Search results for: regularized regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3251

Search results for: regularized regression

2891 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability

Authors: Sherry Ann Ganase, Sandra Sookram

Abstract:

This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.

Keywords: adaptation, Bequia, multiple linear regression, structural equation model

Procedia PDF Downloads 463
2890 Industrial Rock Characterization using Nuclear Magnetic Resonance (NMR): A Case Study of Ewekoro Quarry

Authors: Olawale Babatunde Olatinsu, Deborah Oluwaseun Olorode

Abstract:

Industrial rocks were collected from a quarry site at Ewekoro in south-western Nigeria and analysed using Nuclear Magnetic Resonance (NMR) technique. NMR measurement was conducted on the samples in partial water-saturated and full brine-saturated conditions. Raw NMR data were analysed with the aid of T2 curves and T2 spectra generated by inversion of raw NMR data using conventional regularized least-squares inversion routine. Results show that NMR transverse relaxation (T2) signatures fairly adequately distinguish between the rock types. Similar T2 curve trend and rates at partial saturation suggests that the relaxation is mainly due to adsorption of water on micropores of similar sizes while T2 curves at full saturation depict relaxation decay rate as: 1/T2(shale)>1/ T2(glauconite)>1/ T2(limestone) and 1/T2(sandstone). NMR T2 distributions at full brine-saturation show: unimodal distribution in shale; bimodal distribution in sandstone and glauconite; and trimodal distribution in limestone. Full saturation T2 distributions revealed the presence of well-developed and more abundant micropores in all the samples with T2 in the range, 402-504 μs. Mesopores with amplitudes much lower than those of micropores are present in limestone, sandstone and glauconite with T2 range: 8.45-26.10 ms, 6.02-10.55 ms, and 9.45-13.26 ms respectively. Very low amplitude macropores of T2 values, 90.26-312.16 ms, are only recognizable in limestone samples. Samples with multiple peaks showed well-connected pore systems with sandstone having the highest degree of connectivity. The difference in T2 curves and distributions for the rocks at full saturation can be utilised as a potent diagnostic tool for discrimination of these rock types found at Ewekoro.

Keywords: Ewekoro, NMR techniques, industrial rocks, characterization, relaxation

Procedia PDF Downloads 297
2889 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
2888 An Assessment of Self-Perceived Health after the Death of a Spouse among the Elderly

Authors: Shu-Hsi Ho

Abstract:

The problems of aging and number of widowed peers gradually rise in Taiwan. It is worth to concern the related issues for elderly after the death of a spouse. Hence, this study is to examine the impact of spousal death on the surviving spouse’s self-perceived health and mental health for the elderly in Taiwan. A cross section data design and ordered logistic regression models are applied to investigate whether marriage is associated significantly to self-perceived health and mental health for the widowed older Taiwanese. The results indicate that widowed marriage shows significant negative effects on self-perceived health and mental health regardless of widows or widowers. Among them, widows might be more likely to show worse mental health than widowers. The belief confirms that marriage provides effective sources to promote self-perceived health and mental health, particularly for females. In addition, since the social welfare system is not perfect in Taiwan, the findings also suggest that family and social support reveal strongly association with the self-perceived health and mental health for the widows and widowers elderly.

Keywords: logistic regression models, self-perceived health, widow, widower

Procedia PDF Downloads 463
2887 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India

Authors: Aayushi Lyngwa, Bimal Kishore Sahoo

Abstract:

The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.

Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.

Procedia PDF Downloads 110
2886 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 162
2885 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
2884 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019

Authors: Lluís Bermúdez, Isabel Morillo

Abstract:

Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.

Keywords: accident reduction, count regression models, road safety, urban traffic

Procedia PDF Downloads 133
2883 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

Authors: Lina Wu, Wenyi Lu, Ye Li

Abstract:

Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.

Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients

Procedia PDF Downloads 364
2882 Linear Decoding Applied to V5/MT Neuronal Activity on Past Trials Predicts Current Sensory Choices

Authors: Ben Hadj Hassen Sameh, Gaillard Corentin, Andrew Parker, Kristine Krug

Abstract:

Perceptual decisions about sequences of sensory stimuli often show serial dependence. The behavioural choice on one trial is often affected by the choice on previous trials. We investigated whether the neuronal signals in extrastriate visual area V5/MT on preceding trials might influence choice on the current trial and thereby reveal the neuronal mechanisms of sequential choice effects. We analysed data from 30 single neurons recorded from V5/MT in three Rhesus monkeys making sequential choices about the direction of rotation of a three-dimensional cylinder. We focused exclusively on the responses of neurons that showed significant choice-related firing (mean choice probability =0.73) while the monkey viewed perceptually ambiguous stimuli. Application of a wavelet transform to the choice-related firing revealed differences in the frequency band of neuronal activity that depended on whether the previous trial resulted in a correct choice for an unambiguous stimulus that was in the neuron’s preferred direction (low alpha and high beta and gamma) or non-preferred direction (high alpha and low beta and gamma). To probe this in further detail, we applied a regularized linear decoder to predict the choice for an ambiguous trial by referencing the neuronal activity of the preceding unambiguous trial. Neuronal activity on a previous trial provided a significant prediction of the current choice (61% correc, 95%Cl~52%t), even when limiting analysis to preceding trials that were correct and rewarded. These findings provide a potential neuronal signature of sequential choice effects in the primate visual cortex.

Keywords: perception, decision making, attention, decoding, visual system

Procedia PDF Downloads 139
2881 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi

Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana

Abstract:

This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.

Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression

Procedia PDF Downloads 132
2880 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 208
2879 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 524
2878 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe

Abstract:

Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.

Keywords: impact, adoption, endogenous switching regression, income, improved

Procedia PDF Downloads 74
2877 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 109
2876 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 26
2875 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support

Authors: Saima Shafiq, Najma Iqbal Malik

Abstract:

This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.

Keywords: perceived stigma, perception of burden, psychological distress, perceived social support

Procedia PDF Downloads 213
2874 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model

Authors: Yepeng Cheng, Yasuhiko Morimoto

Abstract:

Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.

Keywords: customer value, Huff's Gravity Model, POS, Retailer

Procedia PDF Downloads 123
2873 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 261
2872 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 82
2871 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 132
2870 Assessment of Pastoralist-Crop Farmers Conflict and Food Security of Farming Households in Kwara State, Nigeria

Authors: S. A. Salau, I. F. Ayanda, I. Afe, M. O. Adesina, N. B. Nofiu

Abstract:

Food insecurity is still a critical challenge among rural and urban households in Nigeria. The country’s food insecurity situation became more pronounced due to frequent conflict between pastoralist and crop farmers. Thus, this study assesses pastoralist-crop farmers’ conflict and food security of farming households in Kwara state, Nigeria. The specific objectives are to measure the food security status of the respondents, quantify pastoralist- crop farmers’ conflict, determine the effect of pastoralist- crop farmers conflict on food security and describe the effective coping strategies adopted by the respondents to reduce the effect of food insecurity. A combination of purposive and simple random sampling techniques will be used to select 250 farming households for the study. The analytical tools include descriptive statistics, Likert-scale, logistic regression, and food security index. Using the food security index approach, the percentage of households that were food secure and insecure will be known. Pastoralist- crop farmers’ conflict will be measured empirically by quantifying loses due to the conflict. The logistic regression will indicate if pastoralist- crop farmers’ conflict is a critical determinant of food security among farming households in the study area. The coping strategies employed by the respondents in cushioning the effects of food insecurity will also be revealed. Empirical studies on the effect of pastoralist- crop farmers’ conflict on food security are rare in the literature. This study will quantify conflict and reveal the direction as well as the extent of the relationship between conflict and food security. It could contribute to the identification and formulation of strategies for the minimization of conflict among pastoralist and crop farmers in an attempt to reduce food insecurity. Moreover, this study could serve as valuable reference material for future researches and open up new areas for further researches.

