Search results for: industrial networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5972

Search results for: industrial networks

2102 Self-Regulated Learning: A Required Skill for Web 2.0 Internet-Based Learning

Authors: Pieter Conradie, M. Marina Moller

Abstract:

Web 2.0 Internet-based technologies have intruded all aspects of human life. Presently, this phenomenon is especially evident in the educational context, with increased disruptive Web 2.0 technology infusions dramatically changing educational practice. The most prominent of these Web 2.0 intrusions can be identified as Massive Open Online Courses (Coursera, EdX), video and photo sharing sites (Youtube, Flickr, Instagram), and Web 2.0 online tools utilize to create Personal Learning Environments (PLEs) (Symbaloo (aggregator), Delicious (social bookmarking), PBWorks (collaboration), Google+ (social networks), Wordspress (blogs), Wikispaces (wiki)). These Web 2.0 technologies have supported the realignment from a teacher-based pedagogy (didactic presentation) to a learner-based pedagogy (problem-based learning, project-based learning, blended learning), allowing greater learner autonomy. No longer is the educator the source of knowledge. Instead the educator has become the facilitator and mediator of the learner, involved in developing learner competencies to support life-long learning (continuous learning) in the 21st century. In this study, the self-regulated learning skills of thirty first-year university learners were explored by utilizing the Online Self-regulated Learning Questionnaire. Implementing an action research method, an intervention was affected towards improving the self-regulation skill set of the participants. Statistical significant results were obtained with increased self-regulated learning proficiency, positively impacting learner performance. Goal setting, time management, environment structuring, help seeking, task (learning) strategies and self-evaluation skills were confirmed as determinants of improved learner success.

Keywords: andragogy, online self-regulated learning questionnaire, self-regulated learning, web 2.0

Procedia PDF Downloads 417
2101 Study Of Cu Doped Zns Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: H. Merzouka, D. T. Talantikitea, S. Fettouchib, L. Nessarkb

Abstract:

Recently New nanosized materials studies are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made in design and control fabrication of nano-structured semiconductors such as zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. Nanoparticles ZnS and Cu doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and copper acetate as Cu ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuK radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1. The transmittance is more than 70 % is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Cu doping.

Keywords: Cu doped ZnS, nanostructured, thin films, CBD, XRD, FTIR

Procedia PDF Downloads 443
2100 Performance Analysis of Pumps-as-Turbine Under Cavitating Conditions

Authors: Calvin Stephen, Biswajit Basu, Aonghus McNabola

Abstract:

Market liberalization in the power sector has led to the emergence of micro-hydropower schemes that are dependent on the use of pumps-as-turbines in applications that were not suitable as potential hydropower sites in earlier years. These applications include energy recovery in water supply networks, sewage systems, irrigation systems, alcohol breweries, underground mining and desalination plants. As a result, there has been an accelerated adoption of pumpsas-turbine technology due to the economic advantages it presents in comparison to the conventional turbines in the micro-hydropower space. The performance of this machines under cavitation conditions, however, is not well understood as there is a deficiency of knowledge in literature focused on their turbine mode of operation. In hydraulic machines, cavitation is a common occurrence which needs to be understood to safeguard them and prolong their operation life. The overall purpose of this study is to investigate the effects of cavitation on the performance of a pumps-as-turbine system over its entire operating range. At various operating speeds, the cavitating region is identified experimentally while monitoring the effects this has on the power produced by the machine. Initial results indicate occurrence of cavitation at higher flow rates for lower operating speeds and at lower flow rates at higher operating speeds. This implies that for cavitation free operation, low speed pumps-as-turbine must be used for low flow rate conditions whereas for sites with higher flow rate conditions high speed turbines should be adopted. Such a complete understanding of pumps-as-turbine suction performance can aid avoid cavitation induced failures hence improved reliability of the micro-hydropower plant.

