Search results for: immobilized enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 811

Search results for: immobilized enzymes

451 Cheese Production at Low Temperatures Using Probiotic L. casei ATCC 393 and Rennin Enzyme Entrapped in Tubular Cellulose

Authors: Eleftheria Barouni, Antonia Terpou, Maria Kanellaki, Argyro Bekatorou, Athanasios A.Koutinas

Abstract:

The aim of the present work was to evaluate the production of cheese using a composite filter of tubular cellulose (TC) with [a] entrapped rennin enzyme and [b] immobilized L.casei and entrapped enzyme. Tubular cellulose from sawdust was prepared after lignin removal with 1% NaOH. The biocatalysts were thermally dried at 38oC and used for milk coagulation. The effect of temperature (5,20,37 oC) of the first dried biocatalyst on the pH kinetics of milk coagulation was examined. The optimum temperature (37oC) of the first biocatalyst was used for milk coagulation with the second biocatalyst prepared by entrapment of both rennin enzyme and probiotic lactic acid bacteria in order to introduce a sour taste in cheeses. This co-biocatalyst was used for milk coagulation. Samples were studied as regards its effect on lactic acid formation and its correlation with taste test results in cheeses. For both biocatalysts samples were analyzed for total acidity and lactic acid formation by HPLC. The quality of the produced cheeses was examined through the determination of volatile compounds by SPME GC/MS analysis. Preliminary taste tests and microbiological analysis were performed and encourage us for further research regarding scale up.

Keywords: tubular cellulose, Lactobacillus casei, rennin enzyme, cheese production

Procedia PDF Downloads 338
450 Enzymatic Remediation in Standard Crude Palm Oil for Superior Quality Oil

Authors: Haniza Ahmad, Norliza Saparin, Ahmadilfitri Md Noor, Mohd Suria Affandi Yusoff

Abstract:

Enzymatic remediation is applied in low free fatty acid (FFA) (<4%) crude palm oil (CPO) to investigate if further FFA reduction is able to take place to produce premium CPO (<1% FFA). There are four different lipase Candida Antartica brands used in this study. Samples submit to enzymatic remediation using rotary evaporator under 100mbar vacuum with rotation at 260rpm. Samples were taken at 4hours, 8hours and 24hours for analyses. FFA less than 1% was achieved after 24hours reaction with 1% enzyme and 2% glycerol. The FFA reduction was intensified with the presence of glycerol who provides more sites for fatty acid attachment. At 2% glycerol, 71-88% FFA was reduced whereas at 1% glycerol, 46-75% FFA reduced. However, partial glycerides was increased with presence of glycerol with 2% add in glycerol showed greater partial glycerides increment compared to 1% glycerol.

Keywords: enzymes, crude palm oil, free fatty acid, glycerol

Procedia PDF Downloads 298
449 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii

Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan

Abstract:

Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.

Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle

Procedia PDF Downloads 427
448 Performance Evaluation of a Spouted Bed Bioreactor (SBBR) for the Biodegradation of 2, 4 Dichlorophenol

Authors: Taghreed Al-Khalid, Muftah El-Naas

Abstract:

As an economical and environmentally friendly technology, biological treatment has been shown to be one of the most promising approaches for the removal of numerous types of organic water pollutants such as Chlorophenols, which are hazardous pollutants commonly encountered in wastewater generated by the petroleum and petrochemical industries. This study aimed at evaluating the performance of a spouted bed bioreactor (SBBR) for aerobic biodegradation of 2, 4 dichlorophenol (DCP) by a commercial strain of Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel particles. The SBBR is characterized by systematic intense mixing, resulting in improvement of the biodegradation rates through reducing the mass transfer limitations. The reactor was evaluated in both batch and continuous mode in order to evaluate its hydrodynamics in terms of stability and response to shock loads. The SBBR was able to maintain a stable operation and recovered quickly to its normal operating mode once the shock load had been removed. In comparison to a packed bed reactor bioreactor, the SBBR proved to be more efficient and more stable, achieving a removal percentage and throughput of 80% and 1414 g/m3day, respectively. In addition, the biodegradation of chlorophenols was mathematically modeled using a dynamic modeling approach in order to assess reaction and mass transfer limitations. The results confirmed the effectiveness of the use of the PVA immobilization technique for the biodegradation of phenols.

