Search results for: bone substitutes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 849

Search results for: bone substitutes

489 A Cross-Sectional Study on the Nutritional Status of School Going Children From Urban and Rural Populations of Pakistan

Authors: Aftab Ahmed, Farhan Saeed, Muhammad Afzaal, Shinawar Waseem Ali, Ali Imran, Sadaf Munir

Abstract:

Malnutrition is a globally increasing public health concern among children; it affects number of school children influencing their growth, development and academic performance. The tenet of the current cross sectional study was to assess the nutritional biomarkers of school going children of age 12-15 years resulting in stunting, underweight, overweight, bone deformities and other health disparities in nutritionally deprived urban and rural populations of Pakistan. A sample size comprising of 180 school going children was stipulated from the targeted urban and rural populations. The fallouts of investigation unveiled that both rural and urban populations were experiencing nutritional challenges however; on account of awareness paucity the rustic population was nutritionally more compromised. Hematological tests elucidated 16.7% and 7.8% cases for high glucose level, 35.6% and 27.8% cases for low hemoglobin levels, 14.4% and 15.6% cases for low calcium indices, 12.2% and 4.4% high white blood cell count (WBC), 20% and 14.4% low red blood cell count, 76.7% and 74.4% low hematocrit (HCT) values, among the rural and urban populations respectively. The above mentioned outcomes can serve as a way forward for policy and law maker institutions to curb the possible barricades in the way of healthy nutritional status in these areas

Keywords: malnutrition, hematological study, child nutrition, bone mineral density, calcium, RBC

Procedia PDF Downloads 61
488 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production

Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban

Abstract:

The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.

Keywords: biomass, ash, cementitious material, mortar

Procedia PDF Downloads 165
487 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 176
486 Minimalism in Product Packaging: Alternatives to Bubble Wrap

Authors: Anusha Chanda, Reenu Singh

Abstract:

Packaging is one of the major contributors to global waste. While efforts are being made to switch to more sustainable types of packaging, such as switching from single use plastics to paper, not all polluting materials, have been rethought in terms of recycling. Minimalism in packaging design can help reduce the amount of waste produced greatly. While online companies have shifted to using cardboard boxes for packages, a large amount of waste in still generated from other materials affiliated with cardboard packaging, such as tape, bubble wrap, plastic wrap, among others. Minimalism also works by reducing extra packaging and increasing the reusability of the material. This paper looks at research related to minimalism in packaging design, minimalism, and sustainability. A survey was conducted in order to find out the different ways in which minimalism can be implemented in packaging design. Information gathered from the research and responses from the survey was used to ideate product design alternatives for sustainable substitutes for bubble wrap in packaging. This would help greatly reduce the amount of packaging waste and improve environmental quality.

Keywords: environment, minimalism, packaging, product design, sustainable

Procedia PDF Downloads 225
485 Serum Granulocyte Colony Stimulating Factor is a Potent Stimulator of Hematopoeitic Progenitor Cells Mobilization in Trauma Hemorrhagic Shock

Authors: Manoj Kumar, Sujata Mohanty, D. N. Rao, Arul Selvi, Sanjeev K. Bhoi

Abstract:

Background: Hematopoietic progenitor cells (HPC) mobilized from bone marrow to peripheral blood has been observed in severe trauma and hemorrhagic shock patients. Granulocyte-colony stimulating factor (G-CSF) is a potent stimulator that mobilized HPC from bone marrow to peripheral blood. Objective: Our aim of the study was to investigate the serum G-CSF levels and correlate with HPC and outcome. Methods: Peripheral blood sample from 50 hemorrhagic shock patients was collected on arrival for determination of G-CSF and peripheral blood HPC (PBHPC) and compared with healthy control (n=15). Determination of serum levels of G-CSF by sandwich ELISA and PBHPC by Sysmex XE-2100. Data were categorized by age, sex, Injury Severity Score (ISS), and laboratory data was prospectively collected. Data are expressed as mean±SD and median (min, max). Results: Significantly increased the serum level of G-CSF (264.8 vs. 79.1 pg/ml) and peripheral blood HPC (0.1 vs. 0.01 %) in the T/HS patients when compared with control group. Conclusions: Our studies suggest serum G-CSF elevated in T/HS patients. The elevated in G-CSF was also associated with mobilization of HPC from BM to peripheral blood HPC. Increased the levels of G-CSF in T/HS may play a significant role in the alteration of the hematopoietic compartment.

