Search results for: bulk magnetic materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8401

Search results for: bulk magnetic materials

4591 Teaching Method for a Classroom of Students at Different Language Proficiency Levels: Content and Language Integrated Learning in a Japanese Culture Classroom

Authors: Yukiko Fujiwara

Abstract:

As a language learning methodology, Content and Language Integrated Learning (CLIL) has become increasingly prevalent in Japan. Most CLIL classroom practice and its research are conducted in EFL fields. However, much less research has been done in the Japanese language learning setting. Therefore, there are still many issues to work out using CLIL in the Japanese language teaching (JLT) setting. it is expected that more research will be conducted on both authentically and academically. Under such circumstances, this is one of the few classroom-based CLIL researches experiments in JLT and aims to find an effective course design for a class with students at different proficiency levels. The class was called ‘Japanese culture A’. This class was offered as one of the elective classes for International exchange students at a Japanese university. The Japanese proficiency level of the class was above the Japanese Language Proficiency Test Level N3. Since the CLIL approach places importance on ‘authenticity’, the class was designed with materials and activities; such as books, magazines, a film and TV show and a field trip to Kyoto. On the field trip, students experienced making traditional Japanese desserts, by receiving guidance directly from a Japanese artisan. Through the course, designated task sheets were used so the teacher could get feedback from each student to grasp what the class proficiency gap was. After reading an article on Japanese culture, students were asked to write down the words they did not understand and what they thought they needed to learn. It helped both students and teachers to set learning goals and work together for it. Using questionnaires and interviews with students, this research examined whether the attempt was effective or not. Essays they wrote in class were also analyzed. The results from the students were positive. They were motivated by learning authentic, natural Japanese, and they thrived setting their own personal goals. Some students were motivated to learn Japanese by studying the language and others were motivated by studying the cultural context. Most of them said they learned better this way; by setting their own Japanese language and culture goals. These results will provide teachers with new insight towards designing class materials and activities that support students in a multilevel CLIL class.

Keywords: authenticity, CLIL, Japanese language and culture, multilevel class

Procedia PDF Downloads 247
4590 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights

Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum

Abstract:

Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.

Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion

Procedia PDF Downloads 30
4589 Neuropalliative Care in Patients with Progressive Neurological Disease in Czech Republic: Study Protocol

Authors: R. Bužgová, R. Kozáková, M. Škutová, M. Bar, P. Ressner, P. Bártová

Abstract:

Introduction: Currently, there has been an increasing concern about the provision of palliative care in non-oncological patients in both professional literature and clinical practice. However, there is not much scientific information on how to provide neurological and palliative care together. The main objective of the project is to create and to verify a concept of neuro-palliative and rehabilitative care for patients with selected neurological diseases in an advanced stage of the disease and also to evaluate bio-psychosocial and spiritual needs of these patients and their caregivers related to the quality of life using created standardized tools. Methodology: Triangulation of research methods (qualitative and quantitative) will be used. A concept of care and assessment tools will be developed by analyzing interviews and focus groups. Qualitative data will be analyzed using grounded theory. The concept of care will be tested in the context of the intervention study. Using quantitative analysis, we will assess the effect of an intervention provided on the saturation of needs, quality of life, and quality of care. A research sample will be made up of the patients with selected neurological diseases (Parkinson´s syndrome, motor neuron disease, multiple sclerosis, Huntington’s disease), together with patients´ family members. Based on the results, educational materials and a certified course for health care professionals will be created. Findings: Based on qualitative data analysis, we will propose the concept of integrated care model combining neurological, rehabilitative and specialist palliative care for patients with selected neurological diseases in different settings of care and services. Patients´ needs related to quality of life will be described by newly created and validated measuring tools before the start of intervention (application of neuro-palliative and palliative approach) and then in the time interval. Conclusion: Based on the results, educational materials and a certified course for doctors and health care professionals will be created.

Keywords: multidisciplinary approach, neuropalliative care, research, quality of life

Procedia PDF Downloads 286
4588 Transitioning towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Mozhdeh Khalili Kordabadi

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. By adopting these strategies, the textile industry can contribute to a more sustainable and environmentally friendly future. Introduction: Textiles, particularly clothing, are essential to human existence. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion: The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension.