Keywords: biodegradation, 2, 4 dichlorophenol, immobilization, polyvinyl alcohol (PVA) gel

Procedia PDF Downloads 159
447 Immunoglobulins and Importance in Ruminants

Authors: M. Akoz, O. B. Citil, I. Aydin

Abstract:

Colostrum secreted by the mammary glands after birth in the early days, a high proportion of fat, protein and ash containing a secretion containing low amounts of casein and lactose. Especially immunoglobulins contain high proportions. Maternal immunoglobulins own immune system to protect the newborn against neonatal disease until development are very important matter. However, colostrum is transferred to the offspring due to placental barrier in ruminants. Immunoglobulins are absorbed through the intestinal epithelium but absorption can vary under the influence of some factors. These factors are among the priority ones taking colostrum first time, amount, concentration, the metabolic status of the newborn. intestinal absorption of immunoglobulins occurs over the first 24 h high. Absorption from the gut after nine hours, 50% after 24 hours was only 11%. On the other hand pup's digestive system degrade the enzymes after 24 hours immunoglobulins. Bovine colostrum in the composition while basic immune IgG, IgA and IgM are also available. Total IgG in colostrum of ruminants, while in other species is a greater amount in blood serum.

Keywords: immunoglobulin, ruminants, colostrum, immune system

Procedia PDF Downloads 251
446 Toxicity of the Chlorfenapyr: Growth Inhibition and Induction of Oxidative Stress on a Freshwater Protozoan, Paramecium Sp.

Authors: Houneïda Benbouzid, Houria Berrebbah, Mohammed-Réda Djebar

Abstract:

The toxicological impacts of the increasing number of synthetic compounds present in the aquatic environment are assessed predominantly in laboratory studies where test organisms are exposed to a range of concentrations of single compounds. The bio-indicator Paramecium sp., characterized by a short life cycle, rapid multiplication and normal behavior that may be affected by the presence of pollutants. We therefore investigated the inhibitory effect of a newly synthesized acaricide: the chlorfenapyr tested at concentrations of 250, 300, and 350 µM on a pure culture of Paramecium sp. during 6 day. Paramecia treated with different concentrations of Chlorfenapyr illustrate strong inhibition of cell growth from the second day of treatment. Low levels of glutathione, increased glutathione S-transferase and the decrease in respiratory metabolism, recorded in the presence of different concentrations of Chlorfenapyr, involve the activation of detoxification system.

Keywords: Paramecium sp., chlorfenapyr, oxidative enzymes, detoxification

Procedia PDF Downloads 342
445 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 156
444 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation

Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi

Abstract:

Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.

Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing

Procedia PDF Downloads 345
443 Biosorption of Metal Ions from Sarcheshmeh Acid Mine Drainage by Immobilized Bacillus thuringiensis in a Fixed-Bed Column

Authors: V. Khosravi, F. D. Ardejani, A. Aryafar, M. Sedighi

Abstract:

Heavy metals have a damaging impact for the environment, animals and humans due to their extreme toxicity and removing them from wastewaters is a very important and interesting task in the field of water pollution control. Biosorption is a relatively new method for treatment of wastewaters and recovery of heavy metals. In this study, a continuous fixed bed study was carried out by using Bacillus thuringiensis as a biosorbent for the removal of Cu and Mn ions from Sarcheshmeh Acid Mine Drainage (AMD). The effect of operating parameters such as flow rate and bed height on the sorption characteristics of B. thuringiensis was investigated at pH 6.0 for each metal ion. The experimental results showed that the breakthrough time decreased with increasing flow rate and decreasing bed height. The data also indicated that the equilibrium uptake of both metals increased with decreasing flow rate and increasing bed height. BDST, Thomas, and Yoon–Nelson models were applied to experimental data to predict the breakthrough curves. All models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and bed height. In order to regenerate the adsorbent, an elution step was carried out with 1 M HCl and five adsorption-desorption cycles were carried out in continuous manner.

Keywords: acid mine drainage, bacillus thuringiensis, biosorption, cu and mn ions, fixed bed

Procedia PDF Downloads 382
442 Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal

Authors: Said M. AL-Mashaikhi, El-Said I. El-Shafey, Fakhreldin O. Suliman, Saleh Al-Busafi

Abstract:

Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal.