Keywords: granulocyte colony stimulating factor, G-CSF, hematopoietic progenitor cells, HPC, trauma hemorrhagic shock, T/HS, outcome

Procedia PDF Downloads 311
484 Histopathological and Biochemical Evaluation of Hydroxyurea-Induced Hepato-Pulmonary Toxicity and Lymphoid Necrosis in Rats

Authors: Samah Oda, Asmaa Khafaga, Mohammed Hashim, Asmaa Khamis

Abstract:

Toxicity of hydroxyurea (HU), a treatment for certain tumors, polycythemia, and thrombocytosis, was evaluated in rats in one-month toxicity study. Sixty male albino rats were equally classified into four groups. Rats received daily oral gavage of HU in 0, 250, 500, and 750 mg/kg b.wt. Chemical and histopathological assessment of liver, lung, spleen, and bone marrow was performed at 10, 20, and 30 days of the experiment. No significant change was reported in alanine aminotransferase (ALT), aspartate aminotransferase (AST), globulin, and albumin/ globulin ratio during the experiment. Significant decreases in alkaline phosphatase (ALP) and total albumin were reported in rats received 500 and 750 mg/kg b.wt of HU. In addition, total cholesterol level increased significantly after 10 days; however, it significantly decreased after 20 and 30 days of the experiment. Moreover, hepatocytic vacuolation and necrosis with portal inflammatory infiltrates were reported along experimental periods. Pulmonary congestion, hemorrhage, interstitial mononuclear infiltration, peribronchitis, and bronchial epithelial necrosis were also reported. Severe lymphocytic necrosis in spleen and severe loss of hematopoietic cells and replacement with corresponding adipose tissue in bone marrow tissues was demonstrated. In conclusion, HU could be able to induce severe dose and time-dependent hepato-pulmonary toxicity and lymphoid depression in rats.

Keywords: hydroxyurea, hepato-pulmonary toxicity, lymphoid depression, histopathology

Procedia PDF Downloads 122
483 Linking Market Performance to Exploration and Exploitation in The Pharmaceutical Industry

Authors: Johann Valentowitsch, Wolfgang Burr

Abstract:

In organizational research, strategies of exploration and exploitation are often considered to be contradictory. Building on the tradeoff argument, many authors have assumed that a company's market performance should be positively dependent on its strategic balance between exploration and exploitation over time. In this study, we apply this reasoning to the pharmaceutical industry. Using exploratory regression analysis we show that the long-term market performance of a pharmaceutical company is linked to both its ability to carry out exploratory projects and its ability to develop exploitative competencies. In particular, our findings demonstrate that, on average, the company's annual sales performance is higher the better the strategic alignment between exploration and exploitation is balanced. The contribution of our research is twofold. On the one hand, we provide empirical evidence for the initial tradeoff hypothesis and thus support the theoretical position of those who understand exploration and exploitation as strategic substitutes. On the other hand, our findings show that a balanced relationship between exploration and exploitation is also important in research-intensive industries, which naturally tend to place more emphasis on exploration.

Keywords: exploitation, exploration, market performance, pharmaceutical industry, strategy

Procedia PDF Downloads 193
482 The Descending Genicular Artery Perforator Free Flap as a Reliable Flap: Literature Review

Authors: Doran C. Kalmin

Abstract:

The descending genicular artery (DGA) perforator free flap provides an alternative to free flap reconstruction based on a review of the literature detailing both anatomical and clinical studies. The descending genicular artery (DGA) supplies skin, muscle, tendon, and bone located around the medial aspect of the knee that has been used in several pioneering reports in reconstructing defects located in various areas throughout the body. After the success of the medial femoral condyle flap in early studies, a small number of studies have been published detailing the use of the DGA in free flap reconstruction. Despite early success in the use of the DGA flap, acceptance within the Plastic and Reconstructive Surgical community has been limited due primarily to anatomical variations of the pedicle. This literature review is aimed at detailing the progression of the DGA perforator free flap and its variations as an alternative and reliable free flap for reconstruction of composite defects with an exploration into both anatomical and clinical studies. A literature review was undertaken, and the progression of the DGA flap is explored from the early review by Acland et al. pioneering the saphenous free flap to exploring modern changes and studies of the anatomy of the DGA. An extensive review of the literature was undertaken that details the anatomy and its variations, approaches to harvesting the flap, the advantages, and disadvantages of the DGA perforator free flap as well as flap outcomes. There are 15 published clinical series of DGA perforator free flaps that incorporate cutaneous, osteoperiosteal, cartilage, osteocutaneous, osteoperiosteal and muscle, osteoperiosteal and subcutaneous and tendocutatenous. The commonest indication for using a DGA free flap was for non-union of bone, particularly that of the scaphoid whereby the medial femoral condyle could be used. In the case series, a success rate of over 90% was established, showing that these early studies have had good success with a wide range of tissue transfers. The greatest limitation is the anatomical variation of the DGA and therefore, the challenges associated with raising the flap. Despite the variation in anatomy and around 10-15% absence of the DGA, the saphenous artery can be used as well as the superior medial genicular artery if the vascular bone is required as part of the flap. Despite only a handful of anatomical and clinical studies describing the DGA perforator free flap, it ultimately provides a reliable flap that can include a variety of composite structure used for reconstruction in almost any area throughout the body. Although it has limitations, it provides a reliable option for free flap reconstruction that can routinely be performed as a single-stage procedure.

Keywords: anatomical study, clinical study, descending genicular artery, literature review, perforator free flap reconstruction

Procedia PDF Downloads 129
481 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain

Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.

Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis

Procedia PDF Downloads 466
480 Relation of Cad/Cam Zirconia Dental Implant Abutments with Periodontal Health and Final Aesthetic Aspects; A Systematic Review

Authors: Amin Davoudi

Abstract:

Aim: New approaches have been introduced to improve soft tissue indices of the dental implants. This systematic review aimed to investigate the effect of computer-aided design and computer-assisted manufacture (CAD/CAM) zirconia (Zr) implant abutments on periodontal aspects. Materials and Methods: Five electronic databases were searched thoroughly based on prior defined MeSH and non-MeSH keywords. Clinical studies were collected via hand searches in English language journals up to September 2020. Interproximal papilla stability, papilla recession, pink and white esthetic score (PES, WES), bone and gingival margin levels, color, and contour of soft tissue were reviewed. Results: The initial literature search yielded 412 articles. After the evaluation of abstracts and full texts, six studies were eligible to be screened. The study design of the included studies was a prospective cohort (n=3) and randomized clinical trial (n=3). The outcome was found to be significantly better for Zr than titanium abutments, however, the studies did not show significant differences between stock and CAD/CAM abutments. Conclusion: Papilla fill, WES, PES, and the distance from the contact point to dental crest bone of adjacent tooth and inter-tooth–implant distance were not significantly different between Zr CAD/CAM and Zr stock abutments. However, soft tissue stability and recession index were better in Zr CAD/CAM abutments.

Keywords: zirconia, CADCAM, periodental, implant

Procedia PDF Downloads 83
479 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 111
478 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite

Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson

Abstract:

Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.

Keywords: cell migration, hMSCs, SiHA, transwell migration system

Procedia PDF Downloads 117
477 The Interrelationship between Formal and Informal Institutions and Its Impacts on the Autonomy of Public Service Delivery Units: The Case of Vietnam

Authors: Minh Thi Hai Vo

Abstract:

This article draws on in-depth interviews with state employees at public hospitals and universities in its institutional analysis of the autonomy practices of public service delivery units in Vietnam. Unlike many empirical and theoretical studies that view formal and informal institutions as complements or substitutes, this article finds no evidence of complementary or substitutive relationships. Instead, the article finds that formal institutions accommodate informal ones and that informal institutions tend to compete and interfere, with the existing and ineffective formal institutions. The result of such conflicting relationship is that the actual autonomy of public service delivery units is, in most cases, perceived to be greater than the formal autonomy they are given. In the condition of poor regulation, the informal autonomy may result in unethical practices including rent-seeking and corruption. The implication of the study finding is policy-makers need to redesign and reorganize the autonomisation of public service delivery units to make informal institutions support and reinforce formal ones in a complementary manner.