Keywords: cavitation, micro-hydropower, pumps-as-turbine, system design

Procedia PDF Downloads 119
2099 CFD Analysis of Flow Regimes of Non-Newtonian Liquids in Chemical Reactor

Authors: Nenashev Yaroslav, Russkin Oleg

Abstract:

The mixing process is one of the most important and critical stages in many industrial sectors, such as chemistry, pharmaceuticals, and the food industry. When designing equipment with mixing impellers, technology developers often encounter working environments with complex physical properties and rheology. In such cases, the use of computational fluid dynamics tools is an excellent solution to mitigate risks and ensure the stable operation of the equipment. The research focuses on one of the designed reactors with mixing impellers intended for polymer synthesis. The study describes an approach to modeling reactors of similar configurations, taking into account the complex properties of the mixed liquids using the computational fluid dynamics (CFD) method. To achieve this goal, a complex 3D model was created, accurately replicating the functionality of chemical equipment. The model allows for the assessment of the hydrodynamic behavior of the reaction mixture inside the reactor, consideration of heat release due to the reaction, and the heat exchange between the reaction mixture and the cooling medium. The results indicate that the choice of the type and size of the mixing device significantly affects the efficiency of the mixing process inside the chemical reactor.

Keywords: CFD, mixing, blending, chemical reactor, non-Newton liquids, polymers

Procedia PDF Downloads 35
2098 Investigation on Reducing the Bandgap in Nanocomposite Polymers by Doping

Authors: Sharvare Palwai, Padmaja Guggilla

Abstract:

Smart materials, also called as responsive materials, undergo reversible physical or chemical changes in their properties as a consequence of small environmental variations. They can respond to a single or multiple stimuli such as stress, temperature, moist, electric or magnetic fields, light, or chemical compounds. Hence smart materials are the basis of many applications, including biosensors and transducers, particularly electroactive polymers. As the polymers exhibit good flexibility, high transparency, easy processing, and low cost, they would be promising for the sensor material. Polyvinylidene Fluoride (PVDF), being a ferroelectric polymer, exhibits piezoelectric and pyro electric properties. Pyroelectric materials convert heat directly into electricity, while piezoelectric materials convert mechanical energy into electricity. These characteristics of PVDF make it useful in biosensor devices and batteries. However, the influence of nanoparticle fillers such as Lithium Tantalate (LiTaO₃/LT), Potassium Niobate (KNbO₃/PN), and Zinc Titanate (ZnTiO₃/ZT) in polymer films will be studied comprehensively. Developing advanced and cost-effective biosensors is pivotal to foresee the fullest potential of polymer based wireless sensor networks, which will further enable new types of self-powered applications. Finally, nanocomposites films with best set of properties; the sensory elements will be designed and tested for their performance as electric generators under laboratory conditions. By characterizing the materials for their optical properties and investigate the effects of doping on the bandgap energies, the science in the next-generation biosensor technologies can be advanced.

Keywords: polyvinylidene fluoride, PVDF, lithium tantalate, potassium niobate, zinc titanate

Procedia PDF Downloads 134
2097 Synthesis and Characterization of Renewable Resource Based Green Epoxy Coating

Authors: Sukanya Pradhan, Smita Mohanty, S. K Nayak

Abstract:

Plant oils are a great renewable source for being a reliable starting material to access new products with a wide spectrum of structural and functional variations. Even though petroleum products might also render the same, but it would also impose a high risk factor of environmental and health hazard. Since epoxidized vegetable oils are easily available, eco-compatible, non-toxic and renewable, hence these have drawn much of the attentions in the polymer industrial sector especially for the development of eco-friendly coating materials. In this study a waterborne epoxy coating was prepared from epoxidized soyabean oil by using triethanolamine. Because of its hydrophobic nature, it was a tough and tedius task to make it hydrophilic. The hydrophobic biobased epoxy was modified into waterborne epoxy by the help of a plant based anhydride as curing agent. Physico-mechanical, chemical resistance tests and thermal analysis of the green coating material were carried out which showed good physic-mechanical, chemical resistance properties as well as environment friendly. The complete characterization of the final material was done in terms of scratch hardness, gloss test, impact resistance, adhesion and bend test.

Keywords: epoxidized soybean oil, waterborne, curing agent, green coating

Procedia PDF Downloads 541
2096 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 128
2095 Sustainable Smart Contraction: China Eco-district Evolution Research and Future Exploration

Authors: Xincheng He, Weijun Gao, Gangwei Cai

Abstract:

In the process of rapid urbanization, large-scale industrial production, and unreasonable planning and construction have caused various ecological and environmental problems, while hindered the sustainable development of cities. The ecological district not only realizes the coordinated development of society, economy, and environment but also conforms to the trend of smart contraction of the development of cities in China from the periphery to the center. This paper reviews the development of China's ecological district, including the full life cycle process of policy, planning, implementation, and operation. Based on sorting out the concept, connotation, and development status of China’s ecological district, the relationship between the construction of the ecological district and the sustainable city is discussed. Summarizing the development trend of the ecological district, the ecological district should combine the construction of smart cities, actively respond to the digital information era, and improve the construction of the ecological district system. It proposes that the future direction of city's sustainable development needs to change from a thematic focus on ecology to the common urbanization of humanity, society, and nature. Focusing on people-oriented, ecological, and digital future communities will become an important construction method for the city's sustainable smart contraction.

