Search results for: lead ions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4847

Search results for: lead ions

4487 Compensation of Bulk Charge Carriers in Bismuth Based Topological Insulators via Swift Heavy Ion Irradiation

Authors: Jyoti Yadav, Rini Singh, Anoop M.D, Nisha Yadav, N. Srinivasa Rao, Fouran Singh, Takayuki Ichikawa, Ankur Jain, Kamlendra Awasthi, Manoj Kumar

Abstract:

Nanocrystalline films exhibit defects and strain induced by its grain boundaries. Defects and strain affect the physical as well as topological insulating properties of the Bi2Te3 thin films by changing their electronic structure. In the present studies, the effect of Ni7+ ion irradiation on the physical and electrical properties of Bi2Te3 thin films was studied. The films were irradiated at five different fluences (5x1011, 1x1012, 3x1012, 5x1012, 1x1013 ions/cm2). Thin films synthesized using the e-beam technique possess a rhombohedral crystal structure with the R-3m space group. The average crystallite size, as determined by x-ray diffraction (XRD) peak broadening, was found to be 18.5 ± 5 (nm). It was also observed that irradiation increases the induced strain. Raman Spectra of the films demonstrate the splitting of A_1u^1 modes originating from the vibrations along the c-axis. This is by the variation in the lattice parameter ‘c,’ as observed through XRD. The atomic force microscopy study indicates the decrease in surface roughness up to the fluence of 3x1012 ions/cm2 and further increasing the fluence increases the roughness. The decrease in roughness may be due to the growth of smaller nano-crystallites on the surface of thin films due to irradiation-induced annealing. X-ray photoelectron spectroscopy studies reveal the composition to be in close agreement to the nominal values i.e. Bi2Te3. The resistivity v/s temperature measurements revealed an increase in resistivity up to the fluence 3x1012 ions/cm2 and a decrease on further increasing the fluence. The variation in electrical resistivity is corroborated with the change in the carrier concentration as studied through low-temperature Hall measurements. A crossover from the n-type to p-type carriers was achieved in the irradiated films. Interestingly, tuning of the Fermi level by compensating the bulk carriers using ion-irradiation could be achieved.

Keywords: Annealing, Irradiation, Fermi level, Tuning

Procedia PDF Downloads 117
4486 Recycling Waste Product for Metal Removal from Water

Authors: Saidur R. Chowdhury, Mamme K. Addai, Ernest K. Yanful

Abstract:

The research was performed to assess the potential of nickel smelter slag, an industrial waste, as an adsorbent in the removal of metals from aqueous solution. An investigation was carried out for Arsenic (As), Copper (Cu), lead (Pb) and Cadmium (Cd) adsorption from aqueous solution. Smelter slag was obtain from Ni ore at the Vale Inco Ni smelter in Sudbury, Ontario, Canada. The batch experimental studies were conducted to evaluate the removal efficiencies of smelter slag. The slag was characterized by surface analytical techniques. The slag contained different iron oxides and iron silicate bearing compounds. In this study, the effect of pH, contact time, particle size, competition by other ions, slag dose and distribution coefficient were evaluated to measure the optimum adsorption conditions of the slag as an adsorbent for As, Cu, Pb and Cd. The results showed 95-99% removal of As, Cu, Pb, and almost 50-60% removal of Cd, while batch experimental studies were conducted at 5-10 mg/L of initial concentration of metals, 10 g/L of slag doses, 10 hours of contact time and 170 rpm of shaking speed and 25oC condition. The maximum removal of Arsenic (As), Copper (Cu), lead (Pb) was achieved at pH 5 while the maximum removal of Cd was found after pH 7. The column experiment was also conducted to evaluate adsorption depth and service time for metal removal. This study also determined adsorption capacity, adsorption rate and mass transfer rate. The maximum adsorption capacity was found to be 3.84 mg/g for As, 4 mg/g for Pb, and 3.86 mg/g for Cu. The adsorption capacity of nickel slag for the four test metals were in decreasing order of Pb > Cu > As > Cd. Modelling of experimental data with Visual MINTEQ revealed that saturation indices of < 0 were recorded in all cases suggesting that the metals at this pH were under- saturated and thus in their aqueous forms. This confirms the absence of precipitation in the removal of these metals at the pHs. The experimental results also showed that Fe and Ni leaching from the slag during the adsorption process was found to be very minimal, ranging from 0.01 to 0.022 mg/L indicating the potential adsorbent in the treatment industry. The study also revealed that waste product (Ni smelter slag) can be used about five times more before disposal in a landfill or as a stabilization material. It also highlighted the recycled slags as a potential reactive adsorbent in the field of remediation engineering. It also explored the benefits of using renewable waste products for the water treatment industry.

