Search results for: Lactic acid bacteria
4188 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle
Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene
Abstract:
The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus
Procedia PDF Downloads 3074187 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS
Authors: Hamidreza Bagheri, Alireza Shariati
Abstract:
There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm
Procedia PDF Downloads 5204186 Lipoic Acid Accelerates Wound Healing by Diminishing Pro-Inflammatory Markers and Chemokine Expression in Rheumatoid Arthritis Mouse Model
Authors: Khairy M. A. Zoheir
Abstract:
One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid was investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells, and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid treated mice showed a significant decrease in the Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also down regulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs also found to be significantly upregulated in lipoic acid treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for therapy Rheumatoid arthritis.Keywords: lipoic acid, chemokines, inflammatory, rheumatoid arthritis
Procedia PDF Downloads 1744185 Advanced Oxidation Processes as a Pre-oxidation Step for Biological Treatment of Leachate from Technical Landfills
Authors: Ala Abdessemed, Mohamed Seddik Oussama Belahmadi, Nabil Charchar, Abdefettah Gherib, Bradai Fares, Boussadia Chouaib Nour El-Islem
Abstract:
Algerian cities are confronted with large quantities of waste generated by the disposal of household and similar residues in technical landfills (CET), such as the one in the location of Batna. The interaction between waste components and incoming water generates leachates rich in organic matter and trace elements, which require treatment before discharge. The aim of this study was to propose an effective process for treating the leachates, which were subjected to an initial chemical treatment using the (H₂O₂/UV) system. Optimal treatment conditions were determined at [H₂O₂] of 0.3 M and pH of 8.6. Next, two hybrid biological treatment systems were applied: hybrid system I (H₂O₂/UV/bacteria) and hybrid system II (H₂O₂/UV/bacteria/microalgae). The three processes resulted in the following degradation rates, expressed in terms of total organic carbon (TOC) 27.4% for the (H₂O₂/UV) system; 58.1% for the hybrid system I (H₂O₂/UV/Bacteria); 67.86% for the hybrid system II (H₂O₂/UV/Bacteria/Microalgae). This study demonstrates that a hybrid approach combining advanced oxidation processes and biological treatments is a highly effective alternative to achieve satisfactory treatment.Keywords: leachate, landfill, advanced oxidation processes, biological treatment, bacteria, microalgae, total organic carbon
Procedia PDF Downloads 694184 Chemiluminescent Detection of Microorganisms in Food/Drug Product Using Reducing Agents and Gold Nanoplates
Authors: Minh-Phuong Ngoc Bui, Abdennour Abbas
Abstract:
Microbial spoilage of food/drug has been a constant nuisance and an unavoidable problem throughout history that affects food/drug quality and safety in a variety of ways. A simple and rapid test of fungi and bacteria in food/drugs and environmental clinical samples is essential for proper management of contamination. A number of different techniques have been developed for detection and enumeration of foodborne microorganism including plate counting, enzyme-linked immunosorbent assay (ELISA), polymer chain reaction (PCR), nucleic acid sensor, electrical and microscopy methods. However, the significant drawbacks of these techniques are highly demand of operation skills and the time and cost involved. In this report, we introduce a rapid method for detection of bacteria and fungi in food/drug products using a specific interaction between a reducing agent (tris(2-carboxylethyl)phosphine (TCEP)) and the microbial surface proteins. The chemical reaction was transferred to a transduction system using gold nanoplates-enhanced chemiluminescence. We have optimized our nanoplates synthetic conditions, characterized the chemiluminescence parameters and optimized conditions for the microbial assay. The new detection method was applied for rapid detection of bacteria (E.coli sp. and Lactobacillus sp.) and fungi (Mucor sp.), with limit of detection as low as single digit cells per mL within 10 min using a portable luminometer. We expect our simple and rapid detection method to be a powerful alternative to the conventional plate counting and immunoassay methods for rapid screening of microorganisms in food/drug products.Keywords: microorganism testing, gold nanoplates, chemiluminescence, reducing agents, luminol
