used to extend the science of resilience by examining multi-level processes enacted by individuals, communities, and organizations that together, contribute to the resilience of disaster-struck organizations, businesses, and their communities. Using field research about organizations and businesses impacted by the four hurricanes, we code data from interviews, participant observations, field notes, and document analysis drawn from New Orleans (post-Katrina), coastal New Jersey (post-Sandy), Houston Texas (post-Harvey), and the lower keys of Florida (post-Maria). This paper identifies an additional organizing mechanism, networked gathering spaces, where citizens and organizations, alike, coordinate and facilitate information sharing, material resource distribution, and social support. Findings show that digital space, alone, is not a sufficient substitute to effectively sustain organizational resilience during a disaster. Because the data are qualitative, we expand on this finding with specific ways in which organizations and the people who lead them worked around the problem of scarce space. We propose that gatherings after disaster are a sixth mechanism that contributes to organizational resilience.Keywords: communication, coordination, disaster management, information and communication technologies, interorganizational relationships, resilience, work
Procedia PDF Downloads 1718641 Did Chilling Injury of Rice Decrease under Climate Warming? A Case Study in Northeast China
Authors: Fengmei Yao, Pengcheng Qin, Jiahua Zhang, Min Liu
Abstract:
Global warming is expected to reduce the risk of low temperature stress in rice grown in temperate regions, but this impact has not been well verified by empirical studies directly on chilling injury in rice. In this study, a case study in Northeast China was presented to investigate whether the frequencies of chilling injury declined as a result of climate change, in comprehensive consideration of the potential effects from autonomous adaptation of rice production in response to climate change, such as shifts in cultivation timing and rice cultivars. It was found that frequency of total chilling injury (either delayed-growth type or sterile-type in a year) decreased but only to a limit extent in the context of climate change, mainly owing to a pronounced decrease in frequency of the delayed-growth chilling injury, while there was no overwhelming decreasing tendency for frequency of the sterile-type chilling injury, rather, it even increased considerably for some regions. If changes in cultivars had not occurred, risks of chilling injury of both types would have been much lower, specifically for the sterile-type chilling injury for avoiding deterioration in chilling sensitivity of rice cultivars. In addition, earlier planting helped lower the risk of chilling injury but still can not overweight the effects of introduction of new cultivars. It was concluded that risks of chilling injury in rice would not necessarily decrease as a result of climate change, considering the accompanying adaptation process may increase the chilling sensitivity of rice production system in a warmer climate conditions, and thus precautions should still be taken.Keywords: chilling injury, rice, CERES-rice model, climate warming, North east China
Procedia PDF Downloads 3348640 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields
Authors: Babak Rezaei, Arash Zargar Shoushtari
Abstract:
Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields
Procedia PDF Downloads 3588639 Learning the Most Common Causes of Major Industrial Accidents and Apply Best Practices to Prevent Such Accidents
Authors: Rajender Dahiya
Abstract:
Investigation outcomes of major process incidents have been consistent for decades and validate that the causes and consequences are often identical. The debate remains as we continue to experience similar process incidents even with enormous development of new tools, technologies, industry standards, codes, regulations, and learning processes? The objective of this paper is to investigate the most common causes of major industrial incidents and reveal industry challenges and best practices to prevent such incidents. The author, in his current role, performs audits and inspections of a variety of high-hazard industries in North America, including petroleum refineries, chemicals, petrochemicals, manufacturing, etc. In this paper, he shares real life scenarios, examples, and case studies from high hazards operating facilities including key challenges and best practices. This case study will provide a clear understanding of the importance of near miss incident investigation. The incident was a Safe operating limit excursion. The case describes the deficiencies in management programs, the competency of employees, and the culture of the corporation that includes hazard identification and risk assessment, maintaining the integrity of safety-critical equipment, operating discipline, learning from process safety near misses, process safety competency, process safety culture, audits, and performance measurement. Failure to identify the hazards and manage the risks of highly hazardous materials and processes is one of the primary root-causes of an incident, and failure to learn from past incidents is the leading cause of the recurrence of incidents. Several investigations of major incidents discovered that each showed several warning signs before