Keywords: adsorption, industrial waste, recycling, slag, treatment

Procedia PDF Downloads 124
4485 Separation of Copper(II) and Iron(III) by Solvent Extraction and Membrane Processes with Ionic Liquids as Carriers

Authors: Beata Pospiech

Abstract:

Separation of metal ions from aqueous solutions is important as well as difficult process in hydrometallurgical technology. This process is necessary for obtaining of clean metals. Solvent extraction and membrane processes are well known as separation methods. Recently, ionic liquids (ILs) are very often applied and studied as extractants and carriers of metal ions from aqueous solutions due to their good extractability properties for various metals. This work discusses a method to separate copper(II) and iron(III) from hydrochloric acid solutions by solvent extraction and transport across polymer inclusion membranes (PIM) with the selected ionic liquids as extractants/ion carriers. Cyphos IL 101 (trihexyl(tetradecyl)phosphonium chloride), Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4 trimethylpentyl)phosphi-nate), trioctylmethylammonium thiosalicylate [A336][TS] and trihexyl(tetradecyl)phosphonium thiosalicylate [PR4][TS] were used for the investigations. Effect of different parameters such as hydrochloric acid concentration in aqueous phase on iron(III) and copper(II) extraction has been investigated. Cellulose triacetate membranes with the selected ionic liquids as carriers have been prepared and applied for transport of iron(IIII) and copper(II) from hydrochloric acid solutions.

Keywords: copper, iron, ionic liquids, solvent extraction

Procedia PDF Downloads 256
4484 Anticancer Study of Copper and Zinc Complexes with Doxorubicin

Authors: Grzegorz Swiderski, Agata Jablonska-Trypuc, Natalia Popow, Renata Swislocka, Wlodzimierz Lewandowski

Abstract:

Doxorubicin belongs to the group of anthracycline antitumor antibiotics. Because of the wide spectrum of actions, it is one of the most widely used anthracycline antibiotics, including the treatment of breast, ovary, bladder, lung cancers as well as neuroblastoma, lymphoma, leukemia and myeloid leukemia. Antitumor activity of doxorubicin is based on the same mechanisms as for most anthracyclines. Like the metal ions affect the nucleic acids on many biological processes, so the environment of the metal chelates of antibiotics can have a significant effect on the pharmacological properties of drugs. Complexation of anthracyclines with metal ions may contribute to the production of less toxic compounds. In the framework of this study, the composition of complexes obtained in aqueous solutions of doxorubicin with metal ions (Cu2+ and Zn2+). Complexation was analyzed by spectrophotometric titration in aqueous solution at pH 7.0. The pH was adjusted with 0.02M Tris-HCl buffer. The composition of the complexes found was Cu: doxorubicin (1: 2) and a Zn: doxorubicin (1: 1). The effect of Dox, Dox-Cu and Dox-Zn was examined in MCF-7 breast cancer cell line, which were obtained from American Type Culture Collection (ATCC). The compounds were added to the cultured cells for a final concentration in the range of 0,01µM to 0,5µM. The number of MCF-7 cells with division into living and dead, was determined by direct counts of cells with the use of trypan blue dye using LUNA Logos Biosystems cell counter. ApoTox-Glo Triplex Assay (Promega, Madison, Wisconsin, USA) was used according to the manufacturer’s instructions to measure the MCF-7 cells’ viability, cytotoxicity and apoptosis. We observed a decrease in cells proliferation in a dose-dependent manner. An increase in cytotoxicity and decrease in viability in the ApoTox Triplex assay was also showed for all tested compounds. Apoptosis, showed as caspase 3/7 activation, was observed only in Dox treatment. In Dox-Zn and Dox-Cu caspase 3/7 activation was not observed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02 352.

