Search results for: adipose derived stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6151

Search results for: adipose derived stem cells

5791 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation

Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee

Abstract:

Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.

Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity

Procedia PDF Downloads 254
5790 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide

Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi

Abstract:

This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.

Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1

Procedia PDF Downloads 413
5789 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis

Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni

Abstract:

The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.

Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis

Procedia PDF Downloads 277
5788 The Impact of Academic Support Practices on Two-Year College Students’ Achievement in Science, Technology, Engineering, and Math Education: An Exploration of Factors

Authors: Gisele Ragusa, Lilian Leung

Abstract:

There are essential needs for science, technology, engineering, and math (STEM) workforces nationally. This important need underscores the necessity of increasing numbers of students attending both two-year community colleges and universities, thereby enabling and supporting a larger pool of students to enter the workforce. The greatest number of students in STEM programs attend public higher education institutions, with an even larger majority beginning their academic experiences enrolled in two-year public colleges. Accordingly, this research explores the impact of experiences and academic support practices on two-year (community) college students’ academic achievement in STEM majors with a focus on supporting students who are the first in their families to attend college. This research is a result of three years of iterative trials of differing supports to improve such students’ academic success with a cross-student comparative research methodological structure involving peer-to-peer and faculty academic supports. Results of this research indicate that background experiences and a combination of peer-to-peer and faculty-led academic support practices, including supplementary instruction, peer mentoring, and study skills support, significantly improve students’ academic success in STEM majors. These results confirm the needs that first-generation students have in navigating their college careers and what can be effective in supporting them.

Keywords: higher education policy, student support, two-year colleges, STEM achievement

Procedia PDF Downloads 101
5787 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19

Authors: Youssef A. Yakoub, Ramy M. Shaaban

Abstract:

Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.

Keywords: eLearning, STEM education, COVID-19 crisis, online practical training

Procedia PDF Downloads 139
5786 Cryptosporidium Parvum oocytic Antigen Induced a Pro-Inflammatory DC Phenotype

Authors: Connick K, Lalor R, Murphy A, O’Neill S. M., Rabab S. Zalat, Eman E. El Shanawany

Abstract:

Cryptosporidium parvum is an opportunistic intracellular parasite that causes mild to severe diarrhea in human and animal populations and is an important zoonotic disease globally. In immunocompromised hosts, infection Canbe life-threatening as no effective treatments are currently available to control infection. To increase our understanding of the mechanisms that play a role in host-parasite interactions at the level of the immune response, we investigated the effects of Cryptosporidium parvum antigen (CPA) on bone marrow-derived (DCS). Herein we examined cytokine secretion and cell surface marker expression on DCs exposed to CPA. We also measured cytokine production in CD4+ cells co-cultured with CPA primed DCs in the presence of anti-CD3. CPA induced a significant increase in the production of interleukin(IL)-12p40, IL-10, IL-6, and TNF-α by DCs and enhanced the expression of the cell surface markers TLR4, CD80, CD86, and MHC11. CPA primed DC co-cultured in the presence of anti-CD3 with CD4+ T-cells inhibited the secretion of Th2 associated cytokines, notably IL-5 and IL-13, with no effects on the secretions of interferon (IFN)-γ, IL-2, IL-17, and IL-10. These findings support studies in the literature that CPA can induce the full maturation of DCs that subsequently initiate Th1 immune responses critical to the resolution of C. parvum infection.

Keywords: cryptosporidium parvum, dendritic cells, IL-12 p70, cell surface marker

Procedia PDF Downloads 176
5785 Analysis Influence Variation Frequency on Characterization of Nano-Particles in Preteatment Bioetanol Oil Palm Stem (Elaeis guineensis JACQ) Use Sonication Method with Alkaline Peroxide Activators on Improvement of Celullose

Authors: Luristya Nur Mahfut, Nada Mawarda Rilek, Ameiga Cautsarina Putri, Mujaroh Khotimah

Abstract:

The use of bioetanol from lignocellulosic material has begone to be developed. In Indonesia the most abundant lignocellulosic material is stem of palm which contain 32.22% of cellulose. Indonesia produces approximatelly 300.375.000 tons of stem of palm each year. To produce bioetanol from lignocellulosic material, the first process is pretreatment. But, until now the method of lignocellulosic pretretament is uneffective. This is related to the particle size and the method of pretreatment of less than optimal so that led to an overhaul of the lignin insufficient, consequently increased levels of cellulose was not significant resulting in low yield of bioetanol. To solve the problem, this research was implemented by using the process of pretreatment method ultasonifikasi in order to produce higher pulp with nano-sized particles that will obtain higher of yield ethanol from stem of palm. Research methods used in this research is the RAK that is composed of one factor which is the frequency ultrasonic waves with three varians, they are 30 kHz, 40 kHz, 50 kHz, and use constant variable is concentration of NaOH. The analysis conducted in this research is the influence of the frequency of the wave to increase levels of cellulose and change size on the scale of nanometers on pretreatment process by using the PSA methods (Particle Size Analyzer), and a Cheason. For the analysis of the results, data, and best treatment using ANOVA and test BNT with confidence interval 5%. The best treatment was obtained by combination X3 (frequency of sonication 50 kHz) and lignin (19,6%) cellulose (59,49%) and hemicellulose (11,8%) with particle size 385,2nm (18,8%).

Keywords: bioethanol, pretreatment, stem of palm, cellulosa

Procedia PDF Downloads 330
5784 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 293
5783 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries

Authors: Rupan Das Chakraborty, Surendra K. Martha

Abstract:

Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).

Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance

Procedia PDF Downloads 121
5782 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 399
5781 Biological Activity of Mesenchymal Stem Cells in the Surface of Implants

Authors: Saimir Heta, Ilma Robo, Dhimiter Papakozma, Eduart Kapaj, Vera Ostreni

Abstract:

Introduction: The biocompatible materials applied to the implant surfaces are the target of recent literature studies. Methodologies: Modification of implant surfaces in different ways such as application of additional ions, surface microstructure change, surface or laser ultrasound alteration, or application of various substances such as recombinant proteins are among the most affected by articles published in the literature. The study is of review type with the main aim of finding the different ways that the mesenchymal cell reaction to these materials is, according to the literature, in the same percentage positive to the osteointegration process. Results: It is emphasized in the literature that implant success as a key evaluation key has more to implement implant treatment protocol ranging from dental health amenity and subsequent of the choice of implant type depending on the alveolar shape of the ridge level. Conclusions: Osteointegration is a procedure that should initially be physiologically independent of the type of implant pile material. With this physiological process, it can not "boast" for implant success or implantation depending on the brand of the selected implant, as the breadth of synthetic or natural materials that promote osteointegration is relatively large.

Keywords: mesenchymal cells, implants, review, biocompatible materials

Procedia PDF Downloads 90
5780 [Keynote Speech]: Guiding Teachers to Make Lessons Relevant, Appealing, and Personal (RAP) for Academically-Low-Achieving Students in STEM Subjects

Authors: Nazir Amir

Abstract:

Teaching approaches to present science and mathematics content amongst academically-low-achieving students may need to be different than approaches that are adopted for the more academically-inclined students, primarily due to the different learning needs and learning styles of these students. In crafting out lessons to motivate and engage these students, teachers need to consider the backgrounds of these students and have a good understanding of their interests so that lessons can be presented in ways that appeal to them, and made relevant not just to the world around them, but also to their personal experiences. This presentation highlights how the author worked with a Professional Learning Community (PLC) of teachers in crafting out fun and feasible classroom teaching approaches to present science and mathematics content in ways that are made Relevant, Appealing, and Personal (RAP) to groups of academically-low-achieving students in Singapore. Feedback from the students and observations from their work suggest that they were engaged through the RAP-modes of instruction, and were able to appreciate the role of science and mathematics through a variety of low-cost design-based STEM (Science, Technology, Engineering, and Mathematics) activities. Such results imply that teachers teaching academically-low-achieving students, and those in under-resourced communities, could consider infusing RAP-infused instructions into their lessons in getting students develop positive attitudes towards STEM subjects.