Procedia PDF Downloads 2994183 Optimization the Multiplicity of Infection for Large Produce of Lytic Bacteriophage pAh6-C
Authors: Sang Guen Kim, Sib Sankar Giri, Jin Woo Jun, Saekil Yun, Hyoun Joong Kim, Sang Wha Kim, Jung Woo Kang, Se Jin Han, Se Chang Park
Abstract:
Emerging of the super bacteria, bacteriophages are considered to be as an alternative to antibiotics. As the demand of phage increased, economical and large production of phage is becoming one of the critical points. For the therapeutic use, what is important is to eradicate the pathogenic bacteria as fast as possible, so higher concentration of phages is generally needed for effective therapeutic function. On the contrary, for the maximum production, bacteria work as a phage producing factory. As a microbial cell factory, bacteria is needed to last longer producing the phages without eradication. Consequently, killing the bacteria fast has a negative effect on large production. In this study, Multiplicity of Infection (MOI) was manipulated based on initial bacterial inoculation and used phage pAh-6C which has therapeutic effect against Aeromonas hydrophila. 1, 5 and 10 percent of overnight bacterial culture was inoculated and each bacterial culture was co-cultured with the phage of which MOI of 0.01, 0.0001, and 0.000001 respectively. Simply changing the initial MOI as well as bacterial inoculation concentration has regulated the production quantity of the phage without any other changes to culture conditions. It is anticipated that this result can be used as a foundational data for mass production of lytic bacteriophages which can be used as the therapeutic bio-control agent.Keywords: bacteriophage, multiplicity of infection, optimization, Aeromonas hydrophila
Procedia PDF Downloads 3084182 Study the Effect of Lipoid Acid as a Protective Against Rheumatoid Arthritis Through Diminishing Pro-inflammatory Markers and Chemokine Expression
Authors: Khairy Mohamed Abdalla Zoheir
Abstract:
One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid were investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid-treated mice showed a significant decrease in Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also downregulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs was also found to be significantly upregulated in lipoic acid-treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for the therapy of Rheumatoid arthritis.Keywords: lipoic acid, inflammatory markers, rheumatoid arthritis, qPCR
Procedia PDF Downloads 1004181 Catalytic Deoxygenation of Propionic Acid in the Vapour Phase
Authors: Hossein Bayahia, Mohammed Saad Motlaq Al-Gahmdi
Abstract:
The gas-phase deoxygenation of propionic acid was investigated in the presence of Co-Mo catalysts in N2 or H2 flow at 200-400 °C. In the presence of N2 the main product was 3-pentanone with other deoxygenates and some light gases: ethane and ethene. Using H2 flow, the catalyst was active for decarboxylation and decarbonylation of acid and the yields of ethane and ethene. The decarboxylation and decarbonylation reactions increased with increasing temperature. Cobalt-molybdenum supported on alumina showed better performance than bulk catalyst, especially at 400 °C in the presence of N2 for the ketonisation of propionic acid to form 3-pentanone as the main product. Bulk and supported catalysts were characterized by surface area porosity (BET), thermogravimetric analysis (TGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of pyridine adsorption.Keywords: deoxygenation, propionic acid, gas-phase, catalyst
Procedia PDF Downloads 2874180 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair
Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen
Abstract:
Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel
Procedia PDF Downloads 1324179 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples
Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier
Abstract:
The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.Keywords: archaea, bacteria, detection, FISH, fluorescence
Procedia PDF Downloads 3874178 Biohydrogen Production from Rice Water Using Bacteria Isolated from Wetland Sediment
Authors: Jerry John T. M., Sylas V. P., Shijo Joy
Abstract:
Hydrogen is the most essential gas that can be used for many purposes. During the production of hydrogen using raw materials like Soil and leftover cooked rice water (kanjivellam), the major by-product formed is water. Soil is collected from three different places in kottayam district: Kallara, Meenachilar, and Athirampuzha. Collected samples are mixed with rice water and tested for traces of hydrogen using a biohydrogen sensor after 72 hours. The result was the presence of hydrogen in all the 3 samples. After streaking, PCR and gel electrophoresis detected the bacteria which produced the hydrogen. RGCB Thiruvananthapuram conducted the sequencing of the PCR resultant. And identified the bacterial strains. Five variants of Bacillus bacteria ( (1) Bacillus cereus strain JTM GenBank: OP278839.1 (2) Bacillus toyonensis strain JTM2 GenBank: OP278841.1 (3) Bacillus anthracis strain JTM_SR2989-3-R_H08 GenBank: OP278960.1 (4) Bacillus thuringiensis strain JRY1 GenBank: OP278976.1 (5) Bacillus anthracis strain JTM_SR2989-3-F_H07 GenBank: OP278959.1 ) are identified and successfully registered in NCBI Gen bank. These Bacillus bacteria are major types of Rhizobacteria that can form spores and can survive in the soil for a long time period under harsh environmental conditions. Also, plant growth is enhanced by PGPR (Plant growth promoting rhizobacteria) through the induction of systemic resistance, antibiosis, and competitive omission. The molecular sequencing was submitted to the NCBI Gen Bank, and the accession numbers were allotted for the bacterial cultures.Keywords: bio hydrogen production, bacterial bio hydrogen production, plant related to bacillus bacteria., bacillus bacteria study
Procedia PDF Downloads 664177 Effects of Folic Acid, Alone or in Combination with Other Nutrients on Homocysteine Level and Cognitive Function in Older People: A Systematic Review
Authors: Jiayan Gou, Kexin He, Xin Zhang, Fei Wang, Liuni Zou
Abstract:
Background: Homocysteine is a high-risk factor for cognitive decline, and folic acid supplementation can lower homocysteine levels. However, current clinical research results are inconsistent, and the effects of folic acid on homocysteine levels and cognitive function in older people are inconsistent. Objective: The objective of this study is to systematically evaluate the effects of folic acid alone or in combination with other nutrients on homocysteine levels and cognitive function in older adults. Methods: Systematic searches were conducted in five databases, including PubMed, Embase, the Cochrane Library, Web of Science, and CINAHL, from inception to June 1, 2023. Randomized controlled trials were included investigating the effects of folic acid alone or in combination with other nutrients on cognitive function in older people. Results: 17 articles were included, with six focusing on the effects of folic acid alone and 11 examining folic acid in combination with other nutrients. The study included 3,100 individuals aged 60 to 83.2 years, with a relatively equal gender distribution (approximately 51.82% male). Conclusion: Folic acid alone or combined with other nutrients can effectively lower homocysteine level and improve cognitive function in patients with mild cognitive impairment. But for patients with Alzheimer's disease and dementia, the intervention only can reduce the homocysteine level, but the improvement in cognitive function is not significant. In healthy older people, high baseline homocysteine levels (>11.3 μmol/L) and good ω-3 fatty acid status (>590 μmol/L) can enhance the improvement effect of folic acid on cognitive function. This trial has been registered on PROSPERO as CRD42023433096.Keywords: B-complex vitamins, cognitive function, folic acid, homocysteine
Procedia PDF Downloads 714176 Chaotic Analysis of Acid Rains with Times Series of pH Degree, Nitrate and Sulphate Concentration on Wet Samples
Authors: Aysegul Sener, Gonca Tuncel Memis, Mirac Kamislioglu
Abstract:
Chaos theory is one of the new paradigms of science since the last century. After determining chaos in the weather systems by Edward Lorenz the popularity of the theory was increased. Chaos is observed in many natural systems and studies continue to defect chaos to other natural systems. Acid rain is one of the environmental problems that have negative effects on environment and acid rains values are monitored continuously. In this study, we aim that analyze the chaotic behavior of acid rains in Turkey with the chaotic defecting approaches. The data of pH degree of rain waters, concentration of sulfate and nitrate data of wet rain water samples in the rain collecting stations which are located in different regions of Turkey are provided by Turkish State Meteorology Service. Lyapunov exponents, reconstruction of the phase space, power spectrums are used in this study to determine and predict the chaotic behaviors of acid rains. As a result of the analysis it is found that acid rain time series have positive Lyapunov exponents and wide power spectrums and chaotic behavior is observed in the acid rain time series.Keywords: acid rains, chaos, chaotic analysis, Lypapunov exponents