Keywords: anticancer properties, anthracycline antibiotic, doxorubicine, metal complexes

Procedia PDF Downloads 258
4483 Hybrid Materials Obtained via Sol-Gel Way, by the Action of Teraethylorthosilicate with 1, 3, 4-Thiadiazole 2,5-Bifunctional Compounds

Authors: Afifa Hafidh, Fathi Touati, Ahmed Hichem Hamzaoui, Sayda Somrani

Abstract:

The objective of the present study has been to synthesize and to characterize silica hybrid materials using sol-gel technic and to investigate their properties. Silica materials were successfully fabricated using various bi-functional 1,3,4-thiadiazoles and tetraethoxysilane (TEOS) as co-precursors via a facile one-pot sol-gel pathway. TEOS was introduced at room temperature with 1,3,4-thiadiazole 2,5-difunctiunal adducts, in ethanol as solvent and using HCl acid as catalyst. The sol-gel process lead to the formation of monolithic, coloured and transparent gels. TEOS was used as a principal network forming agent. The incorporation of 1,3,4-thiadiazole molecules was realized by attachment of these later onto a silica matrix. This allowed covalent linkage between organic and inorganic phases and lead to the formation of Si-N and Si-S bonds. The prepared hybrid materials were characterized by Fourier transform infrared, NMR ²⁹Si and ¹³C, scanning electron microscopy and nitrogen absorption-desorption measurements. The optic and magnetic properties of hybrids are studied respectively by ultra violet-visible spectroscopy and electron paramagnetic resonance. It was shown in this work, that heterocyclic moieties were successfully attached in the hybrid skeleton. The formation of the Si-network composed of cyclic units (Q3 structures) connected by oxygen bridges (Q4 structures) was proved by ²⁹Si NMR spectroscopy. The Brunauer-Elmet-Teller nitrogen adsorption-desorption method shows that all the prepared xerogels have isotherms type IV and are mesoporous solids. The specific surface area and pore volume of these materials are important. The obtained results show that all materials are paramagnetic semiconductors. The data obtained by Nuclear magnetic resonance ²⁹Si and Fourier transform infrared spectroscopy, show that Si-OH and Si-NH groups existing in silica hybrids can participate in adsorption interactions. The obtained materials containing reactive centers could exhibit adsorption properties of metal ions due to the presence of OH and NH functionality in the mesoporous frame work. Our design of a simple method to prepare hybrid materials may give interest of the development of mesoporous hybrid systems and their use within the domain of environment in the future.

Keywords: hybrid materials, sol-gel process, 1, 3, 4-thiadaizole, TEOS

Procedia PDF Downloads 153
4482 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma

Authors: W. Walke, J. Przondziono, K. Nowińska

Abstract:

The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.

Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS

Procedia PDF Downloads 242
4481 Influence of La³⁺ on Structural, Magnetic, Optical and Dielectric Properties in CoFe₂O₄ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Combustion Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

Herein, we reported the influence of La³⁺ substitution on structural, magnetic and dielectric properties of CoFe₂O₄ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of La³⁺ ions doped CoFe₂O₄ nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of La³⁺ substituted CoFe₂O₄ nanoparticles. The field emission scanning electron microscopy study revealed that La³⁺ substituted CoFe2O4 nanoparticles were in the range of 10-40 nm. The magnetic properties of La³⁺ substituted CoFe₂O₄ nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with La³⁺ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied with change of concentration of La³⁺ ions in CoFe₂O₄ nanoparticles. The variation in optical properties was studied via UV-Vis absorption spectroscopy. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 292
4480 Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation

Authors: Nour El Houda Bensiradj, Nafila Zouaghi, Taha Bensiradj

Abstract:

The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined.

Keywords: heavy metals, NTA, TEA, DFT, IR, reactivity descriptors

Procedia PDF Downloads 77
4479 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications

Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash

Abstract:

A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.

Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses

Procedia PDF Downloads 207
4478 Long Term Monitoring and Assessment of Atmospheric Aerosols in Indo-Gangetic Region of India

Authors: Ningombam Linthoingambi Devi, Amrendra Kumar

Abstract:

The long term sampling at one of the most populated city in Indo-Gangetic region shows higher mass concentration of atmospheric aerosol (PM₂.₅) during spring season (144.70µg/m³), summer season (91.96 µg/m³), the autumn season (266.48µg/m³) and winter season (367.09 µg/m³) respectively. The concentration of PM₂.₅ in Patna across the year shows much higher than the limit fixed by the national ambient air quality level fixed by central pollution control board India (CPCB, India) and World Health Organization (WHO). Different water-soluble cation (Na⁺, K⁺, Ca²⁺, NH₄⁺ , and Mg²⁺) and anion (Cl⁻, NO₃⁻ , and SO₄²⁻) species were detected in PM₂.₅. Results show the significantly higher loaded of water-soluble ions during winter and spring seasons. The acidity of the atmosphere was revealed and calculated using selected major cations (K⁺, Ca²⁺ , and NH₄⁺) and anions (SO₄²⁻, and NO₃⁻). A regression correlation was analyzed to check the significant linkage between the acidity and alkalinity ions. During the winter season (r² = 0.79) and spring season (r² = 0.64) shows good significant correlation between the cations and anions. The ratio of NO₃⁻/SO₄²⁻ indicates the sources of secondary pollutants were mainly influenced by industrial and vehicular emission however SO₄²⁻ mostly emitted from industries during the winter season.

Keywords: aerosols, inorganic species, source apportionment, Indo-Gangetic region

Procedia PDF Downloads 111
4477 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)

Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary

Abstract:

In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.

Keywords: photoluminescence, quantum dots, quenching, sensor

Procedia PDF Downloads 244
4476 Biochemical Assessments of the Effects of Crude Oil Contaminated Diets Wistar Rats

Authors: Olawuyi Sikiru Owolabi

Abstract:

A research was carried out to assess the biochemical effects of crude oil contaminated cat fish on selected rat kidney function tests. Thirty-six (36) albino rats (rattus novergicus) were grouped into six (6) of (6) in each group. The rats in group one served as control and they were placed on feed formulated with catfish cultured in borehole water while those ones from group 2 to group 6 were placed on feed formulated with catfish exposed to various concentrations of crude oil (0.1%,0.25%,0.5%,0.75% and 1% respectively).The results obtained showed that there was a significant increase in serum concentration of creatinine, Urea, sodium and potassium ions in the kidney of experimental rats when compared with the control. This may be interpreted to mean possible adverse effects on the kidney. Several studies have been done especially on the biological effects of crude oil in fish. These include Direct Lethal Toxicity, Sub-Lethal disruption of physiological and behavioral activities, interference with feeding and reproduction, direct coating or tainting of fish, effect of entry of hydrocarbons into the food web as well as alteration of biological habitat. The present study attempts to assess the effects of crude oil contaminated diet on rat kidney by carrying out some kidney function tests like determination of serum sodium and potassium ions by flame photometry method, determination of serum urea and determination of serum creatinine.

Keywords: crude oil, serum urea, creatinine, wistar rats

Procedia PDF Downloads 217
4475 Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector

Authors: Mayesha Tahsin, A.S. Mollah

Abstract:

Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield.

Keywords: shield, NaI (Tl) detector, gamma radiation, intensity, linear attenuation coefficient

Procedia PDF Downloads 133
4474 Photoluminescent Properties of Noble Metal Nanoparticles Supported Yttrium Aluminum Garnet Nanoparticles Doped with Cerium (Ⅲ) Ions

Authors: Mitsunobu Iwasaki, Akifumi Iseda

Abstract:

Yttrium aluminum garnet doped with cerium (Ⅲ) ions (Y3Al5O12:Ce3+, YAG:Ce3+) has attracted a great attention because it can efficiently convert the blue light into a very broad yellow emission band, which produces white light emitting diodes and is applied for panel displays. To improve the brightness and resolution of the display, a considerable attention has been directed to develop fine phosphor particles. We have prepared YAG:Ce3+ nanophosphors by environmental-friendly wet process. The peak maximum of absorption spectra of surface plasmon of Ag nanopaticles are close to that of the excitation spectra (460 nm) of YAG:Ce3+. It can be expected that Ag nanoparticles supported onto the surface of YAG:Ce3+ (Ag-YAG:Ce3+) enhance the absorption of Ce3+ ions. In this study, we have prepared Ag-YAG:Ce3+ nanophosphors and investigated their photoluminescent properties. YCl3・6H2O and AlCl3・6H2O with a molar ratio of Y:Al=3:5 were dissolved in ethanol (100 ml), and CeCl3•7H2O (0.3 mol%) was further added to the above solution. Then, NaOH (4.6×10-2 mol) dissolved in ethanol (50 ml) was added dropwise to the mixture under reflux over 2 hours, and the solution was further refluxed for 1 hour. After cooling to room temperature, precipitates in the reaction mixture were heated at 673 K for 1 hour. After the calcination, the particles were immersed in AgNO3 solution for 1 hour, followed by sintering at 1123 K for 1 hour. YAG:Ce3+ were confirmed to be nanocrystals with a crystallite size of 50-80 nm in diameter. Ag nanoparticles supported onto YAG:Ce3+ were single nanometers in diameter. The excitation and emission spectra were 454 nm and 539 nm at a maximum wavelength, respectively. The emission intensity was maximum for Ag-YAG:Ce3+ immersed into 0.5 mM AgCl (Ag-YAG:Ce (0.5 mM)). The absorption maximum (461 nm) was increased for Ag-YAG:Ce3+ in comparison with that for YAG:Ce3+, indicating that the absorption was enhanced by the addition of Ag. The external and internal quantum efficiencies became 11.2 % and 36.9 % for Ag-YAG:Ce (0.5 mM), respectively. The emission intensity and absorption maximum of Ag-YAG:Ce (0.5 mM)×n (n=1, 2, 3) were increased with an increase of the number of supporting times (n), respectively. The external and internal quantum efficiencies were increased for the increase of n, respectively. The external quantum efficiency of Ag-YAG:Ce (0.5 mM) (n=3) became twice as large as that of YAG:Ce. In conclusion, Ag nanoparticles supported onto YAG:Ce3+ increased absorption and quantum efficiency. Therefore, the support of Ag nanoparticles enhanced the photoluminescent properties of YAG:Ce3+.

