Search results for: sintering temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6937

Search results for: sintering temperature

3127 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound

Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen

Abstract:

Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.

Keywords: NDT, correlation analysis, image processing, damage, inspection

Procedia PDF Downloads 518
3126 Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum

Authors: Mrigank Sahai, R. Sri Raghu

Abstract:

This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust.

Keywords: collision-less gas, lunar lander, plume impingement, rarefied exhaust plume

Procedia PDF Downloads 248
3125 High Performance Methyl Orange Capture on Magnetic Nanoporous MCM-41 Prepared by Incipient Wetness Impregnation Method

Authors: Talib M. Albayati, Omar S. Mahdy, Ghanim M. Alwan

Abstract:

This work is aimed to prepare magnetic nanoporous material Fe/MCM-41 and study its Physical characterization in order to enhance the magnetic properties for study the operating conditions on separation efficiency of methyl orange (MO) from wastewater by adsorption process. The experimental results are analysed to select the best operating conditions for different studied parameters which were obtained for both adsorbents mesoporous material samples MCM-41 and magnetic Fe/MCM-41 as follow: constant temperature (20 ºC), pH: (2) adsorbent dosage (0.03 gm), contact time (10 minute) and concentrations (30 mg/L). The results are demonstrated that the adsorption processes can be well fitted by the Langmuir isotherm model for pure MCM-41 with a higher correlation coefficient (0.999) and fitted by the freundlich isotherm model for magnetic Fe/MCM-41 with a higher correlation coefficient of (0.994).

Keywords: adsorption, nanoporous materials, mcm-41, magnetic material, wastewater, orange, wastewater

Procedia PDF Downloads 370
3124 Investigation Acute Toxicity and Bioaccumulation Mineral Mercury in Rutilus frisii Kutum

Authors: A. Gharaei, R. Karami

Abstract:

Rutilus frisii Kutum was exposed to various concentrations of mercuric chloride in water to determine its acute toxicity and bioaccumulation. We carried out ten treatments with three replicates and one control for each of the chemicals using the static O. E. C. D. method in 55-liter-tanks each containing 14 fingerlings. During the experiments, the average pH was recorded as 7.8, total hardness was measured to be 255 mg/l, the average water temperature was 27±1 degrees centigrade and dissolved oxygen was 7.2 mg/l. Mean LC50 values of Hgcl2 for juvenile R. frisii kutum with mean weight 1±0.2 gr were 0.102 and 0.86 mgHg/l at 24h and 96h, respectively. The bioaccumulation values during 24h in tissue, kidney, and gill were 1.55, 16.1, and 22.7 mgHg/l, respectively. So, these values during 96h were 2.8, 16.8, and 26.65 mgHg/l, respectively. The bioconcentration factors in tissue, kidney, and gill during 24h were 14.75, 153.39, and 216.11 and so during 96h were 33.8, 198.1, and 313.5 times. These results show that bioaccumulation was highest in the gill and then kidney and tissue, respectively. This study suggested that between mercury concentrations of water with bioaccumulation in tissue more than kidney and gill.

Keywords: HgCl2, LC5096h, bioaccumulation, Rutilus frisii Kutum, Caspian Sea

Procedia PDF Downloads 541
3123 The Cadmium Adsorption Study by Using Seyitomer Fly Ash, Diatomite and Molasses in Wastewater

Authors: N. Tugrul, E. Moroydor Derun, E. Cinar, A. S. Kipcak, N. Baran Acarali, S. Piskin

Abstract:

Fly ash is an important waste, produced in thermal power plants which causes very important environmental pollutions. For this reason the usage and evaluation the fly ash in various areas are very important. Nearly, 15 million tons/year of fly ash is produced in Turkey. In this study, usage of fly ash with diatomite and molasses for heavy metal (Cd) adsorption from wastewater is investigated. The samples of Seyitomer region fly ash were analyzed by X-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) then diatomite (0 and 1% in terms of fly ash, w/w) and molasses (0-0.75 mL) were pelletized under 30 MPa of pressure for the usage of cadmium (Cd) adsorption in wastewater. After the adsorption process, samples of Seyitomer were analyzed using Optical Emission Spectroscopy (ICP-OES). As a result, it is seen that the usage of Seyitomer fly ash is proper for cadmium (Cd) adsorption and an optimum adsorption yield with 52% is found at a compound with Seyitomer fly ash (10 g), diatomite (0.5 g) and molasses (0.75 mL) at 2.5 h of reaction time, pH:4, 20ºC of reaction temperature and 300 rpm of stirring rate.