Keywords: agriculture, conflict, coping strategies, food security, logistic regression

Procedia PDF Downloads 191
2869 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria

Authors: Kemi Olalekan Oduntan

Abstract:

This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.

Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth

Procedia PDF Downloads 364
2868 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 389
2867 Locus of Control, Metacognitive Knowledge, Metacognitive Regulation, and Student Performance in an Introductory Economics Course

Authors: Ahmad A. Kader

Abstract:

In the principles of Microeconomics course taught during the Fall Semester 2019, 158out of 179 students participated in the completion of two questionnaires and a survey describing their demographic and academic profiles. The two questionnaires include the 29 items of the Rotter Locus of Control Scale and the 52 items of the Schraw andDennisonMetacognitive Awareness Scale. The 52 items consist of 17 items describing knowledge of cognition and 37 items describing the regulation of cognition. The paper is intended to show the combined influence of locus of control, metacognitive knowledge, and metacognitive regulation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, student classification, whether the course was required or elective, employments, whether a high school economic course was taken, and attendance. Regression results show that of the economic education variables, GPA, classification, whether the course was required or elective, and attendance are the only significant variables in their influence on student grade. Of the educational psychology variables, the regression results show that the locus of control variable has a negative and significant effect, while the metacognitive knowledge variable has a positive and significant effect on student grade. Also, the adjusted R square value increased markedly with the addition of the locus of control, metacognitive knowledge, and metacognitive regulation variables to the regression equation. The t test results also show that students who are internally oriented and are high on the metacognitive knowledge scale significantly outperform students who are externally oriented and are low on the metacognitive knowledge scale. The implication of these results for educators is discussed in the paper.

Keywords: locus of control, metacognitive knowledge, metacognitive regulation, student performance, economic education

Procedia PDF Downloads 120
2866 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 291
2865 Profitability Analysis of Investment in Oil Palm Value Chain in Osun State, Nigeria

Authors: Moyosooore A. Babalola, Ayodeji S. Ogunleye

Abstract:

The main focus of the study was to determine the profitability of investment in the Oil Palm value chain of Osun State, Nigeria in 2015. The specific objectives were to describe the socio-economic characteristics of Oil Palm investors (producers, processors and marketers), to determine the profitability of the investment to investors in the Oil Palm value chain, and to determine the factors affecting the profitability of the investment of the oil palm investors in Osun state. A sample of 100 respondents was selected in this cross-sectional survey. Multiple stage sampling procedure was used for data collection of producers and processors while purposive sampling was used for marketers. Data collected was analyzed using the following analytical tools: descriptive statistics, budgetary analysis and regression analysis. The results of the gross margin showed that the producers and processors were more profitable than the marketers in the oil palm value chain with their benefit-cost ratios as 1.93, 1.82 and 1.11 respectively. The multiple regression analysis showed that education and years of experience were significant among marketers and producers while age and years of experience had significant influence on the gross margin of processors. Based on these findings, improvement on the level of education of oil palm investors is recommended in order to address the relatively low access to post-primary education among the oil palm investors in Osun State. In addition to this, it is important that training be made available to oil palm investors. This will improve the quality of their years of experience, ensuring that it has a positive influence on their gross margin. Low access to credit among processors and producer could be corrected by making extension services available to them. Marketers would also greatly benefit from subsidized prices on oil palm products to increase their gross margin, as the huge percentage of their total cost comes from acquiring palm oil.

Keywords: oil palm, profitability analysis, regression analysis, value chain

Procedia PDF Downloads 362
2864 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
2863 Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 156
2862 Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco

Authors: Taoufik Benchelha, Toufik Remmal, Rachid El Hamdouni, Hamou Mansouri, Houssein Ejjaouani, Halima Jounaid, Said Benchelha

Abstract:

During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks.

Keywords: explosive, logistic regression, rock mass, slope stability

Procedia PDF Downloads 376