Keywords: plasmon, quantum efficiency, silver nanoparticles, yttrium aluminum garnet

Procedia PDF Downloads 246
4473 The Use of Superplastic Tin-Lead Alloy as A solid Lubricant in Free Upsetting of Aluminum and Brass

Authors: Adnan I. O. Zaid, Hebah B. Melhem, Ahmad Qandil

Abstract:

The main function of a lubricant in any forming process is to reduce friction between the work piece and the die set, hence reducing the force and energy requirement for forming process and to achieve homogeneous deformation. The free upsetting test is an important open forging test. In this paper, super plastic tin-lead alloy is used as solid lubricant in the free upsetting test of non-ferrous metals and compared with eight different lubricants using the following three criteria: one comparing the value of the reduction in height percentages, i.e. the engineering strain, in identical specimens of the same material under the effect of the same compressive force. The second is comparing the amount of barreling produced in each of the identical specimens, at each lubricant. The third criterion is using the specific energy, i.e. the energy per unit volume consumed in forming each material, using the different lubricants to produce the same reduction in height percentage of identical specimens from each of the two materials, namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work, under the same compression force among the different used lubricants.

Keywords: aluminum, brass, different lubricants, free upsetting, solid lubricants, superplastic tin-lead alloy

Procedia PDF Downloads 447
4472 Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution

Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou

Abstract:

Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.

Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical

Procedia PDF Downloads 386
4471 Toxicological Effects of Heavy Metals; Copper, Lead and Chromium on Brain and Liver Tissue of Grass Carp (Ctenopharyngodon idella)

Authors: Ahsan Khan, Nazish Shah, Muhammad Salman

Abstract:

The present study deals with the toxicological effects of copper, lead and chromium on brain and liver tissues of grass carp (Ctenopharyngodon idella). The average length of experimental fish was 8.5 ± 5.5 cm and weighed 9.5 ± 6.5 g. Grass carp was exposed to lethal concentration (LC₁₅) of copper, lead and chromium for 24, 48, 72 and 96 hours respectively. (LC₁₅) for copper was 1.5, 1.4, 1.2 and 1mgL⁻¹. Similarly, LC₁₅ of lead was 250, 235, 225 and 216mgL⁻¹ while (LC₁₅) for chromium was 25.5, 22.5, 20 and 18mgL⁻¹ respectively. During the time of exposure against various doses of heavy metals the grass carp showed some behavioral changes. In the initial stages of experiment, the rapid movements and gulping of air were observed. Several times the fish tried to jump to scat from the toxic median. In addition, the accumulation of heavy metals in different tissues of grass carp particularly in liver and brain tissues were observed. Lead was highly accumulated in brain tissue after the exposure of fish for 24 and 48 hours, while highly accumulated in liver tissues after the exposure of fish for 72 and 96 hours. Chromium was highly accumulated in the liver tissues after the exposure of fish for 24 hours while its accumulation was found highly in the brain tissues after the exposure of fish for 48, 72 and 96 hours. Similarly, accumulation of copper concentration was found highly in brain tissues after the exposure of 48 and 96 hours while its accumulation was high in liver tissues after the exposure of 24 and 72 hours. Comparatively maximum accumulation of lead was found in brain and liver tissues of grass carp followed by chromium and copper. Furthermore, accumulation of these metals caused many abnormalities like gliosis, destruction of cell, change in cell shape and shrinkage of cells in brain tissue while in liver tissues aggregation in hepatocytes, widen space between cells and also destruction of cell was observed. These experiments and observations can be useful to monitor the aquatic pollution and quality of aquatic environment system.