Keywords: heavy metal, fly ash, molasses, diatomite, adsorption, wastewater

Procedia PDF Downloads 277
3122 Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies

Authors: I. K. Sharma

Abstract:

Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested.

Keywords: oceanography, water column, autonomous profiler, buoyancy

Procedia PDF Downloads 373
3121 Effects of Culture Conditions on the Adhesion of Yeast Candida spp. and Pichia spp. to Stainless Steel with Different Polishing and Their Control

Authors: Ružica Tomičić, Zorica Tomičić, Peter Raspor

Abstract:

An abundant growth of unwanted yeasts in food processing plants can lead to problems in quality and safety with significant financial losses. Candida and Pichia are the genera mainly involved in spoilage of products in the food and beverage industry. These contaminating microorganisms can form biofilms on food contact surfaces, being difficult to eradicate, increasing the probability of microbial survival and further dissemination during food processing. It is well known that biofilms are more resistant to antimicrobial agents compared to planktonic cells and this makes them difficult to eliminate. Among the strategies used to overcome resistance to antifungal drugs and preservatives, the use of natural substances such as plant extracts has shown particular promise, and many natural substances have been found to exhibit antifungal properties. This study aimed to investigated the impact of growth medium (Malt Extract broth (MEB) or Yeast Peptone Dextrose (YPD) broth) and temperatures (7°C, 37°C, 43°C for Candida strains and 7°C, 27°C, 32°C for Pichia strains) on the adhesion of Candida spp. and Pichia spp. to stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20 – 961.9 nm), a material commonly used in the food industry. We also evaluated the antifungal and antiadhesion activity of plant extracts such as Humulus lupulus, Alpinia katsumadai and Evodia rutaecarpa against C. albicans, C glabrata and P. membranifaciens and investigated whether these plant extracts can interfere with biofilm formation. The adhesion was assessed by the crystal violet staining method, while the broth microdilution method CLSI M27-A3 was used to determine the minimum inhibitory concentration (MIC) of plant extracts. Our results indicated that the nutrient content of the medium significantly influenced the amount of adhered cells of the tested yeasts. The growth medium which resulted in a higher adhesion of C. albicans and C. glabrata was MEB, while for C. parapsilosis and C. krusei was YPD. In the case of P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. Regarding the effect of temperature, C. albicans strain adhered to stainless steel surfaces in significantly higher level at a temperature of 43°C, while on the other hand C. glabrata, C. parapsilosis and C. krusei showed a different behavior with significantly higher adhesion at 37°C than at 7°C and 43°C. Further, the adherence ability of Pichia strains was highest at 27°C. Based on the MIC values, all plant extracts exerted significant antifungal effects with MIC values ranged from 100 to 400 μg/mL. It was observed that biofilm of C. glabrata were more resistance to plant extracts as compared to C. albicans. However, extracts of A. katsumadai and E. rutaecarpa promoted the growth and development of the preformed biofilm of P. membranifaciens. Thus, the knowledge of how these microorganisms adhere and which factors affect this phenomenon is of great importance in order to avoid their colonization on food contact surfaces.

Keywords: adhesion, Candida spp., Pichia spp., plant extracts

Procedia PDF Downloads 176
3120 Adsorption Studies of Methane on Zeolite NaX, LiX, KX at High Pressures

Authors: El Hadi Zouaoui, Djamel Nibou, Mohamed Haddouche, Wan Azlina Wan Ab Karim Ghani, Samira Amokrane

Abstract:

In this study, CH₄ adsorption isotherms on NaX or Faujasite X and exchanged zeolites with Li⁺(LiX), and K⁺(KX) at different temperatures (298, 308, 323 and 353 K) has been investigated, using high pressure (3 MPa (30 bar)) thermo-gravimetric analyser. The experimental results were then validated using several isothermal kinetics models, namely Langmuir, Toth, and Marczewski-Jaroniec, followed by a calculation of the error coefficients between the experimental and theoretical results. It was found that the CH₄ adsorption isotherms are characterized by a strong increase in adsorption at low pressure and a tendency towards a high pressure limit value Qₘₐₓ. The size and position of the exchanged cations, the spherical shape of methane, the specific surface, and the volume of the pores revealed the most important influence parameters for this study. These results revealed that the experimentation and the modeling, well correlated with Marczewski-Jaroniec, Toth, and gave the best results whatever the temperature and the material used.