Keywords: activated carbon, dye removal, functionalization, hydrophobic interaction, water treatment

Procedia PDF Downloads 138
441 Fluctuation of Serum Creatinine: Preoperative and Postoperative Evaluation of Chronic Kidney Disease Patients

Authors: Chowdhury Md. Navim Kabir

Abstract:

Renal impairment is one of the most severe non-communicable diseases around the world. Especially patients with diagnosed/newly diagnosed renal impairment who need surgery are more focused on preoperative and postoperative preparation. Serum creatinine is the prime biochemical marker for assessing renal function, and the level of impairment is widely measured by this marker as well as Glomerular Filtration Rate (GFR). Objective: Factors responsible for fluctuating serum creatinine during preoperative and postoperative periods and minimizing the process of serum creatinine is the ultimate goal of this study. Method: 37 patients participated in this cross-sectional study who were previously diagnosed/newly diagnosed. They were admitted to different tertiary-level hospitals for emergency or elective surgery. Fifteen patients were admitted in the renal function impairment stage and 22 were admitted as normal patients’. Values of creatinine at the pre-admission stage and 2nd/3rd post-admission follow-up were compared. Results: 0.41 was the average of 22 patients' creatinine between pre-admission and 2nd/3rd follow-up. The responsible factor like prolonged staying, immobilization, co-morbidities, different preoperative antibiotics and Non-Steroidal Anti Inflammatory Drugs (NSAIDs) were also inducers for creatinine elevation. After postoperative hemodialysis rapid decrease of creatinine is seen in normal patients, but this decrease is very much minor in Chronic Kidney Disease (CKD) diagnosed patients.

Keywords: CKD, Meropenam, NSAID, comorbidities, immobilized

Procedia PDF Downloads 49
440 Isolation and Characterization of Collagen from Chicken Feet

Authors: P. Hashim, M. S. Mohd Ridzwan, J. Bakar

Abstract:

Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two distinct α-chains (α1 and α2) and β chain, indicating that type I collagen is a major component of chicken feet collagen. The thermal stability of collagen isolated by papain and pepsin revealed stable denaturation temperatures of 48.40 and 53.35°C, respectively. The FTIR spectra of both collagens were similar with amide regions in A, B, I, II, and III. The study demonstrated that chicken feet collagen using papain isolation method is possible as commercial alternative ingredient.

Keywords: chicken feet, collagen, papain, pepsin

Procedia PDF Downloads 397
439 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance

Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na

Abstract:

Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA

Procedia PDF Downloads 300
438 Plants and Microorganisms for Phytoremediation of Soils Polluted with Organochlorine Pesticides

Authors: Maritsa Kurashvili, George Adamia, Tamar Ananiashvili, Lia Amiranasvili, Tamar Varazi, Marina Pruidze, Marlen Gordeziani, Gia Khatisashvili

Abstract:

The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of plants and microorganisms. For this aim the selection of plants and microorganisms with corresponding capabilities towards three organochlorine pesticides (Lindane, DDT and PCP) has been carried out. The tolerance of plants to tested pesticides and induction degree of plant detoxification enzymes by these compounds have been used as main criteria for estimating the applicability of plants in proposed technology. Obtained results show that alfalfa, maize and soybean among tested six plant species have highest tolerance to pesticides. As a result of screening, more than 30 strains from genera Pseudomonas have been selected. As a result of GC analysis of incubation area, 11 active cultures for investigated pesticides are carefully chosen.

Keywords: DDT, Lindane, organochlorine pesticides, PCP, phytoremediation

Procedia PDF Downloads 285
437 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air

Authors: Desissa Yadeta Muleta

Abstract:

Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensing

Keywords: deoxyribonucliec acid, long persistent luminescent materials, water, air

Procedia PDF Downloads 50
436 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA

Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz

Abstract:

This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH–independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.

Keywords: DNA and RNA models, relative rates, reactivity, phosphoryl transfe

Procedia PDF Downloads 401
435 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples

Authors: H. Abu-Ali, A. Nabok, T. Smith

Abstract:

Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.

Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific

Procedia PDF Downloads 139
434 Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red

Authors: Mandeep Kataria, Ritu Narula, Navneet Kaur

Abstract:

Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices.

Keywords: fiber optic biosensor, chitosan, teos, l-asparaginase

Procedia PDF Downloads 268
433 Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications

Authors: Abdel Khalek Selim, Safaa Mahmoud

Abstract:

Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants.