occurring, and most importantly, all were preventable. The author will discuss why preventable incidents were not prevented and review the mutual causes of learning failures from past major incidents. The leading causes of past incidents are summarized below. Management failure to identify the hazard and/or mitigate the risk of hazardous processes or materials. This process starts early in the project stage and continues throughout the life cycle of the facility. For example, a poorly done hazard study such as HAZID, PHA, or LOPA is one of the leading causes of the failure. If this step is performed correctly, then the next potential cause is. Management failure to maintain the integrity of safety critical systems and equipment. In most of the incidents, mechanical integrity of the critical equipment was not maintained, safety barriers were either bypassed, disabled, or not maintained. The third major cause is Management failure to learn and/or apply learning from the past incidents. There were several precursors before those incidents. These precursors were either ignored altogether or not taken seriously. This paper will conclude by sharing how a well-implemented operating management system, good process safety culture, and competent leaders and staff contributed to managing the risks to prevent major incidents.Keywords: incident investigation, risk management, loss prevention, process safety, accident prevention
Procedia PDF Downloads 578638 Phyllantus nuriri Protect against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Rich Fractions of Rats Brain
Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha
Abstract:
We evaluated the potential neuroprotective effect of Phyllantus nuriri against Fe2+ and SNP induced oxidative stress in mitochondria of rats brain. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10µM) and SNP (5µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-100 µg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.54±0.01), caffeic acid (7.93±0.02), rutin (25.31±0.05), quercetin (31.28±0.03) and kaemferol (14.36±0.01). This result suggests that these phytochemicals account for the protective actions of Phyllantus nuriri against Fe2+ and SNP -induced oxidative stress. Our results show that Phyllantus nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.Keywords: Phyllantus niruri, neuroprotection, oxidative stress, mitochondria, synaptosome
Procedia PDF Downloads 3608637 Evaluation of Shale Gas Resource Potential of Cambay Basin, Gujarat, India
Authors: Vaishali Sharma, Anirbid Sircar
Abstract:
Energy is one of the most eminent and fundamental strategic commodity, scarcity of which may poses great impact on the functioning of the entire commodity. According to the present study, the estimated reserves of gas in India as on 31.03.2015 stood at 1427.15 BCM. It is expected that the gas demand is set to grow significantly at a CAGR of 7% from 226.7 MMSCMD in 2012-13 to 713.5 MMSCMD in 2009-30. To bridge the gap between the demand and supply of energy, the interest towards the exploration and exploitation of unconventional resources like – Shale gas, Coal bed methane, Gas hydrates, tight gas etc has immensed. Nowadays, Shale gas prospects are emerging rapidly as a promising energy source globally. The United States of America (USA) has 240 TCF of proved reserves of shale gas and presently contributed more than 17% of total gas production. As compared to USA, shale gas production in India is at nascent stage. A resource potential of around 2000 TCF is estimated and according to preliminary data analysis, basins like Gondwana, Cambay, Krishna – Godavari, Cauvery, Assam-Arakan, Rajasthan, Vindhyan, and Bengal are the most promising shale gas basins. In the present study, the careful evaluation of Cambay Shale (Indian Shale) properties like geological age, lithology, depth, organically rich thickness, TOC, thermal maturity, porosity, permeability, clay content, quartz content, Kerogen type, Hydrocarbon window etc. has been done. And then the detailed comparison of Indian shale with USA shale will be discussed. This study investigates qualitative and quantitative nature of potential shale basins which will be helpful from exploration and exploitation point of view.Keywords: shale, shale gas, energy source, lithology
Procedia PDF Downloads 2928636 Policy Analysis and Program Evaluation: Need to Designate a Navigable Spatial Identity for Slums Dwellers in India to Maximize Accessibility and Policy Impact
Authors: Resham Badri
Abstract:
Cities today are unable to justify equitable distribution of theirsocio- economic and infrastructural benefits to the marginalized urban poor, and the emergence of a pressing pandemic like COVID-19 has amplified its impact. Lack of identity, vulnerability, and inaccessibility contribute to exclusion. Owing to systemic gaps in institutional processes, urban development policiesfail to represent and cater to the urban poor. This paper aims to be a roadmap for the Indian Government to understand the significance of the designation of a navigable spatial identity to slum dwellers in the form of a digital address, which can form the fundamental basis of identification to enable accessibility to not only basic servicesbut also other utilities. Capitalizing on such a granular and technology backed approach shall allow to target and reach out to the urban poor strategically andaid effective urban governance. This paper adopts