Search results for: HIV virus model
16996 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses
Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia
Abstract:
The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.Keywords: influenza virus, molecular imprinting, nanoparticles, polymers
Procedia PDF Downloads 36216995 Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines
Authors: Olga V. Chervyakova, Elmira T. Tailakova, Vitaliy M. Strochkov, Kulyaisan T. Sultankulova, Nurlan T. Sandybayev, Lev G. Nemchinov, Rosemarie W. Hammond
Abstract:
Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis".Keywords: prophylactic preparation, recombinant protein, sheep pox virus, subunit vaccine
Procedia PDF Downloads 24216994 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design
Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus
Abstract:
Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor
Procedia PDF Downloads 35716993 Model of MSD Risk Assessment at Workplace
Authors: K. Sekulová, M. Šimon
Abstract:
This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors
Procedia PDF Downloads 55016992 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 40716991 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 24316990 OmniDrive Model of a Holonomic Mobile Robot
Authors: Hussein Altartouri
Abstract:
In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot
Procedia PDF Downloads 60816989 Public Perception and Willingness to Undergo Cosmetic Procedures during COVID-19 Pandemic: A Questionnaire-Based Study Applied to Asymptomatic Individuals
Authors: Ibrahim Alreshidi, Aseel Albrekeit, Ruaa Alharthi
Abstract:
Background: As a result of the spread of COVID-19 at the beginning of 2020, many governments, including Saudi Arabia, have suspended operations in many agencies. Most dermatologists have restricted their practice, including cosmetic procedures, to ensure social distancing. On the 7th of May 2020, Saudi authorities reduced the restriction of COVID-19 virus preventative measures, allowing clinics to start accepting patients following the ministry of health protocols. Objectives: Evaluation of the public's perception and willingness to undergo cosmetic procedures during COVID-19 outbreaks in Saudi Arabia. Materials and methods: A descriptive, cross-sectional, questionnaire-based study was carried out among the individuals who lack typical symptoms of COVID-19 infection in Saudi Arabia. A self-designed web-based questionnaire was developed; content face validity and a pilot study were done. The questionnaire was distributed electronically from the 8th of May until the 31st of May 2020. Results: A total of 656 individuals who lack typical symptoms of COVID-19 infection were included in this analysis. Only 10.5% of participants expressed their will to do cosmetic procedures during the COVID-19 pandemic. More than 90% of the participants believed that the COVID-19 pandemic was either somewhat serious (52.9%) or very serious (38.7%). The willingness to do cosmetic procedures during the COVID-19 pandemic remained unaltered when the price was discounted (p<0.001) and when infection control measures were ensured (p<0.001). Conclusion: The COVID-19 pandemic had a negative impact on the practice of cosmetic dermatology. Fear of transferring the infection to a beloved home member is the main reason to avoid these procedures. Generating well-structured safety guidelines to decrease the risk of this unusual virus transmission in dermatology practice and creating financial incentives may help increase the public willingness to do these cosmetic procedures during this pandemic.Keywords: COVID-19 pandemic, cosmetic procedures, questionnaire, dermatology
Procedia PDF Downloads 18216988 A Constitutive Model for Time-Dependent Behavior of Clay
Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili
Abstract:
A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.Keywords: bounding surface, consistency theory, constitutive model, viscosity
Procedia PDF Downloads 49116987 Detection of JC Virus DNA and T-Ag Expression in a Subpopulation of Tunisian Colorectal Carcinomas
Authors: Wafa Toumi, Alessandro Ripalti, Luigi Ricciardiello, Dalila Gargouri, Jamel Kharrat, Abderraouf Cherif, Ahmed Bouhafa, Slim Jarboui, Mohamed Zili, Ridha Khelifa
Abstract:
Background & aims: Colorectal cancer (CRC) is one of the most common malignancies throughout the world. Several risk factors, both genetic and environmental, including viral infections, have been linked to colorectal carcinogenesis. A few studies report the detection of human polyomavirus JC (JCV) DNA and transformation antigen (T-Ag) in a fraction of the colorectal tumors studied and suggest an association of this virus with CRC. In order to investigate whether such an association of JCV with CRC will hold in a different epidemiological setting, we looked for the presence of JCV DNA and T-Ag expression in a group of Tunisian CRC patients. Methods: Fresh colorectal mucosa biopsies were obtained from 17 healthy volunteers and from both colorectal tumors and adjacent normal tissues of 47 CRC patients. DNA was extracted from fresh biopsies or from formalin-fixed, paraffin-embedded tissue sections using the Invitrogen Purelink Genomic DNA mini Kit. A simple PCR and a nested PCR were used to amplify a region of the T-Ag gene. The obtained PCR products revealed a 154 bp and a 98 bp bands, respectively. Specificity was confirmed by sequencing of the PCR products. T-Ag expression was determined by immunohistochemical staining using a mouse monoclonal antibody (clone PAb416) directed against SV40 T-Ag that cross reacts with JCV T-Ag. Results: JCV DNA was found in 12 (25%) and 22 (46%) of the CRC tumors by simple PCR and by nested PCR, respectively. All paired adjacent normal mucosa biopsies were negative for viral DNA. Sequencing of the DNA amplicons obtained confirmed the authenticity of T-Ag sequences. Immunohistochemical staining showed nuclear T-Ag expression in all 22 JCV DNA- positive samples and in 3 additional tumor samples which appeared DNA-negative by PCR. Conclusions: These results suggest an association of JCV with a subpopulation of Tunisian colorectal tumors.Keywords: colorectal cancer, immunohistochemistry, Polyomavirus JC, PCR
Procedia PDF Downloads 36316986 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 14716985 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 40916984 Numerical Modeling of the Depth-Averaged Flow over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.Keywords: depth-averaged equations, numerical modeling, CFD, wind park model
Procedia PDF Downloads 60316983 Transcriptome Analysis Reveals Role of Long Non-Coding RNA NEAT1 in Dengue Patients
Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee
Abstract:
Background: Long non-coding RNAs (lncRNAs) are the important regulators of gene expression and play important role in viral replication and disease progression. The role of lncRNA genes in the pathogenesis of Dengue virus-mediated pathogenesis is currently unknown. Methods: To gain additional insights, we utilized an unbiased RNA sequencing followed by in silico analysis approach to identify the differentially expressed lncRNA and genes that are associated with dengue disease progression. Further, we focused our study on lncRNAs NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) as it was found to be differentially expressed in PBMC of dengue infected patients. Results: The expression of lncRNAs NEAT1, as compared to dengue infection (DI), was significantly down-regulated as the patients developed the complication. Moreover, pairwise analysis on follow up patients confirmed that suppression of NEAT1 expression was associated with rapid fall in platelet count in dengue infected patients. Severe dengue patients (DS) (n=18; platelet count < 20K) when recovered from infection showing high NEAT1 expression as it observed in healthy donors. By co-expression network analysis and subsequent validation, we revealed that coding gene; IFI27 expression was significantly up-regulated in severe dengue cases and negatively correlated with NEAT1 expression. To discriminate DI from dengue severe, receiver operating characteristic (ROC) curve was calculated. It revealed sensitivity and specificity of 100% (95%CI: 85.69 – 97.22) and area under the curve (AUC) = 0.97 for NEAT1. Conclusions: Altogether, our first observations demonstrate that monitoring NEAT1and IFI27 expression in dengue patients could be useful in understanding dengue virus-induced disease progression and may be involved in pathophysiological processes.Keywords: dengue, lncRNA, NEAT1, transcriptome
Procedia PDF Downloads 31016982 Factors Influencing the General Public Intention to Be Vaccinated: A Case of Botswana
Authors: Meng Qing Feng, Otsile Morake
Abstract:
Background: Successful implementation of the COVID-19 vaccination ensures the prevention of virus infection. Postponement and refusal of the vaccination will threaten public health, which is now common among the general public across the world. In addition, an acceptance of the COVID-19 vaccine appears as a decisive factor in controlling the COVID-19 pandemic. Purpose: This study's objective is to explore the factors influencing the public intention to be vaccinated (ITBV). Design/methodology/approach: The web-based survey included socio-demographics and questions related to the theory of planned behavior (TPB) and the health belief model (HBM). An online survey was administered using Google Form to collect data from participants of Botswana. The sample included 339 participants, half-half of the participants were female. Data analysis was run using the Statistical Package for the Social Sciences (SPSS). Findings: The study results highlight that perceived severity, perceived barriers, health motivation, and attitude have a positive and significant effect on ITBV, while perceived susceptibility, benefits, subjective norms, and perceived behavior control do not affect ITBV. Among all of the predictors, perceived barriers have the most significant influence on ITBV. Conclusion: Theoretically, this research stated that both HBM and TPB are effective in predicting and explaining the general public ITBV. Practically, this study offers insights to the government and health departments to arrange and launch health awareness programs and provide a better guide to vaccination so that doubts about vaccine confidence and the level of uncertainty can be decreased.Keywords: COVID-19, Omicron, intention to be COVID-19 vaccine, health behavior model, theory of planned behavior, Botswana
Procedia PDF Downloads 9416981 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device
Authors: Pradakshina Sharma, Jagriti Narang
Abstract:
Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.Keywords: biosensors, ePAD, arboviral infections, point of care
Procedia PDF Downloads 9616980 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves
Authors: Jui-Ching Chou
Abstract:
Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model
Procedia PDF Downloads 17316979 Land Use and Natal Multimammate Mouse Abundance in Lassa Fever Endemic Villages of Eastern Sierra Leone
Authors: J. T. Koininga, J. E. Teigen, A. Wilkinson, D. Kanneh, F. Kanneh, M. Foday, D. S. Grant, M. Leach, L. M. Moses
Abstract:
Lassa fever (LF) is a severe febrile illness endemic to West Africa. While human-to-human transmission occurs, evidence suggests most LF cases originate from exposure to rodents, particularly the Natal multimammate mouse, Mastomys natalensis. Within West Africa, LF occurs primarily in rural communities where agriculture is the main economic activity. Seasonality of LF has also been linked to agricultural cycles, with peak incidence occurring in the dry season when fields are burned and plowed. To investigate this pattern of seasonality, four agricultural communities were selected for this two-year longitudinal study. Each community was to be sampled four times each year, but this was interrupted by the Ebola virus disease outbreak. Agricultural land use, forested, and fallow areas were identified through participatory mapping. Transects were plotted in each area and Sherman traps were set for four nights. Captured small mammals were identified, ear tagged, and released. Mastomys natalensis abundance was found to be highest in areas of converted fallow land and rice swamps in the dry season and upland mixed crop areas toward the onset of the rainy season. All peak times were associated with heavy perturbation of soil. All ages and genders were present during these time points. These results suggest that peak abundance of the Mastomys natalensis in agricultural areas coincides with peak incidence of LF reported in this region. Although contact with rodents may be higher in villages, our study suggests human behaviors in agricultural areas may increase risk of transmission of Lassa virus.Keywords: agriculture, land use, Lassa Fever, rodent abundance
Procedia PDF Downloads 11916978 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 37816977 Differential Diagnosis of Malaria and Dengue Fever on the Basis of Clinical Findings and Laboratory Investigations
Authors: Aman Ullah Khan, Muhammad Younus, Aqil Ijaz, Muti-Ur-Rehman Khan, Sayyed Aun Muhammad, Asif Idrees, Sanan Raza, Amar Nasir
Abstract:
Dengue fever and malaria are important vector-borne diseases of public health significance affecting millions of people around the globe. Dengue fever is caused by Dengue virus while malaria is caused by plasmodium protozoan. Generally, the consequences of Malaria are less severe compared to dengue fever. This study was designed to differentiate dengue fever and malaria on the basis of clinical and laboratory findings and to compare the changes in both diseases having different causative agents transmitted by the common vector. A total of 200 patients of dengue viral infection (120 males, 80 females) were included in this prospective descriptive study. The blood samples of the individuals were first screened for malaria by blood smear examination and then the negative samples were tested by anti-dengue IgM strip. The strip positive cases were further screened by IgM capture ELISA and their complete blood count including hemoglobin estimation (Hb), total and differential leukocyte counts (TLC and DLC), erythrocyte sedimentation rate (ESR) and platelet counts were performed. On the basis of the severity of signs and symptoms, dengue virus infected patients were subdivided into dengue fever (DF) and dengue hemorrhagic fever (DHF) comprising 70 and 100 confirmed patients, respectively. On the other hand, 30 patients were found infected with Malaria while overall 120 patients showed thrombocytopenia. The patients of DHF were found to have more leucopenia, raised hemoglobin level and thrombocytopenia < 50,000/µl compared to the patients belonging to DF and malaria. On the basis of the outcomes of the study, it was concluded that patients affected by DF were at a lower risk of undergoing haematological disturbance than suffering from DHF. While, the patients infected by Malaria were found to have no significant change in their blood components.Keywords: dengue fever, blood, serum, malaria, ELISA