Keywords: brain, grass carp, liver, lethal concentration, toxicity

Procedia PDF Downloads 134
4470 Fluctuations of Transfer Factor of the Mixer Based on Schottky Diode

Authors: Alexey V. Klyuev, Arkady V. Yakimov, Mikhail I. Ryzhkin, Andrey V. Klyuev

Abstract:

Fluctuations of Schottky diode parameters in a structure of the mixer are investigated. These fluctuations are manifested in two ways. At the first, they lead to fluctuations in the transfer factor that is lead to the amplitude fluctuations in the signal of intermediate frequency. On the basis of the measurement data of 1/f noise of the diode at forward current, the estimation of a spectrum of relative fluctuations in transfer factor of the mixer is executed. Current dependence of the spectrum of relative fluctuations in transfer factor of the mixer and dependence of the spectrum of relative fluctuations in transfer factor of the mixer on the amplitude of the heterodyne signal are investigated. At the second, fluctuations in parameters of the diode lead to the occurrence of 1/f noise in the output signal of the mixer. This noise limits the sensitivity of the mixer to the value of received signal.

Keywords: current-voltage characteristic, fluctuations, mixer, Schottky diode, 1/f noise

Procedia PDF Downloads 559
4469 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase

Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He

Abstract:

Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.

Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification

Procedia PDF Downloads 290
4468 Planckian Dissipation in Bi₂Sr₂Ca₂Cu₃O₁₀₋δ

Authors: Lalita, Niladri Sarkar, Subhasis Ghosh

Abstract:

Since the discovery of high temperature superconductivity (HTSC) in cuprates, several aspects of this phenomena have fascinated physics community. The most debated one is the linear temperature dependence of normal state resistivity over wide range of temperature in violation of with Fermi liquid theory. The linear-in-T resistivity (LITR) is the indication of strongly correlated metallic, known as “strange metal”, attributed to non Fermi liquid theory (NFL). The proximity of superconductivity to LITR suggests that there may be underlying common origin. The LITR has been shown to be due to unknown dissipative phenomena, restricted by quantum mechanics and commonly known as ‘‘Planckian dissipation” , the term first coined by Zaanen and the associated inelastic scattering time τ and given by 1/τ=αkBT/ℏ, where ℏ, kB and α are reduced Planck’s constant, Boltzmann constant and a dimensionless constant of order of unity, respectively. Since the first report, experimental support for α ~ 1 is appearing in literature. There are several striking issues which remain to be resolved if we desire to find out or at least get a clue towards microscopic origin of maximal dissipation in cuprates. (i) Universality of α ~ 1, recently some doubts have been raised in some cases. (ii) So far, Planckian dissipation has been demonstrated in overdoped Cuprates, but if the proximity to quantum criticality is important, then Planckian dissipation should be observed in optimally doped and marginally underdoped cuprates. The link between Planckian dissipation and quantum criticality still remains an open problem. (iii) Validity of Planckian dissipation in all cuprates is an important issue. Here, we report reversible change in the superconducting behavior of high temperature superconductor Bi2Sr2Ca2Cu3O10+δ (Bi-2223) under dynamic doping induced by photo-excitation. Two doped Bi-223 samples, which are x = 0.16 (optimal-doped), x = 0.145 (marginal-doped) have been used for this investigation. It is realized that steady state photo-excitation converts magnetic Cu2+ ions to nonmagnetic Cu1+ ions which reduces superconducting transition temperature (Tc) by killing superfluid density. In Bi-2223, one would expect the maximum of suppression of Tc should be at charge transfer gap. We have observed suppression of Tc starts at 2eV, which is the charge transfer gap in Bi-2223. We attribute this transition due to Cu-3d9(Cu2+) to Cu-3d10(Cu+), known as d9 − d10 L transition, photoexcitation makes some Cu ions in CuO2 planes as spinless non-magnetic potential perturbation as Zn2+ does in CuO2 plane in case Zn-doped cuprates. The resistivity varies linearly with temperature with or without photo-excitation. Tc can be varied by almost by 40K be photoexcitation. Superconductivity can be destroyed completely by introducing ≈ 2% of Cu1+ ions for this range of doping. With this controlled variation of Tc and resistivity, detailed investigation has been carried out to reveal Planckian dissipation underdoped to optimally doped Bi-2223. The most important aspect of this investigation is that we could vary Tc dynamically and reversibly, so that LITR and associated Planckian dissipation can be studied over wide ranges of Tc without changing the doping chemically.