Keywords: eco-district, smart contraction, sustainable development, future community

Procedia PDF Downloads 146
2094 Effect of Sodium Chloride in the Recovery of Acetic Acid from Aqueous Solutions

Authors: Aidaoui Ahleme, Hasseine Abdelmalek

Abstract:

Acetic acid is one of the simplest and most widely used carboxylic acids having many important chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tonnes per year. A great deal of efforts has been made in developing feasible and economic method for recovery of carboxylic acids. Among them, Liquid-liquid extraction using aqueous two-phase systems (ATPS) has been demonstrated to be a highly efficient separation technique. The study of efficiently separating and recovering Acetic acid from aqueous solutions is an important significance on industry and environmentally sustainable development. Many research groups in different countries are working in this field and some methods are proposed in the literature. In this work, effect of sodium chloride with different content (5%, 10% and 20%) on the liquid-liquid equilibrium data of (water+ acetic acid+ DCM) system is investigated. The addition of the salt in an aqueous solution introduces ionic forces which affect liquid-liquid equilibrium and which influence directly the distribution coefficient of the solute. From the experimental results, it can be concluded that when the percentage of salt increases in the aqueous solution, the equilibrium between phases is modified in favor of the extracted phase.

Keywords: acetic acid recovery, aqueous solution, salting-effect, sodium chloride

Procedia PDF Downloads 270
2093 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 326
2092 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 64
2091 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant

Authors: M. N. A. Azman, M. S. S. Ahamad

Abstract:

The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.

Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering

Procedia PDF Downloads 287
2090 Characterization of Laminar Flow and Power Consumption in Agitated Vessel with Curved Blade Agitator

Authors: Amine Benmoussa, Mohamed Bouanini, Mebrouk Rebhi

Abstract:

Stirring is one of the unifying processes which form part of the mechanical unit operations in process technology such chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore determining the level of mixing and overall behavior and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective are the knowledge of the hydrodynamic behavior and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role.

Keywords: agitated vessels, curved blade agitator, laminar flow, finite volume method

Procedia PDF Downloads 284
2089 A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network

Authors: Cathal Ffrench, Ryan Barrett, Mike Quayle

Abstract:

It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop.

Keywords: categorization, group dynamics, initial contact, minimal social networks, momentary contact

Procedia PDF Downloads 148
2088 Electrospinning Preparation of Superhydrophobic Polydimethylsiloxane/Polystyrene Nanofibrous Membranes for Carbon Dioxide Capture

Authors: Chia-Yu Chang, Yi-Feng Lin

Abstract:

CO2 capture has attracted significant research attention due to global warming. Among the various CO2 capture methods, membrane technology has proven to be highly efficient in capturing CO2 due to the ease at which this technology can be scaled up, its low energy consumptions, small area requirements and overall environmental friendliness for use by industrial plants. Capturing CO2 is to use a membrane contactor with a combination of water-repellent porous membranes and chemical absorption processes. In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous Polydimethylsiloxane (PDMS)/Polystyrene (PS) Nanofibrous Membranes and successfully coated onto a macroporous Al2O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PS nanofibrous membranes, the PDMS/PS nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants.

Keywords: CO2 capture, polystyrene, polydimethylsiloxane, superhydrophobic

Procedia PDF Downloads 388
2087 The Imperative of Adult Education in the Knowledge Society

Authors: Najim Akorede Babalola

Abstract:

Adult Education is a multi and interdisciplinary in nature that cut across different fields of study which includes education, social sciences, engineering even information technologies that dominate the contemporary world among others. In the past, Adult Education has been used as an instrument of civilization by teaching people how to read and write as well as earning a better living. The present world has witnessed a transition from industrial age to information age which is also known as knowledge society needs Adult Education for knowledge acquisition and update of existing knowledge. An individual needs Adult Education in either of its various forms (on-the-job-training, in-service training, extramural classes, vocational education, continuing education among others) in order to develop towards the information society trends; this is because Adult Education is a process of transforming an individual through acquisition of relevant skills and knowledge for personal as well as societal development. Evidence abounds in the literature that Adult Education has not only assisted people in the medieval period but still assisting people in this modern society in changing and transforming their lives for a better living. This study, therefore, raised a salient question that with different ideas and innovations brought by the contemporary world, is Adult Education relevant? It is on this basis that this study intends to examine the relevance of Adult Education in the past and present in order to determine its future relevance.