a three-pronged approach;(i) Policy analysis- understanding gaps in existing urban policies of India, such as the Pradhan Mantri Awas Yojana, Swachh Bharat Mission, and Adhaar Card policy, (ii) Program Evaluation- analyzing a case study, where slum dwellers in Kolhapur city in India have been provided with navigable addresses using Google Plus Codes and have gained access to basic services, vaccinations, and other emergency deliveries in COVID-19 times, (iii) Policy recommendation. This designation of a navigable spatial identity has tremendous potential to form the foundation on which policies can further base their data collection and service delivery processes to not only provide basic services but also other infrastructural and social welfare initiatives. Hence, a massive window of opportunity lies in addressing the unaddressed to elevate their living standards and respond to their basic needs.Keywords: policy analysis, urban poor, navigable spatial identity, accessibility
Procedia PDF Downloads 818635 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation
Procedia PDF Downloads 2458634 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 528633 Wind Resource Estimation and Economic Analysis for Rakiraki, Fiji
Authors: Kaushal Kishore
Abstract:
Immense amount of imported fuels are used in Fiji for electricity generation, transportation and for carrying out miscellaneous household work. To alleviate its dependency on fossil fuel, paramount importance has been given to instigate the utilization of renewable energy sources for power generation and to reduce the environmental dilapidation. Amongst the many renewable energy sources, wind has been considered as one of the best identified renewable sources that are comprehensively available in Fiji. In this study the wind resource assessment for three locations in Rakiraki, Fiji has been carried out. The wind resource estimation at Rokavukavu, Navolau and at Tuvavatu has been analyzed. The average wind speed at 55 m above ground level (a.g.l) at Rokavukavu, Navolau, and Tuvavatu sites are 5.91 m/s, 8.94 m/s and 8.13 m/s with the turbulence intensity of 14.9%, 17.1%, and 11.7% respectively. The moment fitting method has been used to estimate the Weibull parameter and the power density at each sites. A high resolution wind resource map for the three locations has been developed by using Wind Atlas Analysis and Application Program (WAsP). The results obtained from WAsP exhibited good wind potential at Navolau and Tuvavatu sites. A wind farm has been proposed at Navolau and Tuvavatu site that comprises six Vergnet 275 kW wind turbines at each site. The annual energy production (AEP) for each wind farm is estimated and an economic analysis is performed. The economic analysis for the proposed wind farms at Navolau and Tuvavatu sites showed a payback period of 5 and 6 years respectively.Keywords: annual energy production, Rakiraki Fiji, turbulence intensity, Weibull parameter, wind speed, Wind Atlas Analysis and Application Program
Procedia PDF Downloads 1898632 Evaluation of Dry Matter Yield of Panicum maximum Intercropped with Pigeonpea and Sesbania Sesban
Authors: Misheck Musokwa, Paramu Mafongoya, Simon Lorentz
Abstract:
Seasonal shortages of fodder during the dry season is a major constraint to smallholder livestock farmers in South Africa. To mitigate the shortage of fodder, legume trees can be intercropped with pastures which can diversify the sources of feed and increase the amount of protein for grazing animals. The objective was to evaluate dry matter yield of Panicum maximum and land productivity under different fodder production systems during 2016/17-2017/18 seasons at Empangeni (28.6391° S and 31.9400° E). A randomized complete block design, replicated three times was used, the treatments were sole Panicum maximum, Panicum maximum + Sesbania sesban, Panicum maximum + pigeonpea, sole Sesbania sesban, Sole pigeonpea. Three months S.sesbania seedlings were transplanted whilst pigeonpea was direct seeded at spacing of 1m x 1m. P. maximum seeds were drilled at a respective rate of 7.5 kg/ha having an inter-row spacing of 0.25 m apart. In between rows of trees P. maximum seeds were drilled. The dry matter yield harvesting times were separated by six months’ timeframe. A 0.25 m² quadrant randomly placed on 3 points on the plot was used as sampling area during harvesting P. maximum. There was significant difference P < 0.05 across 3 harvests and total dry matter. P. maximum had higher dry matter yield as compared to both intercrops at first harvest and total. The second and third harvest had no significant difference with pigeonpea intercrop. The results was in this order for all 3 harvest: P. maximum (541.2c, 1209.3b and 1557b) kg ha¹ ≥ P. maximum + pigeonpea (157.2b, 926.7b and 1129b) kg ha¹ > P. maximum + S. sesban (36.3a, 282a and 555a) kg ha¹. Total accumulation of dry matter yield of P. maximum (3307c kg ha¹) > P. maximum + pigeonpea (2212 kg ha¹) ≥ P. maximum + S. sesban (874 kg ha¹). There was a significant difference (P< 0.05) on seed yield for trees. Pigeonpea (1240.3 kg ha¹) ≥ Pigeonpea + P. maximum (862.7 kg ha¹) > S.sesbania (391.9 kg ha¹) ≥ S.sesbania + P. maximum. The Land Equivalent Ratio (LER) was in the following order P. maximum + pigeonpea (1.37) > P. maximum + S. sesban (0.84) > Pigeonpea (0.59) ≥ S. Sesbania (0.57) > P. maximum (0.26). Results indicates that it is beneficial to have P. maximum intercropped with pigeonpea because of higher land productivity. Planting grass with pigeonpea was more beneficial than S. sesban with grass or sole cropping in terms of saving the shortage of arable land. P. maximum + pigeonpea saves a substantial (37%) land which can be subsequently be used for other crop production. Pigeonpea is recommended as an intercrop with P. maximum due to its higher LER and combined production of livestock feed, human food, and firewood. Panicum grass is low in crude protein though high in carbohydrates, there is a need for intercropping it with legume trees. A farmer who buys concentrates can reduce costs by combining P. maximum with pigeonpea this will provide a balanced diet at low cost.Keywords: fodder, livestock, productivity, smallholder farmers