Procedia PDF Downloads 91
4587 Promoting Affordable Housing Public-Private Partnerships (PPPs) in Nigeria: Addressing Ethical Concerns in Construction and Exploring Solutions

Authors: Shem Ikoojo Ayegba, Ye Qi

Abstract:

Public-private partnerships (PPPs) can potentially be a transformative mechanism for advancing affordable housing in Nigeria., considering the current housing deficit between 17 – 24 million. Nevertheless, their effectiveness is marred by persistent unethical practices such as corruption and the utilization of subpar materials. Through a comprehensive mixed-methods approach, this study delves into the ethical quandaries within Nigerian housing construction and their cascading effects on the success of PPPs. Semi-structured interviews encompassing seasoned construction professionals and an in-depth content analysis of ongoing housing policies and projects in Nigeria reveal a culture of corruption across the value chain. This malaise is exacerbated by glaring deficiencies in oversight and a lack of transparent practices. A robust statistical survey involving diverse professionals, including engineers, architects, and project managers, echoes these findings, emphasizing that a frail institutional framework facilitates the persistence of substandard material use, professional negligence, and rampant bribery. Such compromised construction standards place residents in potential jeopardy and impede the achievement of broader sustainability objectives. This study propounds a suite of policy interventions to pave the way for thriving affordable housing PPPs: initiating transparent bidding processes, establishing non-negotiable quality benchmarks for construction materials, and incorporating independent third-party audits throughout the building phase. Furthermore, cultivating a culture of professional integrity through targeted ethics training for all construction personnel is imperative. This research furnishes pragmatic strategies that can radically enhance the potency of housing PPPs, thereby ensuring safe, durable, and affordable housing solutions for Nigeria's underserved populace.

Keywords: public-private partnerships, affordable housing, unethical practicies, housing policies, construction ethics

Procedia PDF Downloads 70
4586 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves

Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas

Abstract:

Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.

Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid

Procedia PDF Downloads 449
4585 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station

Authors: Wei Liu, Shuquan Wang, Yang Gao

Abstract:

Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.

Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance

Procedia PDF Downloads 159
4584 Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge

Authors: I. Kamika, S. Azizi, M. Tekere

Abstract:

Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples.

Keywords: bacterial community, next generation, cerium oxide, wastewater, activated sludge, nanoparticles, nanotechnology

Procedia PDF Downloads 212
4583 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation

Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst

Abstract:

There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.

Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation

Procedia PDF Downloads 185
4582 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.

Keywords: plant fibers, tropical climates, sustainable development, waste reduction

Procedia PDF Downloads 176
4581 Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering

Authors: Dong Tang, Yongli Zhao

Abstract:

The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt.

Keywords: asphalt, Beaucage model, microstructure, SAXS

Procedia PDF Downloads 74
4580 Properties of Hot-Pressed Alumina-Graphene Composites

Authors: P. Rutkowski, G. Górny, L. Stobierski, D. Zientara, W. Piekarczyk, K. Tran

Abstract:

The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before.

Keywords: alumina, composite, hot-pressed, graphene, properties

Procedia PDF Downloads 262
4579 Quantum Cum Synaptic-Neuronal Paradigm and Schema for Human Speech Output and Autism

Authors: Gobinathan Devathasan, Kezia Devathasan

Abstract:

Objective: To improve the current modified Broca-Wernicke-Lichtheim-Kussmaul speech schema and provide insight into autism. Methods: We reviewed the pertinent literature. Current findings, involving Brodmann areas 22, 46, 9,44,45,6,4 are based on neuropathology and functional MRI studies. However, in primary autism, there is no lucid explanation and changes described, whether neuropathology or functional MRI, appear consequential. Findings: We forward an enhanced model which may explain the enigma related to autism. Vowel output is subcortical and does need cortical representation whereas consonant speech is cortical in origin. Left lateralization is needed to commence the circuitry spin as our life have evolved with L-amino acids and left spin of electrons. A fundamental species difference is we are capable of three syllable-consonants and bi-syllable expression whereas cetaceans and songbirds are confined to single or dual consonants. The 4 key sites for speech are superior auditory cortex, Broca’s two areas, and the supplementary motor cortex. Using the Argand’s diagram and Reimann’s projection, we theorize that the Euclidean three dimensional synaptic neuronal circuits of speech are quantized to coherent waves, and then decoherence takes place at area 6 (spherical representation). In this quantum state complex, 3-consonant languages are instantaneously integrated and multiple languages can be learned, verbalized and differentiated. Conclusion: We postulate that evolutionary human speech is elevated to quantum interaction unlike cetaceans and birds to achieve the three consonants/bi-syllable speech. In classical primary autism, the sudden speech switches off and on noted in several cases could now be explained not by any anatomical lesion but failure of coherence. Area 6 projects directly into prefrontal saccadic area (8); and this further explains the second primary feature in autism: lack of eye contact. The third feature which is repetitive finger gestures, located adjacent to the speech/motor areas, are actual attempts to communicate with the autistic child akin to sign language for the deaf.