Procedia PDF Downloads 39216976 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.Keywords: stock market prediction, social moods, regression model, DJIA
Procedia PDF Downloads 54816975 Altered Gene Expression: Induction/Suppression of some Pathogenesis Related Protein Genes in an Egyptian Isolate of Potato Leafroll Virus (PLRV)
Authors: Dalia G. Aseel
Abstract:
The potato (Solanum tubersum, L.) has become one of the major vegetable crops in Egypt and all over the world. Potato leafroll virus(PLRV) was observed on potato plants collected from different governorates in Egypt. Three cultivars, Spunta, Diamont, and Cara, infected with PLRV were collected; RNA was extracted and subjected to Real-Time PCR using the coat protein gene primers. The results showed that the expression of the coat protein was 39.6-fold, 12.45-fold, and 47.43-fold, respectively, for Spunta, Diamont, and Cara cultivars. Differential Display Polymerase Chain Reaction (DD-PCR) using pathogenesis-related protein 1 (PR-1), β-1,3-glucanases (PR-2), chitinase (PR-3), peroxidase (POD), and polyphenol oxidase (PPO) forward primers for pathogenesis-related proteins (PR). The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, 58 up-regulated and 19 down-regulated genes were detected. Sequence analysis of the up-and down-regulated genes revealed that infected plants were observed in comparison with the healthy control. Sequence analysis of the up-regulated gene was performed, and the encoding sequence analysis showed that the obtained genes include: induced stolen tip protein. On the other hand, two down-regulated genes were identified: disease resistance RPP-like protein and non-specific lipid-transfer protein. In this study, the expressions of PR-1, PR-2, PR-3, POD, and PPO genes in the infected leaves of three potato cultivars were estimated by quantitative real-time PCR. We can conclude that the PLRV-infection of potato plants inhibited the expression of the five PR genes. On the contrary, infected leaves by PLRV elevated the expression of some defense genes. This interaction may also induce and/or suppress the expression of some genes responsible for the plant's defense mechanisms.Keywords: PLRV, pathogenesis-related proteins (PRs), DD-PCR, sequence, real-time PCR
Procedia PDF Downloads 14216974 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 4016973 Predictive Value of Hepatitis B Core-Related Antigen (HBcrAg) during Natural History of Hepatitis B Virus Infection
Authors: Yanhua Zhao, Yu Gou, Shu Feng, Dongdong Li, Chuanmin Tao
Abstract:
The natural history of HBV infection could experience immune tolerant (IT), immune clearance (IC), HBeAg-negative inactive/quienscent carrier (ENQ), and HBeAg-negative hepatitis (ENH). As current biomarkers for discriminating these four phases have some weaknesses, additional serological indicators are needed. Hepatits B core-related antigen (HBcrAg) encoded with precore/core gene contains denatured HBeAg, HBV core antigen (HBcAg) and a 22KDa precore protein (p22cr), which was demonstrated to have a close association with natural history of hepatitis B infection, but no specific cutoff values and diagnostic parameters to evaluate the diagnostic efficacy. This study aimed to clarify the distribution of HBcrAg levels and evaluate its diagnostic performance during the natural history of infection from a Western Chinese perspective. 294 samples collected from treatment-naïve chronic hepatitis B (CHB) patients in different phases (IT=64; IC=72; ENQ=100, and ENH=58). We detected the HBcrAg values and analyzed the relationship between HBcrAg and HBV DNA. HBsAg and other clinical parameters were quantitatively tested. HBcrAg levels of four phases were 9.30 log U/mL, 8.80 log U/mL, 3.00 log U/mL, and 5.10 logU/mL, respectively (p < 0.0001). Receiver operating characteristic curve analysis demonstrated that the area under curves (AUCs) of HBcrAg and quantitative HBsAg at cutoff values of 9.25 log U/mL and 4.355 log IU/mL for distinguishing IT from IC phases were 0.704 and 0.694, with sensitivity 76.39% and 59.72%, specificity 53.13% and 79.69%, respectively. AUCs of HBcrAg and quantitative HBsAg at cutoff values of 4.15 log U/mlmL and 2.395 log IU/mlmL for discriminating between ENQ and ENH phases were 0.931 and 0.653, with sensitivity 87.93% and 84%, specificity 91.38% and 39%, respectively. Therefore, HBcrAg levels varied significantly among four natural phases of HBV infection. It had higher predictive performance than quantitative HBsAg for distinguishing between ENQ-patients and ENH-patients and similar performance with HBsAg for the discrimination between IT and IC phases, which indicated that HBcrAg could be a potential serological marker for CHB.Keywords: chronic hepatitis B, hepatitis B core-related antigen, hepatitis B surface antigens, hepatitis B virus