Keywords: CH₄ adsorption, exchange cations, exchanged zeolite, isotherm study, NaX zeolite

Procedia PDF Downloads 224
3119 CO₂ Capture by Clay and Its Adsorption Mechanism

Authors: Jedli Hedi, Hedfi Hachem, Abdessalem Jbara, Slimi Khalifa

Abstract:

Natural and modified clay were used as an adsorbent for CO2 capture. Sample of clay was subjected to acid treatments to improve their textural properties, namely, its surface area and pore volume. The modifications were carried out by heating the clays at 120 °C and then by acid treatment with 3M sulphuric acid solution at boiling temperature for 10 h. The CO2 adsorption capacities of the acid-treated clay were performed out in a batch reactor. It was found that the clay sample treated with 3M H2SO4 exhibited the highest Brunauer–Emmett–Teller (BET) surface area (16.29–24.68 m2/g) and pore volume (0.056–0.064 cm3/g). After the acid treatment, the CO2 adsorption capacity of clay increased. The CO2 adsorption capacity of clay increased after the acid treatment. The CO2 adsorption by clay, were characterized by SEM, FTIR, ATD-ATG and BET method. For describing the phenomenon of CO2 adsorption for these materials, the adsorption isotherms were modeled using the Freundlich and Langmuir models. CO2 adsorption isotherm was found attributable to physical adsorption.

Keywords: clay, acid treatment, CO2 capture, adsorption mechanism

Procedia PDF Downloads 188
3118 Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum

Authors: Diya Alsafadi, Fawwaz Khalili, Mohammad W. Amer

Abstract:

Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production.

Keywords: biofuel, acetone-butanol-ethanol fermentation, date palm waste, Clostridium acetobutylicum

Procedia PDF Downloads 324
3117 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor

Authors: Manal A. Mohsen, Ahmed Tawfik

Abstract:

Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).

Keywords: cake wastewater industry, chemical oxygen demand (COD), hydrogen production, up-flow anaerobic staged reactor (UASR)

Procedia PDF Downloads 351
3116 Experimental Investigation of R600a as a Retrofit for R134a in a Household Refrigerator

Authors: T. O Babarinde, F. A Oyawale, O. S Ohunakin, R. O Ohunakin, R. O Leramo D.S Adelekan

Abstract:

This paper presents an experimental study of R600a, environment-friendly refrigerants with low global warming potential (GWP), zero ozone depletion potential (ODP), as a substitute for R134a in domestic refrigerator. A refrigerator designed to work with R134a was used for this experiment, the capillary for this experiment was not varied at anytime during the experiment. 40, 60, 80g, charge of R600a were tested against 100 g of R134a under the designed capillary length of the refrigerator, and the performance using R600a was evaluated and compared with its performance when R134a was used. The results obtained showed that the design temperature and pull-down time set by International Standard Organisation (ISO) for small refrigerator was achieved using both 80g of R600a and 100g of R134a but R134a has earlier pulled down time than using R600a. The average coefficient of performance (COP) obtained using R600a is 17.7% higher than that of R134a while the average power consumption is 42.5 % lower than R134a, which shows that R600a can be used as replacement for R134a in domestic refrigerator without necessarily need to modified the capillary.

Keywords: domestic refrigerator, experimental, R600a, R134a

Procedia PDF Downloads 497
3115 Study of a Photovoltaic System Using MPPT Buck-Boost Converter

Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni

Abstract:

The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.

Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump

Procedia PDF Downloads 351
3114 2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells

Authors: T. Bielewicz, S. Dogan, C. Klinke

Abstract:

Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets’ height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results.