Keywords: STEM Education, STEAM Education, Curriculum Instruction, Academically At-Risk Students, Singapore

Procedia PDF Downloads 306
5779 Effect of Dietary Supplementation of Allium Hookeri Root and Processed Sulfur on the Growth Performance of Guinea Pigs

Authors: Nayeon, Lee, Won-Young, Cho, Hyun Joo, Jang, Chi-Ho, Lee

Abstract:

This study investigated the effects of the dietary supplementation of the Allium hookeri root, and processed sulfur, on the growth performance of guinea pigs. The guinea pigs were fed a control diet (CON), as well as the control diet including 1% freeze-dried Allium hookeri root (AH), or 0.1% processed sulfur (S), or including both the freeze-dried Allium hookeri root and the processed sulfur (AHS). The weight of perirenal adipose tissue (PAT) and the epididymal adipose tissue (EAT) in the AH were significantly lower than CON (p < 0.05). The serum cholesterols levels of the AH and the AHS were significantly lower than the S (p < 0.05). While the total saturated fatty acid content in the serum of the AH and AHS groups showed a tendency to decrease, the total monounsaturated fatty acid increased. The results of this study suggested that dietary consumption of Allium hookeri root may help to decrease fat accumulation, lower serum cholesterol levels, and control serum free fatty acid contents in the guinea pigs.

Keywords: Allium hookeri, dietary supplementation, growth performance, processed sulfur, Guinea pig

Procedia PDF Downloads 271
5778 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence

Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi

Abstract:

In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.

Keywords: germination, priming, seedling growth, wheat

Procedia PDF Downloads 180
5777 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 179
5776 Molecular Pathogenesis of NASH through the Dysregulation of Metabolic Organ Network in the NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

NASH is an increasingly prevalent chronic liver disease that can progress to hepatocellular carcinoma and now is attracting interest worldwide. The STAM™ model is a clinically-correlated murine NASH model which shows the same pathological progression as NASH patients and has been widely used for pharmacological and basic research. The multiple parallel hits hypothesis suggests abnormalities in adipocytokines, intestinal microflora, and endotoxins are intertwined and could contribute to the development of NASH. In fact, NASH patients often exhibit gut dysbiosis and dysfunction in adipose tissue and metabolism. However, the analysis of the STAM™ model has only focused on the liver. To clarify whether the STAM™ model can also mimic multiple pathways of NASH progression, we analyzed the organ crosstalk interactions between the liver and the gut and the phenotype of adipose tissue in the STAM™ model. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin 2 days after birth and feeding with high-fat diet after 4 weeks of age. The mice were sacrificed at NASH stage. Colon samples were snap-frozen in liquid nitrogen and stored at -80˚C for tight junction-related protein analysis. Adipose tissue was prepared into paraffin blocks for HE staining. Blood adiponectin was analyzed to confirm changes in the adipocytokine profile. Tight junction-related proteins in the intestine showed that expression of ZO-1 decreased with the progression of the disease. Increased expression of endotoxin in the blood and decreased expression of Adiponectin were also observed. HE staining revealed hypertrophy of adipocytes. Decreased expression of ZO-1 in the intestine of STAM™ mice suggests the occurrence of leaky gut, and abnormalities in adipocytokine secretion were also observed. Together with the liver, phenotypes in these organs are highly similar to human NASH patients and might be involved in the pathogenesis of NASH.

Keywords: Non-alcoholic steatohepatitis, hepatocellular carcinoma, fibrosis, organ crosstalk, leaky gut

Procedia PDF Downloads 162
5775 Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC

Authors: Thidarat Duangyod, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin.

Keywords: pentace burmanica, (+)-catechin, (-)-epicatechin, high performance liquid chromatography

Procedia PDF Downloads 457
5774 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 737
5773 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 149
5772 STEAM and Project-Based Learning: Equipping Young Women with 21st Century Skills

Authors: Sonia Saddiqui, Maya Marcus

Abstract:

UTS STEAMpunk Girls is an educational program for young women (aged 12-16), to empower them to be more informed and active members of the 21st century workforce. With the number of STEM graduates on the decline, especially among young women, an additional aim of the program is to trial a STEAM (Science, Technology, Engineering, Arts/Humanities/Social Sciences, Mathematics), inter-disciplinary approach to improving STEM engagement. In-line with UNESCO’s recent focus on promoting ‘transversal competencies’ in future graduates, the program utilised co-design, project-based learning, entrepreneurial processes, and inter-disciplinary learning. The program consists of two phases. Taking a participatory design approach, the first phase (co-design workshops) provided valuable insight into student perspectives around engaging young women in STEM and inter-disciplinary thinking. The workshops positioned 26 young women from three schools as subject matter experts (SMEs), providing a platform for them to share their opinions, experiences and findings around the STEAM disciplines. The second (pilot) phase put the co-design phase findings into practice, with 64 students from four schools working in groups to articulate problems with real-world implications, and utilising design-thinking to solve them. The pilot phase utilised project-based learning to engage young women in entrepreneurial and STEAM frameworks and processes. Scalable program design and educational resources were trialed to determine appropriate mechanisms for engaging young women in STEM and in STEAM thinking. Across both phases, data was collected via longitudinal surveys to obtain pre-program, baseline attitudinal information, and compare that against post-program responses. Preliminary findings revealed students’ improved understanding of the STEM disciplines, industries and professions, improved awareness of STEAM as a concept, and improved understanding regarding inter-disciplinary and design thinking. Program outcomes will be of interest to high-school educators in both STEM and the Arts, Humanities and Social Sciences fields, and will hopefully inform future programmatic approaches to introducing inter-disciplinary STEAM learning in STEM curriculum.

