Search results for: composite field
9827 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications
Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu
Abstract:
Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation
Procedia PDF Downloads 2629826 Study of Effective Parameters on Mechanical Properties of Toughened PP Compounds in Presence of Biofillers and Blowing Agents
Authors: Koosha Rezaei, Mehdi Moghri bidgoli, Mazyar Khakpour
Abstract:
Wood-plastic composites foam is one of the most used products were the industry today. In this study, composite foam polypropylene in the presence of different biofilers such as Spruce wood, wheat and rice husk as well as 3 different types toughening agents such as polyolefin elastomer, styrene butadiene styrene and styrene-ethylene butadiene styrene, and two types of cause blowing agents azodicarbonamide and sodium bicarbonate was prepared. For improving dispersion of biofilers, in the mixing process we used polypropylene coupling agent grafted with maleic anhydride. Due to the large number of variables, the statistical analysis of response surface to analyze the results of the impact test, tensile modulus and tensile strength and modeling were used. Co-rotating twine extruder was made composite melt mixing method and then to perform mechanical tests using injection molding, respectively.Images from electron microscopy showed cell sandwich structure in composite amply demonstrates.Keywords: polypropylene, wood plastic composite foam, response surface analysis, morphology, mechanical properties
Procedia PDF Downloads 3679825 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations
Authors: Reza Soleimanpour, Ching Tai Ng
Abstract:
Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves
Procedia PDF Downloads 2069824 Novel Synthesis of Metal Oxide Nanoparticles from Type IV Deep Eutectic Solvents
Authors: Lorenzo Gontrani, Marilena Carbone, Domenica Tommasa Donia, Elvira Maria Bauer, Pietro Tagliatesta
Abstract:
One of the fields where DES shows remarkable added values is the synthesis Of inorganic materials, in particular nanoparticles. In this field, the higher- ent and highly-tunable nano-homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare Nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed, and some ex-citing examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like shapes. The use of the pre- pared nanoparticles as fluorescent materials for the detection of various contaminants is under development.Keywords: metal deep eutectic solvents, nanoparticles, inorganic synthesis, type IV DES, lamellar
Procedia PDF Downloads 1409823 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications
Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani
Abstract:
A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.Keywords: composite membrane, electrospinning, fuel cell, nanofibers
Procedia PDF Downloads 2699822 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.Keywords: 3D printed, carbon fiber, fiber content, recycling
Procedia PDF Downloads 1949821 Buckling a Reservoir Composite Provided with Notches
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 3619820 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples
Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson
Abstract:
Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors
Procedia PDF Downloads 2419819 Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes
Authors: K. Selvakumar, J. Kalaiselvimary, B. Jansirani, M. Ramesh Prabhu
Abstract:
Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells.Keywords: composite, proton conduction, sulphonation, water uptake
Procedia PDF Downloads 2509818 Property of Fermented Sweet Potato Flour and Its Suitability for Composite Noodle
Authors: Neti Yuliana, Srisetyani, Siti Nurdjanah, Dewi Sartika, Yoan Martiansari, Putri Nabila
Abstract:
Naturally sweet potato flour usually requires a modification process to improve its inherent property for expanding its application in food system. The study was aimed to modify sweet potato flour (SPF), to increase its utilization for composite noodle production, trough fermentation of sweet potato slices before its flouring process. Fermentation were prepared with five different starters: pickle brine, Lactobacillus plantarum, Leuconostoc mesenteroides, mixed of Lactobacillus plantarum, Leuconostoc mesenteroides , and mixed of Lactobacillus plantarum, Leuconostoc mesenteroides, and Sacharomyces cerevisiae. Samples were withdrawn every 0, 24, 48, 72 and 96 hours. The fermented flours were characterized for swelling power, solubility, paste transmittance, pH, sensory properties (acidic aroma and whiteness), and the amount of broken composite noodle strips. The results indicated that there was no significant effect of different starters on fermented SPF characteristic and on the amount of broken noodle strip, while length of fermentation significantly affected. Longer fermentation, reaching 48-72 h, increased swelling power, pH, acidic aroma and whiteness of flour and reduced solubility, paste transmittance, and the amount of broken noodle strip. The results suggested that fermentation within 48-72 h period of time could provide great composite SPF for noodle.Keywords: starters, fermented flour, sweet potato, composite noodle
Procedia PDF Downloads 3949817 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike
Authors: Hong Yu, Dirk Heider, Suresh Advani
Abstract:
Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.Keywords: carbon composite, joule heating, lightning strike, resistor network