Keywords: adult education, multi and inter-disciplinary, knowledge society, skill acquisition

Procedia PDF Downloads 349
2086 Enhanced Biosorption of Copper Ions by Luffa Cylindrica: Biosorbent Characterization and Batch Experiments

Authors: Nouacer Imane, Benalia Mokhtar, Djedid Mabrouk

Abstract:

The adsorption ability of a powdered activated carbons (PAC) derived from Luffa cylindrica investigated in an attempt to produce more economic and effective sorbents for the control of Cu(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local luffa cylindrica, were prepared by chemical activation methods using ZnCl2 as activating reagents. Adsorption of Cu (II) from aqueous solutions was investigated. The effects of pH, initial adsorbent concentration, the effect of particle size, initial metal ion concentration and temperature were studied in batch experiments. The maximum adsorption capacity of copper onto grafted Luffa cylindrica fiber was found to be 14.23 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ∆H (-0.823 kJ/mol), entropy change, ∆S (-9.35 J/molK) and free energy change, ∆G (−1.56 kJ/mol) were also calculated. Adsorption process was found spontaneous and exothermic in nature. Finally, the luffa cylindrica has been evaluated by FTIR, MO and x-ray diffraction in order to determine if the biosorption process modifies its chemical structure and morphology, respectively. Luffa cylindrica has been proven to be an efficient biomaterial useful for heavy metal separation purposes that is not altered by the process.

Keywords: adsorption, cadmium, isotherms, thermodynamic, luffa sponge

Procedia PDF Downloads 249
2085 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization

Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak

Abstract:

Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.

Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization

Procedia PDF Downloads 292
2084 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems

Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland

Abstract:

Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.

Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up

Procedia PDF Downloads 113
2083 Disarmament and Rehabilitation of Women Maoists: A Case Study of Chhattisgarh, India

Authors: Pinal Patel

Abstract:

The study defines the problems and issues of women in Maoist groups, also referred as ‘Naxalites’, in Chhattisgarh, India. It analyses the causes and consequences of increasing number of women joining Maoists groups and measures taken by the central and state government to retreat them. The main aspect of the study is, how to counter the challenges to resolve the issues and restore normalcy in the life of women Maoists to resettle them in mainstream once they become physically inactive and wish to become part of the society. The rationale behind this study is that women Maoists once inactive, has no place either with Maoist camps/rebel groups or particularly in society. The problems faced by the women Maoists, in society as well as in Maoists camps, can be studied through social, economic, cultural, political and humanitarian aspects. The methodology of the study is dependent on primary sources of information which includes a research survey in majorly affected areas, statistical analysis. Secondary sources of information are helpful for understanding the background of the problem. Government’s strategy of rewarding with cash and providing resettlement and rehabilitation benefits including houses and jobs to ex-women Maoists and their families is a well formulated and feasible policy and effectively implemented by the concerned authorities. But, the survey results show that the policy has not been able to have impacts as it was intended. Because inactive and physically disabled women are still left deserted in deep forests to die and police or authorities are not able to reach them and bring them back. The difficult terrain and dense forest areas are major hurdles to reach to Maoists camps. Moreover, to make people aware of government’s surrendering and rehabilitation schemes and policies as communication networks are very poor due to the lack of development in the state.

Keywords: maoists, women, government, policy

Procedia PDF Downloads 121
2082 Assessing Significance of Correlation with Binomial Distribution

Authors: Vijay Kumar Singh, Pooja Kushwaha, Prabhat Ranjan, Krishna Kumar Ojha, Jitendra Kumar

Abstract:

Present day high-throughput genomic technologies, NGS/microarrays, are producing large volume of data that require improved analysis methods to make sense of the data. The correlation between genes and samples has been regularly used to gain insight into many biological phenomena including, but not limited to, co-expression/co-regulation, gene regulatory networks, clustering and pattern identification. However, presence of outliers and violation of assumptions underlying Pearson correlation is frequent and may distort the actual correlation between the genes and lead to spurious conclusions. Here, we report a method to measure the strength of association between genes. The method assumes that the expression values of a gene are Bernoulli random variables whose outcome depends on the sample being probed. The method considers the two genes as uncorrelated if the number of sample with same outcome for both the genes (Ns) is equal to certainly expected number (Es). The extent of correlation depends on how far Ns can deviate from the Es. The method does not assume normality for the parent population, fairly unaffected by the presence of outliers, can be applied to qualitative data and it uses the binomial distribution to assess the significance of association. At this stage, we would not claim about the superiority of the method over other existing correlation methods, but our method could be another way of calculating correlation in addition to existing methods. The method uses binomial distribution, which has not been used until yet, to assess the significance of association between two variables. We are evaluating the performance of our method on NGS/microarray data, which is noisy and pierce by the outliers, to see if our method can differentiate between spurious and actual correlation. While working with the method, it has not escaped our notice that the method could also be generalized to measure the association of more than two variables which has been proven difficult with the existing methods.

Keywords: binomial distribution, correlation, microarray, outliers, transcriptome

Procedia PDF Downloads 415
2081 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: large strain, compression-tension, loading-unloading, Mg alloys

Procedia PDF Downloads 238
2080 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
2079 Computer Based Model for Collaborative Research as a Panacea for National Development in Third World Countries

Authors: M. A. Rahman, A. O. Enikuomehin

Abstract:

Sharing commitment to reach a common goal in research by harnessing available resources from two or more parties can simply be referred to as collaborative research. Asides from avoiding duplication of research, the benefits often accrued from such research alliances include time economy as well as expenses reduction in completing such studies. Likewise, it provides an avenue to produce a wider horizon of scientific knowledge sequel to gathering of skills, knowledge and resources. In institutions of higher learning and research institutes, it often gives scholars an opportunity to strengthen the teaching and research capacity of their various institutions. Between industries and institutions, collaborative research breeds promising relationship that could be geared towards addressing different research problems such as producing and enhancing industrial-based products and services, including technological transfer. For Nigeria to take advantage of this collaboration, different issues like licensing of technology, intellectual property right, confidentiality, and funding among others, which could arise during this collaborative research programme, are identified in this paper. An important tool required to achieve this height in developing economy is the use of appropriate computer model. The paper highlights the costs of the collaborations and likewise stresses the need for evaluating the effectiveness and efficiency of such collaborative research activities and proposes an appropriate computer model to assist in this regard.

Keywords: collaborative research, developing country, computerization, model

Procedia PDF Downloads 332
2078 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
2077 The Effects of Sewage Sludge Usage and Manure on Some Heavy Metals Uptake in Savory (Satureja Hortensis L.)

Authors: Abbas Hani

Abstract:

In recent decades with the development of technology and lack of food sources, sewage sludge in production of human foods is inevitable. Various sources of municipal and industrial sewage sludge that is produced can provide the requirement of plant nutrients. Soils in arid, semi-arid climate of central Iran that most affected by water drainage, iron and zinc deficiencies, using of sewage sludge is helpful. Therefore, the aim of this study is investigation of sewage sludge and manure application on Ni and Zn uptake by Savory. An experiment in a randomized complete block design with three replications was performed. Sewage sludge treatments consisted of four levels, control, 15, 30, 80 tons per hectares, the manure was used in four levels of control, 20, 40 and 80 tons per hectare. Results showed that the wet and dry weights was not affected by sewage sludge using, while, manure has significant effect on them. The effect of sewage sludge on the cadmium and lead concentrations were significant. Interactions of sewage sludge and manure on dry weight values were not significant. Compare mean analysis showed that increasing the amount of sewage sludge had no significant effect on cadmium concentration and it reduced when sewage sludge usage increased. This is probably due to increased plant growth and reduced concentrations of these elements in the plant.

Keywords: savory, lead, cadmium, sewage sludge, manure

Procedia PDF Downloads 420
2076 Redefining “Minor”: An Empirical Research on Two Biennials in Contemporary China

Authors: Mengwei Li

Abstract:

Since the 1990s, biennials, and large-scale transnational art exhibitions, have proliferated exponentially across the globe, particularly in Asia, Africa, and Latin America. It has spurred debates regarding the inclusion of "new art cultures" and the deconstruction of the mechanism of exclusion embedded in the Western monopoly on art. Hans Belting introduced the concept of "global art" in 2013 to denounce the West's privileged canons in art by emphasising the inclusion of art practices from alleged non-Western regions. Arguably, the rise of new biennial networks developed by these locations has contributed to the asserted "inclusion of new art worlds." However, phrases such as "non-Western" and "beyond Euro-American" attached to these discussions raise the question of non- or beyond- in relation to whom. In this narrative, to become "integrated" and "equal" implies entry into the "core," a universal system in which preexisting authoritative voices define "newcomers" by what they are not. Possibly, if there is a global biennial system that symbolises a "universal language" of the contemporary art world, it is centered on the inherently dynamic yet asymmetrical interaction and negotiation between the "core" and the rest of the world's "periphery." Engaging with theories of "minor literature" developed by Deleuze and Guattari, this research proposes an epistemological framework to comprehend the global biennial discourse since the 1990s. Using this framework, this research looks at two biennial models in China: the 13th Shanghai Biennale, which was organised in the country's metropolitan art centre, and the 2nd Yinchuan Biennale, which was inaugurated in a geographically and economically marginalised city compared to domestic centres. By analysing how these two biennials from different locations in China positioned themselves and conveyed their local profiles through the universal language of the biennial, this research identifies a potential "minor" positionality within the global biennial discourse from China's perspective.

Keywords: biennials, China, contemporary, global art, minor literature

Procedia PDF Downloads 87
2075 Questioning the Relationship Between Young People and Fake News Through Their Use of Social Media

Authors: Marion Billard

Abstract:

This paper will focus on the question of the real relationship between young people and fake news. Fake news is one of today’s main issues in the world of information and communication. Social media and its democratization helped to spread false information. According to traditional beliefs, young people are more inclined to believe what they read through social media. But, the individuals concerned, think that they are more inclined to make a distinction between real and fake news. This phenomenon is due to their use of the internet and social media from an early age. During the 2016 and 2017 French and American presidential campaigns, the term fake news was in the mouth of the entire world and became a real issue in the field of information. While young people were informing themselves with newspapers or television until the beginning of the ’90s, Gen Z (meaning people born between 1997 and 2010), has always been immersed in this world of fast communication. They know how to use social media from a young age and the internet has no secret for them. Today, despite the sporadic use of traditional media, young people tend to turn to their smartphones and social networks such as Instagram or Twitter to stay abreast of the latest news. The growth of social media information led to an “ambient journalism”, giving access to an endless quantity of information. Waking up in the morning, young people will see little posts with short texts supplying the essential of the news, without, for the most, many details. As a result, impressionable people are not able to do a distinction between real media, and “junk news” or Fake News. This massive use of social media is probably explained by the inability of the youngsters to find connections between the communication of the traditional media and what they are living. The question arises if this over-confidence of the young people in their ability to distinguish between accurate and fake news would not make it more difficult for them to examine critically the information. Their relationship with media and fake news is more complex than popular opinion. Today’s young people are not the master in the quest for information, nor inherently the most impressionable public on social media.

Keywords: fake news, youngsters, social media, information, generation

Procedia PDF Downloads 161
2074 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 114
2073 Effects of Different Sowing Dates on Oil Yield of Castor (Ricinus communis L.)

Authors: Özden Öztürk, Gözde Pınar Gerem, Ayça Yenici, Burcu Haspolat

Abstract:

Castor (Ricinus communis L.) is one of the important non-edible oilseed crops having immense industrial and medicinal value. Oil yield per unit area is the ultimate target in growing oilseed plants and sowing date is one of the important factors which have a clear role in the production of active substances particularly in oilseeds. This study was conducted to evaluate the effect of sowing date on the seed and oil yield of castor in Central Anatolia in Turkey in 2011. The field experiment was set up in a completely randomized block design with three replication. Black Diamond-2 castor cultivar was used as plant material. The treatment was four sowing dates of May 10, May 25, June 10, June 25. In this research; seed yield, oil content and oil yield were investigated. Results showed that the effect of different sowing dates was significant on all of the characteristics. In general; delayed sowing dates, resulted in decreased seed yield, oil content and oil yield. The highest value of seed yield, oil content and oil yield (respectively, 2523.7 kg ha-1, 51.18% and 1292.2 kg ha-1) were obtained from the first sowing date (May 10) while the lowest seed yield, oil content and oil yield (respectively, 1550 kg ha-1, 43.67%, 677.3 kg ha-1) were recorded from the latest sowing date (June 25). Therefore, it can be concluded that early May could be recommended as an appropriate sowing date in the studied location and similar climates for achieved high oil yield of castor.

Keywords: castor bean, Ricinus communis L., sowing date, seed yield, oil content

Procedia PDF Downloads 384