Keywords: linear resistivity, HTSC, Planckian dissipation, strange metal

Procedia PDF Downloads 36
4467 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties

Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.

Abstract:

Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.

Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant

Procedia PDF Downloads 229
4466 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method

Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak

Abstract:

In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.

Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage

Procedia PDF Downloads 48
4465 The Fight against Pollution of Heavy Metals

Authors: K. Menad, A. Feddag, M. A. Hassnaoui

Abstract:

We are living in a time and in a world heavily polluted. In the list of the great dangers awaiting the man can be placed on top of the list pollution by heavy metals: lead, mercury, cadmium, etc. Fatigue, Depression, Thyroid disorder, Alzheimer's, Parkinson's, Cancer, are some of the health problems caused by heavy metal pollution. The environmental protection has long since become a major political and economic issue. Among the priorities, include safeguarding water resources. All countries of the world are concerned either because they lack water or because they pollute it. There are several ways to remove these heavy metals; ion exchange by zeolites is one of these ways, which our work is based on. Zeolites were among the main clean up materials by either adsorption, ion exchange and catalysis. Lead and cadmium, heavy metals, is one of the main dangers fulminate the flora and fauna of our small planet, so many resources are deployed to remedy them. The elimination of lead and cadmium by ion exchange has been extensively studied. However, exchange capacity of more and larger formed a major challenge for researchers and industry.

Keywords: composite, ion excahnge, zeolite LTA, zeolite x

Procedia PDF Downloads 247
4464 Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles and Potential Antibacterial Applications

Authors: Tesfay Gebremicheal Reda, K. Samatha, Paul Douglas Sanasi, D. Parajuli

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the Niₓ Co₁₋ₓ Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm⁻¹) and tetrahedral (653-603 cm⁻¹) locales. As the Co²⁺ cation is substituted with Ni²⁺, the coercive fields HC decrease from 2384 Oe to 241.93 Oe. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²⁺ ions are smaller than that of Co²⁺ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles are composed of Ni₀.₄ Co₀.₆ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a source of antibacterial agent.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 38
4463 Modifiable Poly Methacrylic Acid-Co-Acrylonitrile Microgels Fabricated with Cu and Co Nanoparticles for Simultaneous Catalytic Reduction of Multiple Compounds

Authors: Muhammad Ajmal, Muhammad Siddiq, Nurettin Sahiner

Abstract:

We prepared poly(methacrylic acid-co-acrylonitrile) (p(MAc-co-AN)) microgels by inverse suspension polymerization, and converted the nitrile groups into amidoxime groups to obtain more hydrophilic amidoximated poly(methacrylic acid-co-acrylonitile) (amid-p(MAc-co-AN)) microgels. Amid-microgels were used as microreactors for in situ synthesis of copper and cobalt nanoparticles. Cu (II) and Co (II) ions were loaded into microgels from their aqueous metal salt solutions and then converted to corresponding metal nanoparticle (MNP) by treating the loaded metal ions with sodium borohydride (NaBH4). The characterization of the prepared microgels and microgel metal nanoparticle composites was carried out by SEM, TEM and TG analysis. The amounts of metal nanoparticles within microgels were estimated by AAS measurements by dissolving the MNP entrapped within microgels by concentrated HCl acid treatment. Catalytic performances of the prepared amid-p(MAc-co-AN)-M (M: Cu, Co) microgel composites were investigated by using them as catalyst for the degradation of cationic and anionic organic dyes such as eosin Y (EY), methylene blue (MB) and methyl Orange (MO), and for the reduction of nitro aromatic pollutants like 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP) to their corresponding amino phenols. Here, we also report for the first time, the simultaneous degradation/reduction of MB, EY, and 4-NP by amid-p(MAc-co-AN)-Cu microgel composites. Different parameters affecting the reduction rates such as metal types, amount of catalysts, temperature and the amount of reducing agent were investigated.