Procedia PDF Downloads 1454175 Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material.Keywords: antioxidant property, chitosan, ferulic acid, grafting
Procedia PDF Downloads 4594174 Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials
Authors: R. Devicharan
Abstract:
In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results.Keywords: FDM process, 3D printing, ABS for 3D printing, PLA for 3D printing, rapid prototyping
Procedia PDF Downloads 5994173 Effect of Storage Time on the Properties of Seeds, Oil and Biodiesel from Reutealis trisperma
Authors: Muhammad Yusuf Abduh, Syaripudin, Laksmitha Dyanie, Robert Manurung
Abstract:
The time profile of moisture content for different fractions (PT-3, PT-7, PT-14, NPT-21) of trisperma seeds (Reutealis trisperma) was determined at a relative humidity of 67% and 27°C for a four months period. The diffusion coefficient of water in the trisperma seeds was determined using an analytical solution of instationary diffusion equation and used to model the moisture content in the seeds. The total oil content of the seeds and the acid value of the extracted oil from the stored seeds were periodically measured for four months. The acid value of the extracted oil from the stored seeds increased for all conditions (1.1 to 2.8 mg KOH/g for PT-3, 1.9 to 9.9 mg KOH/g for PT-7, 3.4 to 11.6 mg KOH/g for PT-14 and 4.7 to 25.4 mg KOH/g for NPT-21). The acid value of trisperma oil and biodiesel that has been stored for four months (27°C, closed container) was also determined. Upon storage, the acid value of trisperma oil and biodiesel only slightly increased from 1.1 to 1.3 mg KOH/g and 0.4 to 0.43 mg KOH/g, respectively.Keywords: acid value, biodiesel, moisture content, Reutealis trisperma, storage
Procedia PDF Downloads 2904172 Correlation between Total Polyphenol Content and Antimicrobial Activity of Opuntia ficus indica Extracts against Periodontopathogenic Bacteria
Authors: N. Chikhi-Chorfi, L. Arbia, S. Zenia, H.Lounici
Abstract:
Opuntia ficus-indica belongs to the Cactaceae family. The cactus is mainly cultivated for its fruit (prickly pear) that, eaten after pealing, is sweet and juicy, and rich in nutritional compounds, such as ascorbic acid and polyphenols. Different parts of O. ficus-indica are used in the traditional medicine of several countries: the cladodes are utilized to reduce serum cholesterol level and blood pressure, for treatment of ulcers, rheumatic pain, wounds, fatigue, capillary fragility, and liver conditions. This original study, investigate the effect of polyphenols of O. ficus indica (cactus) cladodes against periodontal bacteria collected from patients with periodontitis. The quantitative analysis of total polyphenols (TPP) was determined with Follin-Ciocalteu method. Different concentrations of extracts of O. ficus indica were tested by the disk method on two bacterial strains: Porphyromonas gingivalis and Prevotella intermedia responsible for periodontal disease. The results showed a good correlation between the concentration of total polyphenols and the antibacterial activity of the extracts of Opuntia ficus indica against P. gingivalis and P. intermedia with R² = 0.94 and R² = 0.90 respectively. This observation suggests that these extracts could be used in the treatment and prevention of periodontitis.Keywords: periodontal disease, P. gingivalis, P. intermedia, polyphenols, Opuntia ficus indica
Procedia PDF Downloads 1464171 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria
Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh
Abstract:
Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app
Procedia PDF Downloads 1454170 Antimicrobial Functions of Some Spice Extracts Such as Sumac, Cumin, Black Pepper and Red Pepper on the Growth of Common Food-Borne Pathogens and Their Biogenic Amine Formation
Authors: Fatih Özogul, Esmeray Kuley Boga, Ferhat Kuley, Yesim Özogul
Abstract:
The impact of diethyl ether extract of spices (sumac, cumin, black pepper and red pepper) on growth of Staphylococcus aureus, Salmonella Paratyphi A, Klebsiella pneumoniae, Enterococcus faecalis, Camplylobacter jejuni, Aeromonas hydrophila, Pseudomonas aeruginosa and Yersinia enterocolitica and their biogenic amine production were investigated in tyrosine decarboxylase broth. Sumac extract generally had the highest activity to inhibit bacterial growth compared to other extracts, although antimicrobial effect of extracts used varied depending on bacterial strains. Sumac extract resulted in 3.34 and 2.54 log reduction for Y. enterocolitica and Camp. jejuni growth, whilst red pepper extract induced 0.65, 0.41 and 0.34 log reduction for