Procedia PDF Downloads 2299816 Microfluidic Synthesis of Chlorophyll Extraction–Loaded PCL Composite Microparticles Developed as Health Food
Authors: Ching-Ju Hsiao, Mao-Chen Huang, Pei-Fan Chen, Ruo-Yun Chung, Jiun-Hua Chou, Chih-Hui Yang, Keng-Shiang Huang, Jei-Fu Shaw
Abstract:
Chlorophyll has many benefits for human body. It is known to improve the health of the circulatory, digestive, immune and detoxification systems of the body. However, Chl can’t be preserved at the environment of high temperature and light exposure for a long time due to it is chemical structure is easily degradable. This characteristic causes that human body is difficult to absorb Chl effective components. In order to solve this problem, we utilize polycaprolactone (PCL) polymer encapsulation technology to increase the stability of Chl. In particular, we also established a microfluidic platform provide the control of composite beads diameter. The new composite beads is potential to be a health food. Result show that Chl effective components via the microfludic platform can be encapsulated effectively and still preserve its effective components.Keywords: chlorophyll, PCL, PVA, microfluidic
Procedia PDF Downloads 5629815 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods
Authors: W. Swiderski
Abstract:
Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation
Procedia PDF Downloads 2609814 Survey of Web Service Composition
Authors: Wala Ben Messaoud, Khaled Ghedira, Youssef Ben Halima, Henda Ben Ghezala
Abstract:
A web service (WS) is called compound or composite when its execution involves interactions with other WS to use their features. The composition of WS specifies which services need to be invoked, in what order and how to handle exception conditions. This paper gives an overview of research efforts of WS composition. The approaches proposed in the literature are diverse, interesting and have opened important research areas. Based on many studies, we extracted the most important role of WS composition use in order to facilitate its introduction in WS concept.Keywords: SOA, web services, composition approach, composite WS
Procedia PDF Downloads 3119813 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour
Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi
Abstract:
The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading
Procedia PDF Downloads 4799812 Electro-Optic Parameters of Ferroelectric Particles- Liquid Crystal Composites
Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov
Abstract:
Influence of barium titanate particles on electro-optic properties of liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) with positive dielectric anisotropy and the liquid crystalline (LC) mixture Н-37 consisting of 4-methoxybezylidene-4'–butylaniline and 4-ethoxybezylidene-4'–butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles inside 5СВ and H-37 decreased the clearing temperature from 35.2 °С to 32.5°С and from 61.2 oC to 60.1oC, correspondingly. The threshold voltage of the Fredericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect of the pure 5СВ was observed at 2.1 V. Threshold voltage of the Fredericksz effect increased from 2.8 V to up 3.1 V at additive of particles into H-37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H-37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the effect of fast light modulation was studied at application of the rectangular impulse with direct bias to an electro-optical cell with the BaTiO3 particles+5CB and the pure 5CB. At this case, a rise time of the composite worsened, a decay time improved in comparison with the pure 5CB. The pecularities of electrohydrodynamic instability (EHDI) formation was also investigated into the composite with the H-37 matrix. It was found that the voltage of the EHDI formation decreased, a rise time increased and a decay time decreased in comparison with the pure H-37. First of all, experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.Keywords: liquid crystal, ferroelectric particles, composite, electro-optics
Procedia PDF Downloads 7069811 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties
Procedia PDF Downloads 3129810 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing
Authors: Ridvan Yamanoglu
Abstract:
In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.Keywords: titanium, composite, nickel, hot pressing
Procedia PDF Downloads 1759809 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design
Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng
Abstract:
The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser, and a heating plate was used to produce biodiesel. Key parameters, including time, temperature, and mixing rate was kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.Keywords: ANOVA, biodiesel, catalyst, transesterification, central composite design
Procedia PDF Downloads 1569808 Investigating the Behaviour of Composite Floors (Steel Beams and Concrete Slabs) under Mans Rhythmical Movement
Authors: M. Ali Lotfollahi Yaghin, M. Reza Bagerzadeh Karimi, Ali Rahmani, V. Sadeghi Balkanlou
Abstract:
Structural engineers have long been trying to develop solutions using the full potential of its composing materials. Therefore, there is no doubt that the structural solution progress is directly related to an increase in materials science knowledge. These efforts in conjunction with up-to-date modern construction techniques have led to an extensive use of composite floors in large span structures. On the other hand, the competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend is a considerable increase in problems related to unwanted floor vibrations. For this reason, the structural floors systems become vulnerable to excessive vibrations produced by impacts such as human rhythmic activities. The main objective of this paper is to present an analysis methodology for the evaluation of the composite floors human comfort. This procedure takes into account a more realistic loading model developed to incorporate the dynamic effects induced by human walking. The investigated structural models were based on various composite floors, with main spans varying from 5 to 10 m. based on an extensive parametric study the composite floors dynamic response, in terms of peak accelerations, was obtained and compared to the limiting values proposed by several authors and design standards. This strategy was adopted to provide a more realistic evaluation for this type of structure when subjected to vibration due to human walking.Keywords: vibration, resonance, composite floors, people’s rhythmic movement, dynamic analysis, Abaqus software
Procedia PDF Downloads 3079807 Experimental Investigation of the Static and Dynamic Behaviour of Double Lap Joints
Authors: H. I. Beloufa, M. Tarfaoui
Abstract:
For many applications, adhesively bonded assemblies have gained an increasing interest in the industry due to several advantages over welding, riveting and bolting, such as reduction of stress concentrations, lightness, low cost and easy manufacturing. This work is largely concerned to show the effects of the loading rate of the adhesively bonded joints under different speed rates. The tensile tests were conducted at four different rates; static (5mm/min, 50mm/min) and dynamic tests (1m/s, and 10m/s). An attempt was made to determine the damage kinetic and a comparison between the use of aluminium and composite laminate substrates is introduced. Aluminum T6082 and glass/vinylester laminated composite Substrates were used to construct aluminum/aluminum and laminate/laminate specimens. The adhesive used in this study was Araldite 2015. The results showed the effects of the loading rate évolution on the double joint strength. The comparison of the results of static and dynamic tests showed a raise of the strength of the specimens while the load velocity is elevated. In the case of composite substrates double joint lap, the stiffness increased by more than 60% between static and dynamic tests. However, in the case of aluminum substrates, the rigidity improved about 28% from static to moderately high velocity loading. For both aluminum and composite double joint lap, the strength increased by approximately 25% when the tensile velocity is increased from 5 mm/min to 50 mm/min (static tests). Nevertheless, the tensile velocity is extended to 1m/s the strength increased by 13% and 25% respectively for composite and aluminum substrates.Keywords: adhesive, double lap joints, static and dynamic behavior, tensile tests
Procedia PDF Downloads 2019806 Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force
Authors: Fatemeh Shahi, Mehdi Sharifian, Laia Shahrassai, Elham Eskandari A.
Abstract:
A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma.Keywords: magnetic field generation, laser-plasma interaction, ponderomotive force, inhomogeneous plasma
Procedia PDF Downloads 2979805 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications
Abstract:
Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate
Procedia PDF Downloads 1579804 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry
Authors: J. Vyas, R. Kazys, J. Sestoke
Abstract:
Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves
Procedia PDF Downloads 2419803 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X
Authors: Natasha Botha, Gary Corderely, Helen M. Inglis
Abstract:
With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage
Procedia PDF Downloads 2529802 Thermal Insulation, Sound Insulation, and Tensile Properties of Epoxy-Silica Aerogel and Epoxy-Polystyrene Composites
Authors: Mehmet Ucar, Nuray Ucar
Abstract:
Both thermal insulation and sound insulation play a key role in energy saving and the quality of life. In this study, the effects of different fillers, such as silica aerogel and polystyrene, on the tensile strength, thermal insulation, and sound insulation of epoxy composites have been analyzed. Results from the experimental studies show that both tensile strength and insulation properties (sound and thermal insulation) of the epoxy composite increased by the use of silica aerogel additive. Polystyrene additive significantly increases the sound absorption coefficient of the epoxy composite. Such composites offer great potential for many applications.Keywords: epoxy composite, silica aerogel, polystyrene, tensile strength, thermal insulation, sound insulation
Procedia PDF Downloads 239801 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller
Authors: Mert Turanli, Hakan Temeltas
Abstract:
In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.Keywords: adaptive control, centroidal voronoi tessellations, composite adaptation, coordination, multi robots
Procedia PDF Downloads 3509800 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors
Authors: Ravindra Raju, Vidhu Kampurath
Abstract:
For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.Keywords: ANSYS, clutch, composite materials, creo
Procedia PDF Downloads 3039799 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion
Abstract:
This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design
Procedia PDF Downloads 1309798 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures
Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra
Abstract:
In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis
Procedia PDF Downloads 422