Keywords: microgels, nanoparticles, catalyst, pollutants

Procedia PDF Downloads 333
4462 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice

Authors: R. K. Purohit

Abstract:

Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.

Keywords: radiation, lead , emblica, mice, liver

Procedia PDF Downloads 299
4461 Removal Efficiency of Some Heavy Metals from Aqueous Solution on Magnetic Nanoparticles

Authors: Gehan El-Sayed Sharaf El-Deen

Abstract:

In this study, super paramagnetic iron-oxide nano- materials (SPMIN) were investigated for removal of toxic heavy metals from aqueous solution. The magnetic nanoparticles of 12 nm were synthesized using a co-precipitation method and characterized by transmission electron microscopy (TEM), transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Batch experiments carried out to investigate the influence of different parameters such as contact time, initial concentration of metal ions, the dosage of SPMIN, desorption,pH value of solutions. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb these three metals from wastewater. Maximum sorption for all the studies cations obtained at the first half hour and reached equilibrium at one hour. The adsorption data of heavy metals studied were well fitted with the Langmuir isotherm and the equilibrium data show the percent removal of Ni2+, Zn2+ and Cd2+ were 96.5%, 80% and 75%, respectively. Desorption studies in acidic medium indicate that Zn2+, Ni2+ and Cd2+ were removed by 89%, 2% and 18% from the first cycle. Regeneration studies indicated that SPMIN nanoparticles undergoing successive adsorption–desorption processes for Zn2+ ions retained original metal removal capacity. The results revealed that the most prominent advantage of the prepared SPMIN adsorbent consisted in their separation convenience compared to the other adsorbents and SPMIN has high efficiency for removal the investigated metals from aqueous solution.

Keywords: heavy metals, magnetic nanoparticles, removal efficiency, Batch technique

Procedia PDF Downloads 225
4460 Determination of Iron, Zinc, Copper, Cadmium and Lead in Different Cigarette Brands in Yemen by Atomic Absorption Spectrometry

Authors: Ali A. Mutair

Abstract:

The concentration levels of iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in different cigarette brands commonly produced and sold in Yemen were determined. Convenient sample treatment for cigarette tobacco of freshly opened packs was achieved by a sample preparation method based on dry digestion, and the concentrations of the analysed metals were measured by Flame Atomic Absorption Spectrometry (FAAS). The mean values obtained for Fe, Zn, Cu, Cd, and Pb in different Yemeni cigarette tobacco were 311, 52.2, 10.11, 1.71 and 4.06 µg/g dry weight, respectively. There is no more significant difference among cigarette brands tested. It was found that Fe was at the highest concentration, followed by Zn, Cu, Pb and Cd. The average relative standard deviation (RSD) ranged from 1.77% to 19.34%. The accuracy and precision of the results were checked by blank and recovery tests. The results show that Yemeni cigarettes contain heavy metal concentration levels that are similar to those in foreign cigarette brands reported by other studies in the worldwide.

Keywords: iron, zinc, copper, lead, cadmium, tobacco, Yemeni cigarette brands, atomic absorption spectrometry

Procedia PDF Downloads 344
4459 Colombia Fossil Fuel Policies and Their Impact on Urban Air Quality

Authors: Ruth Catacolí, Hector Garcia

Abstract:

Colombia Urban Areas shows a decreasing of their air quality, no matter the actions developed by the Government facing the mitigation of pressure factors related with air pollution. Examples of these actions were the fossil fuel quality improvement policies (FFQI). This study evaluated the impact of three FFQI in the air quality of Bogotá during the period 1990 - 2006: The phase-out of lead in the gasoline; the sulfur reduction in diesel oil consumed in Bogotá and the oxygenation of gasoline through the addition of ethanol. The results indicate that only the policy of phase-out of lead in gasoline has been effective, showing dropping of lead oxides concentration in the air. Some stakeholders believe that the FFQI evaluated in the study are environmental policies, but no one of these policies has been supported by an environmental impact assessment that shows specific benefits in air quality. The research includes some fuel policy elements to achieve positive impact on the air quality in the urban centers of Colombia.

Keywords: policy assessment, fuel quality, urban air quality, air quality management

Procedia PDF Downloads 302
4458 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 250