Keywords: autonomy, formal institutions, informal institutions, public service delivery units, Vietnam

Procedia PDF Downloads 181
476 Cardiotoxicity Associated with Radiation Therapy: The Role of Bone Marrow Mesenchymal Cells in Improvement of Heart Function

Authors: Isalira Peroba Ramos, Cherley Borba Vieira de Andrade, Grazielle Suhett, Camila Salata, Paulo Cesar Canary, Guilherme Visconde Brasil, Antonio Carlos Campos de Carvalho, Regina Coeli dos Santos Goldenberg

Abstract:

Background: The therapeutic options for patients with cancer now include increasingly complex combinations of medications, radiation therapy (RT), and surgical intervention. Many of these treatments have important potential adverse cardiac effects and are likely to have significant effects on patient outcomes. Cell therapy appears to be promising for the treatment of chronic and degenerative diseases, including cardiomyopathy induced by RT, as the current therapeutic options are insufficient. Aims: To evaluate the potential of bone marrow mesenchymal cells (BMMCs) in radioinduced cardiac damage Methods: Female Wistar rats, 3 months old (Ethics Committee 054/14), were divided into 2 groups, non-treated irradiated group (IR n=15) and irradiated and BMMC treated (IRT n=10). Echocardiography was performed to evaluate heart function. After euthanasia, 3 months post treatment; the left ventricle was removed and prepared for RT-qPCR (VEGF and Pro Collagen I) and histological (picrosirius) analysis. Results: In both groups, 45 days after irradiation, ejection fraction (EF) was in the normal range for these animals (> 70%). However, the BMMC treated group had EF (83.1%±2.6) while the non-treated IR group showed a significant reduction (76.1%±2.6) in relation to the treated group. In addition, we observed an increase in VEGF gene expression and a decrease in Pro Collagen I in IRT when compared to IR group. We also observed by histology that the collagen deposition was reduced in IRT (10.26%±0.83) when compared to IR group (25.29%±0.96). Conclusions: Treatment with BMMCs was able to prevent ejection fraction reduction and collagen deposition in irradiated animals. The increase of VEGF and the decrease of pro collagen I gene expression might explain, at least in part, the cell therapy benefits. All authors disclose no financial or personal relationships with individuals or organizations that could be perceived to bias their work. Sources of funding: FAPERJ, CAPES, CNPq, MCT.

Keywords: mesenchymal cells, radioation, cardiotoxicity, bone marrow

Procedia PDF Downloads 234
475 Treatment of Papillary Thyroid Carcinoma Metastasis to the Sternum: A Case Report

Authors: Geliashvili T. M., Tyulyandina A. S., Valiev A. K., Kononets P. V., Kharatishvili T. K., Salkov A. G., Pronin A. I., Gadzhieva E. H., Parnas A. V., Ilyakov V. S.

Abstract:

Aim/Introduction: Metastasis (Mts) to the sternum, while extremely rare in differentiated thyroid cancer (DTC) (1), requires a personalized, multidisciplinary treatment approach. In aggressively growing Mts to the sternum, which rapidly become unresectable, a comprehensive therapeutic and diagnostic approach is particularly important. Materials and methods: We present a clinical case of solitary Mts to the sternum as first manifestation of a papillary thyroid microcarcinoma in a 55-year-old man. Results: 18F-FDG PET/CT after thyroidectomy confirmed the solitary Mts to the sternum with extremely high FDG uptake (SUVmax=71,1), which predicted its radioiodine-refractory (RIR). Due to close attachment to the mediastinum and rapid growth, Mts was considered unresectable. During the next three months, the patient received targeted therapy with the tyrosine kinase inhibitor (TKI) Lenvatinib 24 mg per day. 1st course of radioiodine therapy (RIT) 6 GBq was also performed, the results of which confirmed the RIR of the tumor process. As a result of systemic therapy (targeted therapy combined with RIT and suppressive hormone therapy with L-thyroxine), there was a significant biochemical response (decrease of serum thyroglobulin level from 50,000 ng/ml to 550 ng/ml) and a partial response with decrease of tumor size (from 80x69x123 mm to 65x50x112 mm) and decrease of FDG accumulation (SUVmax from 71.1 to 63). All of this made possible to perform surgical treatment of Mts - sternal extirpation with its replacement by an individual titanium implant. At the control examination, the stimulated thyroglobulin level was only 134 ng/ml, and PET/CT revealed postoperative areas of 18F-FDG metabolism in the removed sternal Mts. Also, 18F-FDG PET/CT in the early (metabolic) stage revealed two new bone Mts (in the area of L3 SUVmax=17,32 and right iliac bone SUVmax=13,73), which, as well as the removed sternal Mts, appeared to be RIRs at the 2nd course of RIT 6 GBq. Subsequently, on 02.2022, external beam radiation therapy (EBRT) was performed on the newly identified oligometastatic bone foci. At present, the patient is under dynamic monitoring and in the process of suppressive hormone therapy with L-thyroxine. Conclusion: Thus, only due to the early prescription of targeted TKI therapy was it possible to perform surgical resection of Mts to the sternum, thereby improve the patient's quality of life and preserve the possibility of radical treatment in case of oligometastatic disease progression.