Keywords: co-design, STEM, STEAM, project-based learning, inter-disciplinary

Procedia PDF Downloads 202
5771 Natural Honey and Effect on the Activity of the Cells

Authors: Abujnah Dukali

Abstract:

Natural honey was assessed in cell culture system for its anticancer activity. Human leukemic cell line HL 60 was treated with honey and cultured for 5 days and cytotoxicity was calculated by MTT assay. Honey showed cytotoxicity with CC50 value of 174.20 µg/ml. Radical modulation activities was assessed by lipid peroxidation assay using egg lecithin. Honey showed antioxidant activity with EC50 value of 159.73 µg/ml. In addition, treatment with HL60 cells also resulted in nuclear DNA fragmentation, as seen in agarose gel electrophoresis. This is a hallmark of cells undergoing apoptosis. Confirmation of apoptosis was performed by staining the cells with Annexin V and FACS analysis. Apoptosis is an active, genetically regulated disassembly of the cell form within. Disassembly creates changes in the phospholipid content of the cytoplasmic membrane outer leaflet. Phosphatidylserine (PS) is translocated from the inner to the outer surface of the cell for phagocytic cell recognition. The human anticoagulant, annexin V, is a Ca2+-dependent phospholipid protein with a high affinity for PS. Annexin V labeled with fluorescein can identify apoptotic cells in the population It is a confirmatory test for apoptosis. Annexin V-positive cells were defined as apoptotic cells. Since honey shows both antioxidant activity and cytotoxicity at almost the same concentration, it can prevent the free radical induced cancer as prophylactic agent and kill the cancer cells by apoptotic process as a chemotherapeutic agent. Everyday intake of honey can prevent the cancer induction.

Keywords: anticancer, cells, DNA, honey

Procedia PDF Downloads 209
5770 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 159
5769 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree

Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba

Abstract:

The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.

Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible

Procedia PDF Downloads 329
5768 Comparison of Phenolic and Urushiol Contents of Different Parts of Rhus verniciflua and Their Antimicrobial Activity

Authors: Jae Young Jang, Jong Hoon Ahn, Jae-Woong Lim, So Young Kang, Mi Kyeong Lee

Abstract:

Rhus verniciflua is commonly known as a lacquer tree in Korea. Stem barks of R. verniciflua have been used as an immunostimulator in traditional medicine. It contains phenolic compounds and is known for diverse biological activities such as antioxidant and antimicrobial activity. However, it also causes allergic dermatitis due to urushiols derivatives. For the development of active natural resources with less toxicity, the content of phenolic compounds and urushiols of different parts of R. verniciflua such as stem barks, lignum and leaves were quantitated by colorimetric assay and HPLC analysis. The urushiols content were the highest in stem barks, and followed by leaves. The lignum contained trace amount of urushiols. The phenolic contents, however, were the most abundant in lignum, and followed by leaves and stem barks. These results clear showed that the content of urushiols and phenolic differs depending on the parts of R. verniciflua. Antimicrobial activity of different parts of R. verniciflua against fish pathogenic bacteria was also investigated using Edwardsiella tarda. Lignum of R. verniciflua was the most effective in antimicrobial activity against E. tarda and phenolic constituents are suggested to be active constituents for activity. Taken together, phenolic compounds are responsible for antimicrobial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antimicrobial activity with less toxicity. Therefore, lignum of R. verniciflua are suggested as good sources for antimicrobial activity against fish bacterial diseases.

Keywords: different parts, phenolic compounds, Rhus verniciflua, urushiols

Procedia PDF Downloads 321
5767 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 233
5766 In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice

Authors: K. Yadamma, K. Rudrama Devi

Abstract:

The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells.