Procedia PDF Downloads 1498631 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers
Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung
Abstract:
As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory
Procedia PDF Downloads 708630 An Investigation of Suppression in Mid-19th Century Japan: Case Study of the 1855 Catfish Prints as a Product of Censorship
Authors: Vasanth Narayanan
Abstract:
The mid-nineteenth century saw the Japanese elite and townsfolk alike undergo the now-infamous Ansei Edo earthquakes. The quakes decimated Japan in the final decades of the Tokugawa Era and, perhaps more consequentially, birthed a new genre of politically inspired artwork, the most notable of which are the namazu-e. This essay advocates an understanding of the 1855 Catfish Prints (namazu-e) that prioritizes the function of iconography and anthropomorphic deity in shaping the namazu-e into a wholly political experience that makes the censorship of the time part of its argument. The visual program is defined as the creation of a politically profitable experience, crafted through the union of explicit religion, highly masked commentary, and the impositions of censorship. The strategies by which the works are designed, in the face of censorship, to engage a less educated, pedestrian audience with its theme, including considerations of iconography, depictions of the working class, anthropomorphism, and the relationship between textual and visual elements, are discussed herein. The essay then takes up the question of the role of tense Japan–United States relations in fostering censorship and as a driver of the production of namazu-e. It is ultimately understood that the marriage of hefty censorship protocol, the explicitly religious medium, and inimical sentiment towards United States efforts at diplomacy renders the production of namazu-e an offspring of the censorship and deeply held frustrations of the time, cementing its status as a primitive form of peaceful protest against a seemingly apathetic government.Keywords: Japan, Ansei Earthquake, Namazu, prints, censorship, religion
Procedia PDF Downloads 1328629 Ayurvastra: A Study on the Ancient Indian Textile for Healing
Authors: Reena Aggarwal
Abstract:
The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable
Procedia PDF Downloads 1308628 Land Degradation Assessment through Spatial Data Integration in Eastern Chotanagpur Plateau, India
Authors: Avijit Mahala
Abstract:
Present study is primarily concerned with the physical processes and status of land degradation in a tropical plateau fringe. Chotanagpur plateau is one of the most water erosion related degraded areas of India. The granite gneiss geological formation, low to medium developed soil cover, undulating lateritic uplands, high drainage density, low to medium rainfall (100-140cm), dry tropical deciduous forest cover makes the Silabati River basin a truly representative of the tropical environment. The different physical factors have been taken for land degradation study includes- physiographic formations, hydrologic characteristics, and vegetation cover. Water erosion, vegetal degradation, soil quality decline are the major processes of land degradation in study area. Granite-gneiss geological formation is responsible for developing undulating landforms. Less developed soil profile, low organic matter, poor structure of soil causes high soil erosion. High relief and sloppy areas cause unstable environment. The dissected highland causes topographic hindrance in productivity. High drainage density and frequency in rugged upland and intense erosion in sloppy areas causes high soil erosion of the basin. Decreasing rainfall and increasing aridity (low P/PET) threats water stress condition. Green biomass cover area is also continuously declining. Through overlaying the different physical factors (geological formation, soil characteristics, geomorphological characteristics, etc.) of considerable importance in GIS environment the varying intensities of land degradation areas has been identified. Middle reaches of Silabati basin with highly eroded laterite soil cover areas are more prone to land degradation.Keywords: land degradation, tropical environment, lateritic upland, undulating landform, aridity, GIS environment
Procedia PDF Downloads 1358627 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation
Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony
Abstract:
Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.Keywords: architecture, computation, evolution, standard deviation, urban
Procedia PDF Downloads 1338626 Wave Powered Airlift PUMP for Primarily Artificial Upwelling