Keywords: differentiated thyroid cancer, metastasis to the sternum, radioiodine therapy, radioiodine-refractory cancer, targeted therapy, lenvatinib

Procedia PDF Downloads 87
474 Pharmaceutical Evaluation of Five Different Generic Brands of Prednisolone

Authors: Asma A. Ben Ahmed, Hajer M. Alborawy, Alaa A. Mashina, Pradeep K. Velautham, Abdulmonem Gobassa, Emhemmed Elgallal, Mohamed N. El Attug

Abstract:

Generic medicines are those where patent protection has expired, and which may be produced by manufacturers other than the innovator company. Use of generic medicines has been increasing in recent years, primarily as a cost saving measure in healthcare provision. Generic medicines are typically 20 – 90 % cheaper than originator equivalents. Physicians often continue to prescribe brand-name drugs to their patients even when less expensive pharmacologically equivalent generic drugs are available. Because generics are less expensive than their brand-name counterparts, the cost-savings to the patient is not the only factor that physicians consider when choosing between generic and brand-name drugs. Unfortunately Physicians in general and Libyan Physicians in particular tend to prescribe brand-name drugs, even without evidence of their therapeutic superiority, because neither they nor their insured patients bear these drugs’ increased cost with respect to generic substitutes. This study is to compare the quality of five different prednisolone tablets of the same strength from different companies under different trade names: Julphar, October pharma, Akums, Actavis, Pfizer compared them with pure prednisolone reference (BPCRS).

Keywords: quality control, pharmaceutical analysis, generic medicines, prednisolone

Procedia PDF Downloads 489
473 Periodontal Disease or Cement Disease: New Frontier in the Treatment of Periodontal Disease in Dogs

Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.

Keywords: nanoidroxiaphatite, parodontal disease, cement disease, regenerative therapy

Procedia PDF Downloads 423
472 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology

Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó

Abstract:

Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.

Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants

Procedia PDF Downloads 160
471 Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt

Authors: O. M. Omar, G. D. Abd Elhameed, A. M. Heniegal, H. A. Mohamadien

Abstract:

Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa.

Keywords: geopolymer, molarity, sodium hydroxide, sodium silicate

Procedia PDF Downloads 268
470 The Effect of Crack Size, Orientation and Number on the Elastic Modulus of a Cracked Body

Authors: Mark T. Hanson, Alan T. Varughese

Abstract:

Osteoporosis is a disease affecting bone quality which in turn can increase the risk of low energy fractures. Treatment of osteoporosis using Bisphosphonates has the beneficial effect of increasing bone mass while at the same time has been linked to the formation of atypical femoral fractures. This has led to the increased study of micro-fractures in bones of patients using Bisphosphonate treatment. One of the mechanics related issues which have been identified in this regard is the loss in stiffness of bones containing one or many micro-fractures. Different theories have been put forth using fracture mechanics to determine the effect of crack presence on elastic properties such as modulus. However, validation of these results in a deterministic way has not been forthcoming. The present analysis seeks to provide this deterministic evaluation of fracture’s effect on the elastic modulus. In particular, the effect of crack size, crack orientation and crack number on elastic modulus is investigated. In particular, the Finite Element method is used to explicitly determine the elastic modulus reduction caused by the presence of cracks in a representative volume element. Single cracks of various lengths and orientations are examined as well as cases of multiple cracks. Cracks in tension as well as under shear stress are considered. Although the focus is predominantly two-dimensional, some three-dimensional results are also presented. The results obtained show the explicit reduction in modulus caused by the parameters of crack size, orientation and number noted above. The present results allow the interpretation of the various theories which currently exist in the literature.