growth of Y. enterocolitica, S. Paratyphi A and Staph. aureus, respectively. Spice extracts significantly inhibited ammonia production by bacteria (P < 0.05). Eleven and nine fold reduction on ammonia production by S. Paratyphi A and Staph. aureus were observed in the presence of sumac extract. Dopamine, agmatine, tyramine, serotonin and TMA were main amines produced by bacteria. Tyramine production by food-borne-pathogens was more than 10 mg/L, whereas histamine accumulated below 52 mg/L. The effect of spice extracts on biogenic amine production varied depending on amino acid decarboxylase broth, spice type, bacterial strains and specific amine, although cumin extract generally increased biogenic amine production by bacteria.Keywords: antimicrobials, biogenic amines, food-borne pathogens, spice extracts
Procedia PDF Downloads 3124169 Construction of Microbial Fuel Cells from Local Benthic Zones
Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas
Abstract:
Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria
Procedia PDF Downloads 4004168 Chemical Characterization of Octopus Vulgaris Ink and Evaluation of its in-vitro Antioxidant, Antimicrobial, and Anti-Schistosomicidal Activities
Authors: Salwa A. H. Hamdi, Maha A. M. El-Shazly, Mona Fathi Fol, Hanan S. Mossalem, Mosad A. Ghareeb, Amina M. Ibrahim
Abstract:
One of the most distinctive and defining features of cephalopods squid, cuttlefish, and Octopus is their inking behavior. Their ink, which is blackened by melanin but also contains other constituents, has been used by humans in various ways for millennia. The present study aims to investigate the chemical profiling of the Octopus vulgaris ink extract and to evaluate its antioxidant, antimicrobial, and anti-schistosomal activities. The present results showed that GC-MS examination of Octopus vulgaris ink comprises 21 compounds. The main detected compounds are (E)-1, 2, 3, 4-Tetra (4-phenylphenyl)-2-butene-1,4-dione, Lipo-3-episapelin A, and 5,10-Dihexyltetrabenzoporphyrin. Results showed that the octopus ink had antioxidant capacity and the capability to mask DPPH free radicals in comparison with ascorbic acid. Octopus Vulgaris ink extract had inhibitory action against three gram-positive bacteria, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and three gram-negative bacteria, Neisseria gonorrhoeae, Escherichia coli, and Pseudomonas aeuroginosa. Additionally, the extracted ink revealed antifungal activity against Aspergillus flavus and yeast as Candida albicans. The obtained data indicated the effectiveness of ink extract in pharmaceutical industries as an antioxidant, antimicrobial and antischistosomicidalKeywords: antimicrobial, antioxidant, ink, octopus vulgaris
Procedia PDF Downloads 954167 Synergistic Effect of Cold Plasma on Antioxidant Properties and Fatty Acid Composition of Rice Bran
Authors: Rohit Thirumdas, Annapure U. S.
Abstract:
Low-pressure air plasma is used to investigate the antioxidant properties and fatty acid composition of rice bran at different power levels (40 W and 60 W). We observed partial hydrogenation of rice bran oil after the treatment. The fatty acid composition analysis by gas chromatography showed an increase of 28.2% in palmitic acid and a 29.4% decrease in linoleic acid. FTIR spectrum shows no new peak formation, which confirms negligible amounts of trans-fatty acids. There is a decrease in peroxide value and iodine value, which can be correlated to an increase in saturated fatty acids. The total polyphenolic content was observed to be increased by 20.1% after the treatment. There is an increase in reducing power and DPPH % inhibition of rice bran due to plasma treatment. This study shows cold plasma treatment can be considered an alternative technology for the hydrogenation of oils, replacing traditional toxic processes.Keywords: cold plasma, rice bran, fatty acid composition, hydrogenation of oils, antioxidant properties
Procedia PDF Downloads 1404166 The Effect of Probiotic Bacteria on Aflatoxin M1 Detoxification in Phosphate Buffer Saline
Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Mevlude Kizil
Abstract:
Aflatoxin M1 (AFM1) is a major toxic and carcinogenic molecule in milk and milk products. Therefore, it poses a risk for public health. Probiotics can be biological agent to remove AFM1. The aim of this study is to evaluate the effect of probiotic bacteria on AFM1 detoxification in phosphate buffer saline. The PBS samples artificially contaminated with AFM1 at concentration 100 pg/ml were prepared with probiotics bacteria that including monoculture (L. plantarum, B. bifidum ATCC, B. animalis ATCC 27672) and binary culture (L. bulgaricus + S. thermophiles, B. bifidum ATCC + B. animalis ATCC 27672, L. plantarum+B. bifidum ATCC, L. plantarum+ B. animalis ATCC 27672). The samples were incubated at 37°C for 4 hours and stored for 1, 5 and 10 days. The toxin was measured by the ELISA. The highest levels of AFM1 binding ability (63.6%) in PBS were detected yoghurt starter bacteria, while L. plantarum had the lowest levels of AFM1 binding ability (35.5%) in PBS. In addition, it was found that there was significant effect of storage on AFM1 binding ability in all groups except the one including B. animalis (p < 0.05). Consequently, results demonstrate that AFM1 detoxification by probiotic bacteria has a potential application to reduce toxin concentrations in yoghurt. Moreover, probiotic strains can react with itself as synergic or antagonist.Keywords: aflatoxin M1, ELISA, probiotics, storage
Procedia PDF Downloads 3304165 Influence of Synthetic Antioxidant in the Iodine Value and Acid Number of Jatropha Curcas Biodiesel
Authors: Supriyono, Sumardiyono
Abstract:
Biodiesel is one of the alternative fuels that promising for substituting petrodiesel as energy source which is have advantage on sustainability and eco-friendly. Due to the raw material that tend to decompose during storage, biodiesel also have the same characteristic that tend to decompose and formed higher acid value which is the result of oxidation to double bond on a chain of ester. Decomposition of biodiesel due to oxidation reaction could prevent by introduce a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. The quality degradation on biodiesel could evaluated by measuring iodine value and acid number of biodiesel. Biodiesel made from High Fatty Acid Jatropha curcas oil equality by using esterification and esterification process will stand on the quality by introduce 90 ppm pyrogallol powder on the biodiesel, which could extend the quality from 2 hours to more than 6 hours in rancimat test evaluation.Keywords: biodiesel, antioxidant, iodine number, acid value
Procedia PDF Downloads 3114164 A Retrospective Study: Correlation between Enterococcus Infections and Bone Carcinoma Incidence
Authors: Sonia A. Stoica, Lexi Frankel, Amalia Ardeljan, Selena Rashid, Ali Yasback, Omar Rashid
Abstract:
Introduction Enterococcus is a vast genus of lactic acid bacteria, gram-positivecocci species. They are common commensal organisms in the intestines of humans: E. faecalis (90–95%) and E. faecium (5–10%). Rare groups of infections can occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus. The most common infections caused by Enterococcus include urinary tract infections, biliary tract infections, subacute endocarditis, diverticulitis, meningitis, septicemia, and spontaneous bacterial peritonitis. The treatment for sensitive strains of these bacteria includes ampicillin, penicillin, cephalosporins, or vancomycin, while the treatment for resistant strains includes daptomycin, linezolid, tygecycline, or streptogramine. Enterococcus faecalis CECT7121 is an encouraging nominee for being considered as a probiotic strain. E. faecalis CECT7121 enhances and skews the profile of cytokines to the Th1 phenotype in situations such as vaccination, anti-tumoral immunity, and allergic reactions. It also enhances the secretion of high levels of IL-12, IL-6, TNF alpha, and IL-10. Cytokines have been previously associated with the development of cancer. The intention of this study was to therefore evaluate the correlation between Enterococcus infections and incidence of bone carcinoma. Methods A retrospective cohort study (2010-2019) was conducted through a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using International Classification of Disease (ICD) 9th and 10th codes for bone carcinoma diagnosis in a previously Enterococcus infected population. Patients were matched for age range and Charlson Comorbidity Index (CCI). Access to the database was granted by Holy Cross Health for academic research. Chi-squared test was used to assess statistical significance. Results A total number of 17,056 patients was obtained in Enterococcus infected group as well as in the control population (matched by Age range and CCI score). Subsequent bone carcinoma development was seen at a rate of 1.07% (184) in the Enterococcal infectious group and 3.42% (584) in the control group, respectively. The difference was statistically significant by p= 2.2x10-¹⁶, Odds Ratio = 0.355 (95% CI 0.311 - 0.404) Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 78 out of 6,624 (1.17%) patients with a prior enterococcus infection and treated with antibiotics were compared to 202 out of 6,624 (3.04%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed bone carcinoma. Results remained statistically significant (p<2.2x10-), Odds Ratio=0.456 (95% CI 0.396-0.525). Conclusion This study shows a statistically significant correlation between Enterococcus infection and a decreased incidence of bone carcinoma. The immunologic response of the organism to Enterococcus infection may exert a protecting mechanism from developing bone carcinoma. Further exploration is needed to identify the potential mechanism of Enterococcus in reducing bone carcinoma incidence.Keywords: anti-tumoral immunity, bone carcinoma, enterococcus, immunologic response