Authors: Bruno Cossu, Elio Carlo
Abstract:
The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter
Procedia PDF Downloads 1488625 Working With Accessibility in Latvian Contemporary Art: Research, Barriers, and Implementation From a Curator’s and Production Manager’s Perspective
Authors: Agnese Zviedre
Abstract:
In 2010 Latvia ratified the United Nations Convention on the Rights of Persons with Disabilities, which states that the state will recognize the importance of accessibility to the physical, social, and cultural environment. Nevertheless, accessibility of art and culture in Latvia has become a focal point only since 2020. A study on the impact of cultural consumption and participation done by the Latvian Academy of Culture and the research center “SKDS” results show that art and cultural institutions lack knowledge and understanding of needs and required accessibility measures for people with disabilities to participate in cultural and art events. At the same time, even if art institutions want to create accessible events for people with diverse bodies and minds, many barriers exist, such as budget, lack of time, and lack of knowledge. Even though disability is still largely invisible in the public space, due to recent public campaigns and awareness of the need for accessibility, the media and society are starting to speak about disability as a social issue, not a medical one. Thus, this paper focuses on the first-hand experience of implementing different Western accessibility guidelines and working with communities as a production manager for the multidisciplinary exhibition project “Invisible Lives” in Riga and curator of the education program of Riga Photography Biennial’s 2022 Central Event - Exhibition “Screen Age III: Still Life”. Analyzing two events from the Disability studies perspective, this paper focuses on working with existing knowledge and budget to achieve accessibility.Keywords: accessibility, contemporary art, curatorial practices, disability studies
Procedia PDF Downloads 1018624 The Effect of Additive Acid on the Phytoremediation Efficiency
Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh
Abstract:
Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.Keywords: phytoremediation, heavy metal, wheat, soil
Procedia PDF Downloads 3388623 Integrating Cost-Benefit Assessment and Contract Design to Support Industrial Symbiosis Deployment
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) is the realization of Industrial Ecology (I.E) principles in production systems in function. I.S consists in the use of waste materials, fatal energy, recirculated utilities and infrastructure/service sharing as resources for production. Environmental benefits can be achieved from resource conservation but economic profitability is required by the participating actors. I.S indeed involves several actors with their own objectives and resources so that each one must be satisfied by ex-ante arrangements to commit toward I.S execution (investments and transactions). Following the Resource-Based View of transactions we build a modular framework to assess global I.S profitability and to specify each actor’s contributions to costs and benefits in line with their resource endowments and performance requirements formulations. I.S projects specificities implied by the need for customization (asset specificity, non-homogeneity) induce the use of long-term contracts for transactions following Transaction costs economics arguments. Thus we propose first a taxonomy of costs and value drivers for I.S and an assignment to each actor of I.S specific risks that we identified as load profiles mismatch, quality problems and value fluctuations. Then appropriate contractual guidelines (pricing, cost sharing and warranties) that support mutual profitability are derived from the detailed identification of contributions by the cost-benefits model. This analytical framework helps identifying what points to focus on when bargaining over contracting for transactions and investments. Our methodology is applied to I.S archetypes raised from a literature survey on eco-industrial parks initiatives and practitioners interviews.Keywords: contracts, cost-benefit analysis, industrial symbiosis, risks
Procedia PDF Downloads 3408622 Medicinal Plants and Arbuscular mycorrhizal Colonization
Abstract:
Demands of traditional herbal medicines are increasing day by day over the world. Considering the growing demand of medicinal plants in curative treatments and the role of VAM fungi in augmentation of the production of active secondary metabolites by the medicinal plants, the present work has been undertaken to survey the mycorrhizal status in 30 different medicinal plants belonging to various families from Krishna district, Andhra Pradesh. The roots were collected carefully and stained by the Phillips & Hayman technique. Basing on the occurrence of vesicles and arbuscules, categorized into four grades; Excellent: mycelia, vesicles or arbuscules present more than 75% of root bits, Good: mycelia, vesicles or arbuscules present 50-75% in surface of root bits, moderate: mycelia, vesicles or arbuscules present 25-50% in surface of root bits, and poor: mycelia, vesicles or arbuscules present 1-25% in surface of root bits. The study reveals that the roots of all plants were colonized by AM fungi. Percentage of root colonization by AM fungi was more in Aloe vera, Phylanthus emblica, Azadiracta indica and least in plants such as Aerva lanata, Vinca rosea, Crotalaria verrucosa among the 30 medicinal plants in present study. The enhancement of growth and vigour and increased production of bioactive compounds of the medicinal plants is desirable which may be achieved by inoculation of the roots with Arbuscular mycorrhizal fungi. There is a steady increase in the cultivation of medicinal plants to maintain a steady supply to support the increasing demand but corresponding researches of VAM fungi and their association in medicinal plants have received very little attention as compared to the studies on forest species and field crops. So a vast research on this field is necessary for a better tomorrow.Keywords: Arbuscular mycorrhizae, colonization, categories, medicinal plants