Keywords: cracks, elastic, fracture, modulus

Procedia PDF Downloads 89
469 Synthesis, Structural and Vibrational Studies of a New Lacunar Apatite: LIPB2CA2(PO4)3

Authors: A. Chari, A. El Bouari, B. Orayech, A. Faik, J. M. Igartua

Abstract:

The phosphate is a natural resource of great importance in Morocco. In order to exploit this wealth, synthesis and studies of new a material based phosphate, were carried out. The apatite structure present o lot of characteristics, One of the main characteristics is to allow large and various substitutions for both cations and anions. Beside their biological importance in hard tissue (bone and teeth), apatites have been extensively studied for their potential use as fluorescent lamp phosphors or laser host materials.The apatite have interesting possible application fields such as in medicine as materials of bone filling, coating of dental implants, agro chemicals as artificial fertilizers. The LiPb2Ca2(PO4)3 was synthesized by the solid-state method, its crystal structure was investigated by Rietveld analysis using XRPD data. This material crystallizes with a structure of lacunar apatite anion deficit. The LiPb2Ca2(PO4)3 is hexagonal apatite at room temperature, adopting the space group P63/m (ITA No. 176), Rietveld refinements showed that the site 4f is shared by three cations Ca, Pb and Li. While the 6h is occupied by the Pb and Li cations. The structure can be described as built up from the PO4 tetrahedra and the sixfold coordination cavities, which delimit hexagonal tunnels along the c-axis direction. These tunnels are linked by the cations occupying the 4 f sites. Raman and Infrared spectroscopy analyses were carried out. The observed frequencies were assigned and discussed on the basis of unit-cell group analysis and by comparison to other apatite-type materials.

Keywords: apatite, Lacunar, crystal structure, Rietveldmethod, LiPb2Ca2(PO4)3, Phase transition

Procedia PDF Downloads 381
468 Preoperative 3D Planning and Reconstruction of Mandibular Defects for Patients with Oral Cavity Tumors

Authors: Janis Zarins, Kristaps Blums, Oskars Radzins, Renars Deksnis, Atis Svare, Santa Salaka

Abstract:

Wide tumor resection remains the first choice method for tumors of the oral cavity. Nevertheless, remained tissue defect impacts patients functional and aesthetical outcome, which could be improved using microvascular tissue transfers. Mandibular reconstruction is challenging due to the complexity of composite tissue defects and occlusal relationships for normal eating, chewing, and pain free jaw motions. Individual 3-D virtual planning would provide better symmetry and functional outcome. The main goal of preoperative planning is to develop a customized surgical approach with patient specific cutting guides of the mandible, osteotomy guides of the fibula, pre-bended osteosynthesis plates to perform more precise reconstruction, to decrease the surgery time and reach the best outcome. Our study is based on the analysis of 32 patients operated on between 2019 to 2021. All patients underwent mandible reconstruction with vascularized fibula flaps. Patients characteristics, surgery profile, survival, functional outcome, and quality of life was evaluated. Preoperative planning provided a significant decrease of surgery time and the best arrangement of bone closely similar as before the surgery. In cases of bone asymmetry, deformity and malposition, a new mandible was created using 3D planning to restore the appearance of lower jaw anatomy and functionality.

Keywords: mandibular, 3D planning, cutting guides, fibula flap, reconstruction

Procedia PDF Downloads 105
467 Impact of the Pandemic on China's Digital Creative Industries: Mechanisms and Manifestations

Authors: Li Qiaoming

Abstract:

The outbreak of Coronavirus disease 2019 (COVID-19) in early 2020 brought new opportunities to the development of the digital creative industry in China. Based on the realistic foundation of the development of the digital creative industry in China, an analysis was conducted on the mechanism of action of the pandemic on this industry from both sides of supply and demand by sorting out its concept, connotation, and related theories. To be specific, the demand side experienced changes due to the changes in the consumption habits of residents, the sharp increase in gross domestic time (GDT), the satisfaction of the psychological needs of users, search for substitutes for offline consumption, and other factors. An analysis was carried out on the mechanism of action of the pandemic on the digital creative industry from the production link, supply subjects, product characteristics, and transmission link of the supply side. Then, a detailed discussion was held on the manifestation forms of the impact of the pandemic from the dimensions of time and space. Finally, this paper discussed the main development focuses of the digital creative industry in the post-pandemic era from the aspects of the government, industries, and enterprises.