Keywords: alluvial soil, calcareous soil, elemental sulfur, nitrate leaching

Procedia PDF Downloads 295
432 Influence of Moss Cover and Seasonality on Soil Microbial Biomass and Enzymatic Activity in Different Central Himalayan Temperate Forest Types

Authors: Anshu Siwach, Qianlai Zhuang, Ratul Baishya

Abstract:

Context: This study focuses on the influence of moss cover and seasonality on soil microbial biomass and enzymatic activity in different Central Himalayan temperate forest types. Soil microbial biomass and enzymes are key indicators of microbial communities in soil and provide information on soil properties, microbial status, and organic matter dynamics. The activity of microorganisms in the soil varies depending on the vegetation type and environmental conditions. Therefore, this study aims to assess the effects of moss cover, seasons, and different forest types on soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzymatic activity in the Central Himalayas, Uttarakhand, India. Research Aim: The aim of this study is to evaluate the levels of SMBC, SMBN, and soil enzymatic activity in different temperate forest types under the influence of two ground covers (soil with and without moss cover) during the rainy and winter seasons. Question Addressed: This study addresses the following questions: 1. How does the presence of moss cover and seasonality affect soil microbial biomass and enzymatic activity? 2. What is the influence of different forest types on SMBC, SMBN, and enzymatic activity? Methodology: Soil samples were collected from different forest types during the rainy and winter seasons. The study utilizes the chloroform-fumigation extraction method to determine SMBC and SMBN. Standard methodologies are followed to measure enzymatic activities, including dehydrogenase, acid phosphatase, aryl sulfatase, β-glucosidase, phenol oxidase, and urease. Findings: The study reveals significant variations in SMBC, SMBN, and enzymatic activity under different ground covers, within the rainy and winter seasons, and among the forest types. Moss cover positively influences SMBC and enzymatic activity during the rainy season, while soil without moss cover shows higher values during the winter season. Quercus-dominated forests, as well as Cupressus torulosa forests, exhibit higher levels of SMBC and enzymatic activity, while Pinus roxburghii forests show lower levels. Theoretical Importance: The findings highlight the importance of considering mosses in forest management plans to improve soil microbial diversity, enzymatic activity, soil quality, and health. Additionally, this research contributes to understanding the role of lower plants, such as mosses, in influencing ecosystem dynamics. Conclusion: The study concludes that moss cover during the rainy season significantly influences soil microbial biomass and enzymatic activity. Quercus and Cupressus torulosa dominated forests demonstrate higher levels of SMBC and enzymatic activity, indicating the importance of these forest types in sustaining soil microbial diversity and soil health. Including mosses in forest management plans can improve soil quality and overall ecosystem dynamics.

Keywords: moss cover, seasons, soil enzymes, soil microbial biomass, temperate forest types

Procedia PDF Downloads 40
431 Effects of Novel Protease Enzyme From Bacillus subtilis on Low Protein and Low Energy Guar Meal (Cyamopsis tetragonoloba) Meal Based Diets on Performance and Nutrients Digestibility in Broilers

Authors: Aqeel Ahmed Shad, Tanveer Ahmad, Muhammad Farooq Iqbal, Muhammad Javaid Asad

Abstract:

The supplemental effects of novel protease produced from Bacillus subtilis K-5 and beta-mannanase were evaluated on growth performance, carcass characteristics, nutrients digestibility, blood profile and intestinal morphometry of broilers fed guar meal (Cyamopsis tetragonoloba) based diets with reduced Crude Protein (CP), Essential Amino Acids (EAAs), and Metabolizable energy (ME) contents. One-day old Ross 308 broiler chicks (n=360) were randomly allotted to thirty six experimental units in a way that each of the nine dietary treatments received four replicates with ten birds per replicate. A control diet without guar meal (0GM) was formulated with standard nutrient specifications of Ross 308 for the starter and finisher phases. Two negative control diets, one with 5% (5GM) and second with 10% (10GM) guar meal, were formulated with reduction of 5% CP, 5% EAAs and 80 Kcal/kg ME. These three basal diets (no enzyme) were supplemented with novel protease enzyme (PROT) and commercial beta-mannanase (Beta-M) enzyme. The birds were reared up to 35d of age. The data on weekly body weight gain (BWG) and feed intake were recorded to compute feed:gain for the starter (0-21d) and finisher (22-35d) phases. At the end of 35d of experimental period, four birds per experimental unit were randomly selected for blood samples collection and later slaughtered for ileal digesta, intestinal tract and carcass trait sampling. The data on overall performance (1-35d) indicated improved (P<0.05) BWG and feed:gain in birds supplemented with PROT (1.41% and 1.67) and Beta-M (2.79% and 1.64) than non-supplemented groups. Improved (P<0.05) carcass yield, breast meat yield and thigh meat yield were noted with the supplementation of Beta-M. However, non-significant (P>0.05) effect on carcass traits was noted in broiler fed guar meal based PROT supplemented diets. Crude protein digestibility, nitrogen retention (Nret) and apparent digestibility coefficient for nitrogen (ADCN) were improved (P<0.05) only with PROT. The improvement in apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) was noted (P<0.05) with both supplemented enzymes. However, no effect (P>0.05) of enzyme addition was noted on blood glucose, total protein and cholesterol. Improved villus height of duodenum, jejunum and ileum was noted (P<0.05) with the addition of both enzymes. The EAAs digestibility was improved (P<0.05) only with PROT. In conclusion, beta-mannanase and protease supplementation better improved the overall bird performance in low nutrient profile guar meal based diets than non-supplemented diets.

Keywords: novel protease, guar meal, broilers, low protein diets, low metabolizable energy diets, nutrients digestibility

Procedia PDF Downloads 38
430 Chemical Profiling of Hymenocardia acida Stem Bark Extract and Modulation of Selected Antioxidant and Esterase Enzymes in Kidney and Heart Ofwistar Rats

Authors: Adeleke G. E., Bello M. A., Abdulateef R. B., Olasinde T. T., Oriaje K. O., AransiI A., Elaigwu K. O., Omidoyin O. S., Shoyinka E. D., Awoyomi M. B., Akano M., Adaramoye O. A.

Abstract:

Hymenocardia acidatul belongs to the genus, Hymenocardiaceae, which is widely distributed in Africa. Both the leaf and stem bark of the plant have been used in the treatment of several diseases. The present study examined the chemical constituents of the H. acida stem bark extract (HASBE) and its effects on some antioxidant indices and esterase enzymes in female Wistar rats. The HASBE was obtained by Soxhlet extraction using methanol and then subjected to Atomic Absorption Spectroscopy (AAS) for elemental analysis, and Fourier-Transform Infrared (FT-IR) spectroscopy, ultraviolet (UV) spectroscopy, for functional group analysis, while High-performance liquid chromatography (HPLC), and Gas Chromatography-Flame ionization detection (GC-FID) were carried out for compound identification. Forty-eight female Wistar rats were assigned into eight groups of six rats each and separately administered orally with normal saline (Control), 50, 100, 150, 200, 250, 300, 350 mg/kg of HASBE twice per week for eight weeks. The rats were sacrificed under chloroform anesthesia, and kidneys and heart were excised and processed to obtain homogenates. The levels of superoxide dismutase (SOD), catalase, Malondialdehyde (MDA), glutathione peroxidase (GPx), acetylcholinesterase (AChE), and carboxylesterase (CE) were determined spectrophotometrically. The AAS of HASBE shows the presence of eight elements, including Cobalt (0.303), Copper (0.222), Zinc (0.137), Iron (2.027), Nickel (1.304), Chromium (0.313), Manganese (0.213), and Magnesium (0.337 ppm). The FT-IR result of HASBE shows four peaks at 2961.4, 2926.0, 1056.7, and 1034.3 cm-1, while UV analysis shows a maximum absorbance (0.522) at 205 nm. The HPLC spectrum of HASBE indicates the presence of four major compounds, including orientin (77%), β-sitosterol (6.58%), rutin (5.02%), and betulinic acid (3.33%), while GC-FID result shows five major compounds, including rutin (53.27%), orientin (13.06%) and stigmasterol (11.73%), hymenocardine (6.43%) and homopterocarpin (5.29%). The SOD activity was significantly (p < 0.05) lowered in the kidney but elevated in the heart, while catalase was elevated in both organs relative to control rats. The GPx activity was significantly elevated only in the kidney, while MDA was not significantly (p > 0.05) affected in the two organs compared with controls. The activity of AChE was significantly elevated in both organs, while CE activity was elevated only in the kidney relative to control rats. The present study reveals that Hymenocardia acida stem bark extract majorly contains orientin, rutin, stigmasterol, hymenocardine, β-sitosterol, homopterocarpin, and betulinic acid. In addition, these compounds could possibly enhance redox status and esterase activities in the kidney and heart of Wistar rats.