Procedia PDF Downloads 1794163 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs
Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen
Abstract:
This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity
Procedia PDF Downloads 3554162 Bismuth-Inhibitory Effects on Bacteria and Stimulation of Fungal Growth In vitro
Authors: Sulaiman B. Ali Alharbi, Bassam H. Mashat, Naif Abdullah Al-Harbi, Milton Wainwright, Abeer S. Aloufi, Sulamain Alnaimat
Abstract:
Bismuth salicylate was found to inhibit the growth of a range of bacteria and yeast, Candida albican. In general the growth of bacteria did not result in the increase in bismuth solubilisation, in contrast, bismuth solubilisation increased following the growth of C. albicans. A significant increase in the biomass (dry weight) of Aspergillus niger and Aspergillus oryzae occurred in vitro when these fungi were grown in the presence of bismuth salicylate. Biomass increase occurred over a range of bismuth compound additions, which in the case of A. oryzae was associated with the increase in the solubilisation of the insoluble bismuth compounds.Keywords: bacterial inhibition, fungal growth stimulation, medical uses of bismuth, yeast inhibition
Procedia PDF Downloads 3414161 Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells
Authors: N. Slepickova Kasalkova, P. Slepicka, L. Bacakova, V. Svorcik
Abstract:
Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable, semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.Keywords: poly(L-lactic acid), plasma treatment, surface characterization, cytocompatibility, human osteoblast, rat vascular smooth muscle cells, human stem cells
Procedia PDF Downloads 2284160 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk
Authors: Kashif Jabbar
Abstract:
Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation
Procedia PDF Downloads 824159 Anti-Colitic and Anti-Inflammatory Effects of Lactobacillus sakei K040706 in Mice with Ulcerative Colitis
Authors: Seunghwan Seo, Woo-Seok Lee, Ji-Sun Shin, Young Kyoung Rhee, Chang-Won Cho, Hee-Do Hong, Kyung-Tae Lee
Abstract:
Doenjang, known as traditional Korean food, is product of a natural mixed fermentation process carried out by lactic acid bacteria (LAB). Lactobacillus sakei K040706 (K040706) has been accepted as the most populous LAB in over ripened doenjang. Recently, we reported the immunostimulatory effects of K040706 in RAW 264.7 macrophages and in a cyclophosphamide-induced mouse model. In this study, we investigated the ameliorative effects of K040706 in a dextran sulfate sodium (DSS)-induced colitis mouse model. We induced colitis using DSS in 5-week-ICR mice over 14 days with or without 0.1, 1 g/kg/day K040706 orally. The body weight, stool consistency, and gross bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and colonic tissues were collected and subjected to histological experiments and myeloperoxidase (MPO) accumulation, cytokine determination, qRT-PCR and Western blot analysis. Results showed that K040706 significantly attenuated DSS-induced DAI score, shortening of colon length, enlargement of spleen and immune cell infiltrations into colonic tissues. Histological examinations indicated that K040706 suppressed edema, mucosal damage, and the loss of crypts induced by DSS. These results were correlated with the restoration of tight junction protein expression, such as, ZO-1 and occludin in K040706-treated mice. Moreover, K040706 reduced the abnormal secretions and mRNA expressions of pro-inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). DSS-induced mRNA expression of intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) in colonic tissues was also downregulated by K040706 treatment. Furthermore, K040706 suppressed the protein and mRNA expression of toll-like receptor 4 (TLR4) and phosphorylation of NF-κB and signal transducer and activator of transcription 3 (STAT3). These results suggest that K040706 has an anti-colitic effect by inhibition of intestinal inflammatory responses in DSS-induced colitic mice.Keywords: Lactobacillus sakei, NF-κB, STAT3, ulcerative colitis
Procedia PDF Downloads 325