Procedia PDF Downloads 41716972 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 25716971 Model Averaging in a Multiplicative Heteroscedastic Model
Authors: Alan Wan
Abstract:
In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk
Procedia PDF Downloads 38416970 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56316969 Towards a Measurement-Based E-Government Portals Maturity Model
Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri
Abstract:
The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the e-government portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an e-government maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.Keywords: best practices, e-government portal, maturity model, quality model
Procedia PDF Downloads 33816968 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic
Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman
Abstract:
To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective
Procedia PDF Downloads 7416967 Women's Perceptions of Zika Virus Prevention Recommendations: A Tale of Two Cities within Fortaleza, Brazil
Authors: Jeni Stolow, Lina Moses, Carl Kendall
Abstract:
Zika virus (ZIKV) reemerged as a global threat in 2015 with Brazil at its epicenter. Brazilians have a long history of combatting Aedes aegypti mosquitos as it is a common vector for dengue, chikungunya, and yellow fever. As a response to the epidemic, public health authorities promoted ZIKV prevention behaviors such as mosquito bite prevention, reproductive counseling for women who are pregnant or contemplating pregnancy, pregnancy avoidance, and condom use. Most prevention efforts from Brazil focused on the mosquito vector- utilizing recycled dengue approaches without acknowledging the context in which women were able to adhere to these prevention messages. This study used qualitative methods to explore how women in Fortaleza, Brazil perceive ZIKV, the Brazilian authorities’ ZIKV prevention recommendations, and the feasibility of adhering to these recommendations. A core study aim was to look at how women perceive their physical, social, and natural environment as it impacts women’s ability to adhere to ZIKV prevention behaviors. A Rapid Anthropological Assessment (RAA) containing observations, informational interviews, and semi-structured in-depth interviews were utilized for data collection. The study utilized Grounded Theory as the systematic inductive method of analyzing the data collected. Interviews were conducted with 35 women of reproductive age (15-39 years old), who primarily utilize the public health system. It was found that women’s self-identified economic class was associated with how strongly women felt they could prevent ZIKV. All women interviewed technically belong to the C-class, the middle economic class. Although all members of the same economic class, there was a divide amongst participants as to who perceived themselves as higher C-class versus lower C-class. How women saw their economic status was dictated by how they perceived their physical, social, and natural environment. Women further associated their environment and their economic class to their likelihood of contracting ZIKV, their options for preventing ZIKV, their ability to prevent ZIKV, and their willingness to attempt to prevent ZIKV. Women’s perceived economic status was found to relate to their structural environment (housing quality, sewage, and locations to supplies), social environment (family and peer norms), and natural environment (wetland areas, natural mosquito breeding sites, and cyclical nature of vectors). Findings from this study suggest that women’s perceived environment and economic status impact their perceived feasibility and desire to attempt behaviors to prevent ZIKV. Although ZIKV has depleted from epidemic to endemic status, it is suggested that the virus will return as cyclical outbreaks like that seen with similar arboviruses such as dengue and chikungunya. As the next ZIKV epidemic approaches it is essential to understand how women perceive themselves, their abilities, and their environments to best aid the prevention of ZIKV.Keywords: Aedes aegypti, environment, prevention, qualitative, zika
Procedia PDF Downloads 133