Procedia PDF Downloads 4028621 Field Management Solutions Supporting Foreman Executive Tasks
Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault
Abstract:
Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.Keywords: lean, last planner system, field mobility applications, construction productivity
Procedia PDF Downloads 1168620 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater
Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy
Abstract:
Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater
Procedia PDF Downloads 3888619 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis
Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan
Abstract:
Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification
Procedia PDF Downloads 1398618 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation
Authors: Orit Wolf
Abstract:
Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances
Procedia PDF Downloads 658617 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique
Authors: Igor V. Savchenko, Dmitrii A. Samoshkin
Abstract:
The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity
Procedia PDF Downloads 1988616 Water Quality in Buyuk Menderes Graben, Turkey
Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi
Abstract:
Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality
Procedia PDF Downloads 5368615 Supply Chain Optimisation through Geographical Network Modeling
Authors: Cyrillus Prabandana
Abstract:
Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain
Procedia PDF Downloads 3478614 Enhancing Intra-Organizational Supply Chain Relationships in Manufacturing Companies: A Case Study in Tigray, Ethiopia
Authors: Weldeabrha Kiros Kidanemaryam
Abstract:
The investigation is to examine intra-organizational supply chain relationships of firms, which will help to look at and give an emphasis on internal processes and operations strength and achievements to make an influence even for external relationship management and outstanding performances of organizations. The purpose of the study is to scrutinize the internal supply chain relationships within manufacturing companies located in Tigray. The qualitative and quantitative data analysis methods were employed during the study by applying the primary data sources (questionnaires & interviews) and secondary data sources (organizational reports and documents) with the purposive sampling method. Thus, a descriptive research design was also applied in the research project in line with the cross-sectional research design which portrays simply the magnitude of the issues and problems by collecting the required and necessary data once from the sample respondents. This is because the study variables don’t have any cause-and-effect relationship in the research project that requires other types of research design than a descriptive research design; it already needs to be assessed and analyzed with a detailed description of the results after quantifying the outcomes and degree of the issues and problems based on the data gathered from respondents. The collected data was also analyzed by using the statistical package for social sciences (SPSS Version 20). The intra-organizational relationships of the companies are moderately accomplished, which requires an improvement for enhancing the performances of each unit or department within the firms so as to upgrade and ensure the progress of the companies’ effectiveness and efficiency. Moreover, the manufacturing companies have low industrial discipline and working culture, weak supervision of manpower, delayed delivery in the process within the companies, unsatisfactory quality of products, underutilization of capacity, and low productivity and profitability, which in turn results in minimizing the performance of intra-organizational supply chain relationships and to reduce the companies’ organizational efficiency, effectiveness and sustainability. Hence, the companies should have to give emphasize building and managing the intra-organizational supply chain relationships effectively because nothing can be done without creating successful and progressive relationships with internal units or functional areas and individuals for the production and provision of the required and qualified products that permits to meet the intended customers’ desires. The study contributes to improving the practical applications and gives an emphasis on the policy measurements and implications of the manufacturing companies with regard to intra-organizational supply chain relationships.Keywords: supply chain, supply chain relationships, intra-organizational relationships, manufacturing companies
Procedia PDF Downloads 35