Keywords: hymenocardia acida, elemental analysis, compounds identification, redox status, organs

Procedia PDF Downloads 122
429 Hepatoprotective Effect of Mycophenolate Mofetil against Tacrolimus Exposure in Rat

Authors: Ferjani Hanen, El Arem Amira, Boussema Ayed Imen, Bacha Hassen

Abstract:

Tacrolimus (TAC), a calcineurin inhibitor, is clinically used as an immunosuppressive agent in the transplant recipient, but its use associated-hepatotoxicity. Mycophenolate mofetil (MMF), an anti-metabolite, is a potent immunosuppressive drug. MMF is not hepatotoxic and is the most common adjunctive immunosuppressant for TAC. The effects of TAC and MMF combination in the liver is still not well understood. This work aimed to investigate their combined effect against in liver in rats Wistar after 24 h. The oral median lethal doses (LD50) of TAC and MMF alone were evaluated in rats are 240 mg/kg and 500 mg/kg respectively. Oral administration of the MMF at 50 mg/kg to male Wistar intoxicated with TAC at 60 mg/kg, demonstrated a significant protective effect by lowering the levels of hepatic markers enzymes (AST, ALT) in the serum rat. MMF attenuated oxidative stress by restoring the activities of SOD, CAT and by reducing the malondialdehyde (MDA) and protein carbonyl levels liver. This study provided evidence that MMF protects rat liver from TAC-induced injury and suggests a most combination use for organ transplantation.

Keywords: tacrolimus, mycophenolate mofetil, combination, liver, rat

Procedia PDF Downloads 312
428 Medium Composition for the Laboratory Production of Enzyme Fructosyltransferase (FTase)

Authors: O. R. Raimi, A. Lateef

Abstract:

Inoculum developments of A. niger were used for inoculation of medium for submerged fermentation and solid state fermentation. The filtrate obtained were used as sources of the extra-cellular enzymes. The FTase activities and the course of pH in submerged fermentation ranged from 7.53-24.42µ/ml and 4.4-4.8 respectively. The maximum FTase activity was obtained at 48 hours fermentation. In solid state fermentation, FTase activities ranged from 2.41-27.77µ/ml. Using ripe plantain peel and kola nut pod respectively. Both substrates supported the growth of the fungus, producing profuse growth during fermentation. In the control experiment (using kolanut pod) that lack supplementation, appreciable FTase activity of 16.92µ/ml was obtained. The optimum temperature range was 600C. it was also active at broad pH range of 1-9 with optimum obtain at pH of 5.0. FTase was stable within the range of investigated pH showing more than 60% activities. FTase can be used in the production of fructooligosaccharide, a functional food.

Keywords: Aspergillus niger, solid state fermentation, kola nut pods, Fructosyltransferase (FTase)

Procedia PDF Downloads 426
427 Oxidantantioxidant Status in Calves Supplemented with Green Tea Extract

Authors: Ibrahim I. Elshahawy

Abstract:

The objective of the present study was to investigate the effect of green tea extract on serum oxidant and antioxidant profile, liver and kidney function. 40 Friesian calves are included in this study and allocated into two groups: Group I (n=20) clinically healthy calves showing no clinical abnormalities, not receiving any treatment and served as control; group II (n=20) received green tea extract (GTE) for 30 days. Non-significant changes in blood urea nitrogen (BUN) were detected between groups, on contrary, serum creatinine and activities of liver enzymes aspartate transaminase (AST) and alanine transaminase (ALT) were significantly different between two groups. There were significant increases in the mean values of serum antioxidative parameters (total antioxidant capacity, catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase) in group II. Whereas, the activity of lipid peroxidase significantly decreased in GTE treated calves when compared to control.

Keywords: green tea extract, antioxidants, oxidants, calves

Procedia PDF Downloads 262
426 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes

Authors: Salwa Karboune, Amanda Waglay

Abstract:

Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.

Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides

Procedia PDF Downloads 359
425 Polymorphism of Candidate Genes for Meat Production in Lori Sheep

Authors: Shahram Nanekarania, Majid Goodarzia

Abstract:

Calpastatin and callipyge have been known as one of the candidate genes in meat quality and quantity. Calpastatin gene has been located to chromosome 5 of sheep and callipyge gene has been localized in the telomeric region on ovine chromosome 18. The objective of this study was identification of calpastatin and callipyge genes polymorphism and analysis of genotype structure in population of Lori sheep kept in Iran. Blood samples were taken from 120 Lori sheep breed and genomic DNA was extracted by salting out method. Polymorphism was identified using the PCR-RFLP technique. The PCR products were digested with MspI and FaqI restriction enzymes for calpastatin gene and callipyge gene, respectively. In this population, three patterns were observed and AA, AB, BB genotype have been identified with the 0.32, 0.63, 0.05 frequencies for calpastatin gene. The results obtained for the callipyge gene revealed that only the wild-type allele A was observed, indicating that only genotype AA was present in the population under consideration.

Keywords: polymorphism, calpastatin, callipyge, PCR-RFLP, Lori sheep

Procedia PDF Downloads 587
424 The Effects of pH on p53 Phosphorylation by Ataxia Telangiectasia Mutated Kinase

Authors: Serap Pektas

Abstract:

Ataxia telangiectasia mutated (ATM) is a serine-threonine kinase, which is the major regulator of the DNA damage response. ATM is activated upon the formation of DNA double-strand breaks (DSBs) in the cells. ATM phosphorylates the proteins involved in apoptotic responses, cell cycle checkpoint control, DNA repair, etc. Tumor protein p53, known as p53 is one of these proteins that phosphorylated by ATM. Phosphorylation of p53 at Ser15 residue leads to p53 stabilization in the cells. Often enzymes activity is affected by hydrogen ion concentration (pH). In order to find the optimal pH range for ATM activity, steady-state kinetic assays were performed at acidic and basic pH ranges. Ser15 phosphorylation of p53 is determined by using ELISA. The results indicated that the phosphorylation rate was better at basic pH range compared with the acidic pH range. This could be due to enzyme stability, or enzyme-substrate interaction is pH dependent.

Keywords: ataxia telangiectasia mutated, DNA double strand breaks, DNA repair, tumor protein p53

Procedia PDF Downloads 110
423 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress

Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood

Abstract:

Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.

Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop

Procedia PDF Downloads 17
422 Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb

Authors: Eusebio A. Jiménez-Arévalo, Deifilia Ahuatzi-Chacón, Juvencio Galíndez-Mayer, Cleotilde Juárez-Ramírez, Nora Ruiz-Ordaz

Abstract:

Bendiocarb is a known toxic xenobiotic that presents acute and chronic risks for freshwater invertebrates and estuarine and marine biota; thus, the treatment of water contaminated with the insecticide is of concern. In this paper, a bacterial community with the capacity to grow in bendiocarb as its sole carbon and nitrogen source was isolated by enrichment techniques in batch culture, from samples of a composting plant located in the northeast of Mexico City. Eight cultivable bacteria were isolated from the microbial community, by PCR amplification of 16 rDNA; Pseudoxanthomonas spadix (NC_016147.2, 98%), Ochrobacterium anthropi (NC_009668.1, 97%), Staphylococcus capitis (NZ_CP007601.1, 99%), Bosea thiooxidans. (NZ_LMAR01000067.1, 99%), Pseudomonas denitrificans. (NC_020829.1, 99%), Agromyces sp. (NZ_LMKQ01000001.1, 98%), Bacillus thuringiensis. (NC_022873.1, 97%), Pseudomonas alkylphenolia (NZ_CP009048.1, 98%). NCBI accession numbers and percentage of similarity are indicated in parentheses. These bacteria were regarded as the isolated species for having the best similarity matches. The ability to degrade bendiocarb by the immobilized bacterial community in a packed bed biofilm reactor, using as support volcanic stone fragments (tezontle), was evaluated. The reactor system was operated in batch using mineral salts medium and 30 mg/L of bendiocarb as carbon and nitrogen source. With this system, an overall removal efficiency (ηbend) rounding 90%, was reached.

Keywords: bendiocarb, biodegradation, biofilm reactor, carbamate insecticide

Procedia PDF Downloads 239