Keywords: COVID-19, demand and supply relationship, digital creative industries, industry shocks

Procedia PDF Downloads 131
466 Investigation of Biochar from Banana Peel

Authors: Anurita Selvarajoo, Svenja Hanson

Abstract:

Growing energy needs and increasing environmental issues are creating awareness for alternative energy which substitutes the non-renewable and polluting fossil fuels. Agricultural wastes are a good feedstock for biochar production through the pyrolysis process. There is potential to generate solid fuel from agricultural wastes, as there are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study on the pyrolysis of banana peel. The effects of pyrolysis temperatures on the yield of biochar from the banana peel were investigated. Banana peel was pyrolysed in a horizontal tubular reactor under inert atmosphere by varying the temperatures between 300 and 700 0C. With increasing temperature, the total biochar yield decreased with increased heating value. It was found that the pyrolysis temperature had major effect on the yield of biochar product. It also exerted major influence on the heating value and C,H and O composition. The obtained biochar ranged between 31.9 to 56.7 %wt, at different pyrolysis temperatures. The optimum biochar yield was obtained at 325 0C. Biochar yield obtained at optimum temperature was 47 % wt with a heating value of 25.9 MJ kg-1. The study has been performed in order to demonstrate that agricultural wastes like banana peel are also important source of solid fuel.

Keywords: agricultural Wastes, banana peel, biochar, pyrolysis

Procedia PDF Downloads 277
465 Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke

Authors: Ramazan F. Akkoc, Elif Erdem, Nalan Kaya, Gonca Ozan, D. Özlem Dabak, Enver Ozan

Abstract:

Maternal tobacco smoke exposure is known to cause growth retardation in the neonatal skeletal system. Alpha lipoic acid, a natural antioxidant found in some foods, limits the activities of osteoclasts and supports the osteoblast's bone formation mechanism. In this study, it was aimed to investigate the effects of alpha lipoic acid (ALA) on the height, long bones and tail lengths of pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1) control group, 2) tobacco smoke group, 3) tobacco smoke + ALA group, and 4) ALA group. Rats in the group 2 (tobacco smoke), group 3 (tobacco smoke + ALA) were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group 3 (tobacco smoke + ALA). Only alpha lipoic acid was administered to the rats in the group 4. On day 21 postpartum, the height and tail lengths of the pups in all groups were measured, and the length of the extremity long bones was measured after decapitation. All morphometric measurements performed in group 2 (tobacco smoke) showed a significant decrease compared to group 1 (control), while all measurements in group 3 (tobacco smoke + ALA) showed a significant increase compared to group 2 (tobacco smoke). It has been shown that ALA has a protective effect against the regression of height, long bones and tail lengths of pups exposed to maternal tobacco smoke.

Keywords: alpha lipoic acid, bone, morphometry, rat, tobacco smoke

Procedia PDF Downloads 342
464 Evaluation of Initial Graft Tension during ACL Reconstruction Using a Three-Dimensional Computational Finite Element Simulation: Effect of the Combination of a Band of Gracilis with the Former Graft

Authors: S. Alireza Mirghasemi, Javad Parvizi, Narges R. Gabaran, Shervin Rashidinia, Mahdi M. Bijanabadi, Dariush G. Savadkoohi

Abstract:

Background: The anterior cruciate ligament is one of the most frequent ligament to be disrupted. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction including preoperative laxity of the knee, selection of the graft material, surgical technique, graft tension, and postoperative rehabilitation. We aimed to examine the biomechanical properties of any graft type and initial graft tensioning during ACL reconstruction using 3-dimensional computational finite element simulation. Methods: In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) Bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings: The resulting stress pattern and deflection in any of these models were compared to that of the intact knee. The obtained results showed that the combination of a band of gracilis with the former graft (BPTB or Hamstring) increases the structural stiffness of the knee. Conclusion: Required pretension during surgery decreases significantly by adding a band of gracilis to the proper graft.

Keywords: ACL reconstruction, deflection, finite element simulation, stress pattern

Procedia PDF Downloads 277
463 Assessment of Osteocalcin and Homocysteine Levels in Saudi Female Patients with Type II Diabetes Mellitus

Authors: Walaa Mohammed Saeed

Abstract:

Studies suggest a crosstalk between bone and metabolism through Osteocalcin (OC), a bone-derived protein that plays an important role in regulating glucose and fat metabolism. Studies relate type II Diabetes Mellitus (DMII) with Homocysteine (Hcy) and cardiovascular diseases (CVD). This study investigates the relationship between levels of OC, Hcy, and DMII in 85 subjects of which 50 were diabetic female patients (29–65 years) and 35 healthy controls. OC and Hcy levels were measured in fasting blood samples using immunoassay analyzer. Fasting serum glucose, glycated hemoglobin, lipid profile, were estimated by automated Siemens Dimension XP auto-analyzer. A significant increase in the frequency of low OC levels (p < 0.001) and high Hcy levels (p < 0.001) was detected in diabetic patients compared to controls (chi-squared test). Using ANOVA test, patients were divided into tertiles based on plasma OC and Hcy levels; fasting serum glucose varied inversely with OC but directly with Hcy tertiles (p=0.049, p=0.033 respectively). Atherogenic Index of Plasma (AIP=Log TG/HDL) predicts that diabetic patients with 36% high and 15% intermediate cardiovascular risk had increased frequency of low OC levels compared to low-risk patients (p=0.047). Another group of diabetic patients with 39% high and 11% intermediate CVD risk had increased frequency of high Hcy levels (p=0.033). A significant negative correlation existed between OC and glucose (r = -0.318; p = 0.035) while correlation between glucose level and Hcy (r = 0.851 p=0.022) was positive. Hence, low serum OC levels and high Hcy levels were associated with impaired glucose metabolism that may increase cardiovascular risk in DMII.

Keywords: osteocalcin, homocysteine, type 2 diabetes, cardiovascular

Procedia PDF Downloads 128
462 Biodegradable Cross-Linked Composite Hydrogels Enriched with Small Molecule for Osteochondral Regeneration

Authors: Elena I. Oprita, Oana Craciunescu, Rodica Tatia, Teodora Ciucan, Reka Barabas, Orsolya Raduly, Anca Oancea

Abstract:

Healing of osteochondral defects requires repair of the damaged articular cartilage, the underlying subchondral bone and the interface between these tissues (the functional calcified layer). For this purpose, developing a single monophasic scaffold that can regenerate two specific lineages (cartilage and bone) becomes a challenge. The aim of this work was to develop variants of biodegradable cross-linked composite hydrogel based on natural polypeptides (gelatin), polysaccharides components (chondroitin-4-sulphate and hyaluronic acid), in a ratio of 2:0.08:0.02 (w/w/w) and mixed with Si-hydroxyapatite (Si-Hap), in two ratios of 1:1 and 2:1 (w/w). Si-Hap was synthesized and characterized as a better alternative to conventional Hap. Subsequently, both composite hydrogel variants were cross-linked with (N, N-(3-dimethylaminopropyl)-N-ethyl carbodiimide (EDC) and enriched with a small bioactive molecule (icariin). The small molecule icariin (Ica) (C33H40O15) is the main active constituent (flavonoid) of Herba epimedium used in traditional Chinese medicine to cure bone- and cartilage-related disorders. Ica enhances osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), facilitates matrix calcification and increases the specific extracellular matrix (ECM) components synthesis by chondrocytes. Afterward, the composite hydrogels were characterized for their physicochemical properties in terms of the enzymatic biodegradation in the presence of type I collagenase and trypsin, the swelling capacity and the degree of crosslinking (TNBS assay). The cumulative release of Ica and real-time concentration were quantified at predetermined periods of time, according to the standard curve of standard Ica, after hydrogels incubation in saline buffer at physiological parameters. The obtained cross-linked composite hydrogels enriched with small-molecule Ica were also characterized for morphology by scanning electron microscopy (SEM). Their cytocompatibility was evaluated according to EN ISO 10993-5:2009 standard for medical device testing. Thus, analyses regarding cell viability (Live/Dead assay), cell proliferation (Neutral Red assay) and cell adhesion to composite hydrogels (SEM) were performed using NCTC clone L929 cell line. The final results showed that both cross-linked composite hydrogel variants enriched with Ica presented optimal physicochemical, structural and biological properties to be used as a natural scaffold able to repair osteochondral defects. The data did not reveal any toxicity of composite hydrogels in NCTC stabilized cell lines within the tested range of concentrations. Moreover, cells were capable of spreading and proliferating on both composite hydrogel surfaces. In conclusion, the designed biodegradable cross-linked composites enriched with Si and Ica are recommended for further testing as natural temporary scaffolds, which can allow cell migration and synthesis of new extracellular matrix within osteochondral defects.

Keywords: composites, gelatin, osteochondral defect, small molecule

Procedia PDF Downloads 152
461 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 293
460 Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: antibacterial activity, bioactive glass, sol-gel, strontium

Procedia PDF Downloads 97