Keywords: physical sciences, chemistry, materials, chemistry, colloids, physics, condensed-matter physics, semiconductors, two-dimensional materials

Procedia PDF Downloads 277
3113 Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions

Authors: A. Kudrev

Abstract:

The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule.

Keywords: melting, Poly(A)-Poly(U), TMPyP4, Zn(X)TMPyP4

Procedia PDF Downloads 124
3112 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil

Authors: Saimatun Nisa

Abstract:

Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.

Keywords: walnut shell, biooil, biochar, microwave pyrolysis

Procedia PDF Downloads 21
3111 Molecular Dynamics Simulation of Realistic Biochar Models with Controlled Microporosity

Authors: Audrey Ngambia, Ondrej Masek, Valentina Erastova

Abstract:

Biochar is an amorphous carbon-rich material generated from the pyrolysis of biomass with multifarious properties and functionality. Biochar has shown proven applications in the treatment of flue gas and organic and inorganic pollutants in soil and water/wastewater as a result of its multiple surface functional groups and porous structures. These properties have also shown potential in energy storage and carbon capture. The availability of diverse sources of biomass to produce biochar has increased interest in it as a sustainable and environmentally friendly material. The properties and porous structures of biochar vary depending on the type of biomass and high heat treatment temperature (HHT). Biochars produced at HHT between 400°C – 800°C generally have lower H/C and O/C ratios, higher porosities, larger pore sizes and higher surface areas with temperature. While all is known experimentally, there is little knowledge on the porous role structure and functional groups play on processes occurring at the atomistic scale, which are extremely important for the optimization of biochar for application, especially in the adsorption of gases. Atomistic simulations methods have shown the potential to generate such amorphous materials; however, most of the models available are composed of only carbon atoms or graphitic sheets, which are very dense or with simple slit pores, all of which ignore the important role of heteroatoms such as O, N, S and pore morphologies. Hence, developing realistic models that integrate these parameters are important to understand their role in governing adsorption mechanisms that will aid in guiding the design and optimization of biochar materials for target applications. In this work, molecular dynamics simulations in the isobaric ensemble are used to generate realistic biochar models taking into account experimentally determined H/C, O/C, N/C, aromaticity, micropore size range, micropore volumes and true densities of biochars. A pore generation approach was developed using virtual atoms, which is a Lennard-Jones sphere of varying van der Waals radius and softness. Its interaction via a soft-core potential with the biochar matrix allows the creation of pores with rough surfaces while varying the van der Waals radius parameters gives control to the pore-size distribution. We focused on microporosity, creating average pore sizes of 0.5 - 2 nm in diameter and pore volumes in the range of 0.05 – 1 cm3/g, which corresponds to experimental gas adsorption micropore sizes of amorphous porous biochars. Realistic biochar models with surface functionalities, micropore size distribution and pore morphologies were developed, and they could aid in the study of adsorption processes in confined micropores.

Keywords: biochar, heteroatoms, micropore size, molecular dynamics simulations, surface functional groups, virtual atoms

Procedia PDF Downloads 45
3110 Optimization of Electrocoagulation Process Using Duelist Algorithm

Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti

Abstract:

The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.

Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption

Procedia PDF Downloads 450
3109 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 259
3108 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst

Authors: Meichen Lee, Michael K. H. Leung

Abstract:

In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.

Keywords: microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis

Procedia PDF Downloads 432
3107 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 417
3106 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent

Authors: Mohammad Anvari, Helen S. Joyner (Melito)

Abstract:

Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.

Keywords: Camelina meal, polysaccharide, rheology, zeta potential

Procedia PDF Downloads 220
3105 Human Absorbed Dose Assessment of 68Ga-Dotatoc Based on Biodistribution Data in Syrian Rats

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, A. Ramazani, A. R. Jalilian

Abstract:

The aim of this work was to evaluate the values of absorbed dose of 68Ga-DOTATOC in numerous human organs. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37° C at least 2 h after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreas and adrenal. The absorbed dose received by human organs was evaluated based on biodistribution studies in Syrian rats by the radiation absorbed dose assessment resource (RADAR) method. Maximum absorbed dose was obtained in the pancreas, kidneys, and adrenal with 0.105, 0.074, and 0.010 mGy/MBq, respectively. The effective absorbed dose was 0.026 mSv/MBq for 68Ga-DOTATOC. The results showed that 68Ga-DOTATOC can be considered as a safe and effective agent for clinically PET imaging applications.