Keywords: ginger extract, protection, bone marrow cells, swiss albino mice

Procedia PDF Downloads 440
5765 Erythrophagocytic Role of Mast Cells in vitro and in vivo during Oxidative Stress

Authors: Priyanka Sharma, Niti Puri

Abstract:

Anemia develops when blood lacks enough healthy erythrocytes. Past studies indicated that anemia, inflammatory process, and oxidative stress are interconnected. Erythrocytes are continuously exposed to reactive oxygen species (ROS) during circulation, due to normal aerobic cellular metabolism and also pathology of inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells have been shown to affect anaemia. In the present study, we attempted to reveal whether mast cells have a direct role in clearance or erythrophagocytosis of normal or oxidatively damaged erythrocytes. Murine erythrocytes were treated with tert-butyl hydroperoxidase (t-BHP), an agent that induces oxidative damage and mimics in vivo oxidative stress. Normal and oxidatively damaged erythrocytes were labeled with carboxyfluorescein succinimidyl ester (CFSE) to track erythrophagocytosis. We show, for the first time, direct erythrophagocytosis of oxidatively damaged erythrocytes in vitro by RBL-2H3 mast cells as well as in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significant increase in the uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Hence, our study provides important evidence for involvement of mast cells in severe anemia due to inflammation and oxidative stress and might be helpful to circumvent the adverse anemic disorders.

Keywords: mast cells, anemia, erythrophagocytosis, oxidatively damaged erythrocytes

Procedia PDF Downloads 256
5764 Biological Activities of Flaxseed Peptides (Linusorbs)

Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin J. T. Reaney

Abstract:

Flaxseed (Linum usitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. The flax plant synthesizes an array of biologically active cyclic peptides or linusorbs (LOs, a.k.a. cyclolinopeptides) from three or more ribosome-derived precursors. [1–9-NαC]-linusorb B3 and [1–9-NαC]-linusorb B2, suppress immunity, induce apoptosis in human epithelial cancer cell line (Calu-3) cells, and inhibit T-cell proliferation, but the mechanism of LOs action is unknown. Using gene expression analysis in nematode cultures and human cancer cell lines, we have observed that LOs exert their activity, in part, through induction of apoptosis. Specific LOs’ properties include: 1) distribution throughout the body after flaxseed consumption; 2) induce heat shock protein (HSP) 70A production as an indicator of stress and address the issue in Caenorhabditis elegans (exposure of nematode cultures to [1–9-NαC]-linusorb B3 induced a 30% increase in production of the HSP 70A protein); 3) induce apoptosis in Calu-3 cells; and 4) modulate regulatory genes in microarray analysis. These diverse activities indicate that LOs might induce apoptosis in cancer cells or act as versatile platforms to deliver a variety of biologically active molecules for cancer therapy.

Keywords: flaxseed, linusorb, cyclic peptide, orbitides, heat shock protein, apoptosis, anti-cancer

Procedia PDF Downloads 140
5763 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 89
5762 Local Activities of the Membranes Associated with Glycosaminoglycan-Chitosan Complexes in Bone Cells

Authors: Chih-Chang Yeh, Min-Fang Yang, Hsin-I Chang

Abstract:

Chitosan is a cationic polysaccharide derived from the partial deacetylation of chitin. Hyaluronic acid (HA), chondroitin sulfate (CS) and heparin (HP) are anionic glycosaminoglycans (GCGs) which can regulate osteogenic activity. In this study, chitosan membranes were prepared by glutaraldehyde crosslinking reaction and then complexed with three different types of GCGs. 7F2 osteoblasts-like cells and macrophages Raw264.7 were used as models to study the influence of chitosan membranes on osteometabolism. Although chitosan membranes are highly hydrophilic, the membranes associated with GCG-chitosan complexes showed about 60-70% cell attachment. Furthermore, the membranes associated with HP-chitosan complexes could increase ALP activity in comparison with chitosan films only. Three types of the membranes associated with GCG-chitosan complexes could significantly inhibit LPS induced-nitric oxide expression. In addition, chitosan membranes associated with HP and HA can down-regulate tartrate-resistant acid phosphatase (TRAP) activity but not CS-chitosan complexes. Based on these results, we conclude that chitosan membranes associated with HP can increase ALP activity in osteoblasts and chitosan membranes associated with HP and HA reduce TRAP activity in osteoclasts.

Keywords: osteoblast, osteoclast, chitosan, glycosaminoglycan

Procedia PDF Downloads 532