Keywords: effective absorbed dose, Ga-68, octreotide, MIRD

Procedia PDF Downloads 499
3104 Liquid Chromatographic Determination of Alprazolam with ACE Inhibitors in Bulk, Respective Pharmaceutical Products and Human Serum

Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne, Amtul Qayoom

Abstract:

Present study describes a simple and a fast liquid chromatographic method using ultraviolet detector for simultaneous determination of anxiety relief medicine alprazolam with ACE inhibitors i.e; lisinopril, captopril and enalapril employing purospher star C18 (25 cm, 0.46 cm, 5 µm). Separation was achieved within 5 min at ambient temperature via methanol: water (8:2 v/v) with pH adjusted to 2.9, monitoring the detector response at 220 nm. Optimum parameters were set up as per ICH (2006) guidelines. Calibration range was found out to be 0.312-10 µg mL-1 for alprazolam and 0.625-20 µg mL-1 for all the ACE inhibitors with correlation coefficients > 0.998 and detection limits 85, 37, 68 and 32 ng mL-1 for lisinopril, captopril, enalapril and alprazolam respectively. Intra-day, inter-day precision and accuracy of the assay were in acceptable range of 0.05-1.62% RSD and 98.85-100.76% recovery. Method was determined to be robust and effectively useful for the estimation of studied drugs in dosage formulations and human serum without obstruction of excipients or serum components.

Keywords: alprazolam, ACE inhibitors, RP HPLC, serum

Procedia PDF Downloads 491
3103 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils

Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa

Abstract:

Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.

Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress

Procedia PDF Downloads 334
3102 CRISPR-DT: Designing gRNAs for the CRISPR-Cpf1 System with Improved Target Efficiency and Specificity

Authors: Houxiang Zhu, Chun Liang

Abstract:

The CRISPR-Cpf1 system has been successfully applied in genome editing. However, target efficiency of the CRISPR-Cpf1 system varies among different gRNA sequences. The published CRISPR-Cpf1 gRNA data was reanalyzed. Many sequences and structural features of gRNAs (e.g., the position-specific nucleotide composition, position-nonspecific nucleotide composition, GC content, minimum free energy, and melting temperature) correlated with target efficiency were found. Using machine learning technology, a support vector machine (SVM) model was created to predict target efficiency for any given gRNAs. The first web service application, CRISPR-DT (CRISPR DNA Targeting), has been developed to help users design optimal gRNAs for the CRISPR-Cpf1 system by considering both target efficiency and specificity. CRISPR-DT will empower researchers in genome editing.

Keywords: CRISPR-Cpf1, genome editing, target efficiency, target specificity

Procedia PDF Downloads 238
3101 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding

Authors: Khalil Aghapouramin

Abstract:

The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces

Keywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior

Procedia PDF Downloads 314
3100 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 124
3099 Annealing Process Study at Galvanizing Line: Characterization and Implication Inherent to Lead Entrainment

Authors: Marcelo Franzkowiak Stahlschmidt

Abstract:

This paper discusses the experiments carried out based on the wire drawing process analysis and later annealing on lead furnace on a galvanizing line. Using Design of Experiments methodology, the aim of this work is to understand the occurrence of lead entrainment originating from the annealed wires in order to decrease this problem. Wire samples were collected from wire drawing machines and galvanizing line and submitted to surface roughness analysis and its implications on lead drag out based on wire speed, wire diameter, lead bath temperature, thermal capacity of the lead kettle, wire surface condition, wire roughness and wire superficial cleanliness. Proposals to decrease lead drag out were made in order to increase wire drawing machines and galvanizing line performance.

Keywords: wire drawing process, galvanizing, heat treatment, lead

Procedia PDF Downloads 617
3098 Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids

Authors: Sonia Vanessa Campos Moreira

Abstract:

The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa.

Keywords: alkaline activators, BOF slag, glass powder fineness, TFT-LCD, w/b ratios

Procedia PDF Downloads 134