Keywords: quantum neuronal paradigm, cetaceans and human speech, autism and rapid magnetic stimulation, coherence and decoherence of speech

Procedia PDF Downloads 182
4578 Mobile Genetic Elements in Trematode Himasthla Elongata Clonal Polymorphism

Authors: Anna Solovyeva, Ivan Levakin, Nickolai Galaktionov, Olga Podgornaya

Abstract:

Animals that reproduce asexually were thought to have the same genotypes within generations for a long time. However, some refuting examples were found, and mobile genetic elements (MGEs) or transposons are considered to be the most probable source of genetic instability. Dispersed nature and the ability to change their genomic localization enables MGEs to be efficient mutators. Hence the study of MGEs genomic impact requires an appropriate object which comprehends both representative amounts of various MGEs and options to evaluate the genomic influence of MGEs. Animals that reproduce asexually seem to be a decent model to study MGEs impact in genomic variability. We found a small marine trematode Himasthla elongata (Himasthlidae) to be a good model for such investigation as it has a small genome size, diverse MGEs and parthenogenetic stages in the lifecycle. In the current work, clonal diversity of cercaria was traced with an AFLP (Amplified fragment length polymorphism) method, diverse zones from electrophoretic patterns were cloned, and the nature of the fragments explored. Polymorphic patterns of individual cercariae AFLP-based fingerprints are enriched with retrotransposons of different families. The bulk of those sequences are represented by open reading frames of non-Long Terminal Repeats containing elements(non-LTR) yet Long-Terminal Repeats containing elements (LTR), to a lesser extent in variable figments of AFLP array. The CR1 elements expose both in polymorphic and conservative patterns are remarkably more frequent than the other non-LTR retrotransposons. This data was confirmed with shotgun sequencing-based on Illumina HiSeq 2500 platform. Individual cercaria of the same clone (i.e., originated from a single miracidium and inhabiting one host) has a various distribution of MGE families detected in sequenced AFLP patterns. The most numerous are CR1 and RTE-Bov retrotransposons, typical for trematode genomes. Also, we identified LTR-retrotransposons of Pao and Gypsy families among DNA transposons of CMC-EnSpm, Tc1/Mariner, MuLE-MuDR and Merlin families. We detected many of them in H. elongata transcriptome. Such uneven MGEs distribution in AFLP sequences’ sets reflects the different patterns of transposons spreading in cercarial genomes as transposons affect the genome in many ways (ectopic recombination, gene structure interruption, epigenetic silencing). It is considered that they play a key role in the origins of trematode clonal polymorphism. The authors greatly appreciate the help received at the Kartesh White Sea Biological Station of the Russian Academy of Sciences Zoological Institute. This work is funded with RSF 19-74-20102 and RFBR 17-04-02161 grants and the research program of the Zoological Institute of the Russian Academy of Sciences (project number AAAA-A19-119020690109-2).

Keywords: AFLP, clonal polymorphism, Himasthla elongata, mobile genetic elements, NGS

Procedia PDF Downloads 119
4577 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 186
4576 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 387
4575 Applications of Hyperspectral Remote Sensing: A Commercial Perspective

Authors: Tuba Zahra, Aakash Parekh

Abstract:

Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.

Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR

Procedia PDF Downloads 74
4574 Radiation Stability of Structural Steel in the Presence of Hydrogen

Authors: E. A. Krasikov

Abstract:

As the service life of an operating nuclear power plant (NPP) increases, the potential misunderstanding of the degradation of aging components must receive more attention. Integrity assurance analysis contributes to the effective maintenance of adequate plant safety margins. In essence, the reactor pressure vessel (RPV) is the key structural component determining the NPP lifetime. Environmentally induced cracking in the stainless steel corrosion-preventing cladding of RPV’s has been recognized to be one of the technical problems in the maintenance and development of light-water reactors. Extensive cracking leading to failure of the cladding was found after 13000 net hours of operation in JPDR (Japan Power Demonstration Reactor). Some of the cracks have reached the base metal and further penetrated into the RPV in the form of localized corrosion. Failures of reactor internal components in both boiling water reactors and pressurized water reactors have increased after the accumulation of relatively high neutron fluences (5´1020 cm–2, E>0,5MeV). Therefore, in the case of cladding failure, the problem arises of hydrogen (as a corrosion product) embrittlement of irradiated RPV steel because of exposure to the coolant. At present when notable progress in plasma physics has been obtained practical energy utilization from fusion reactors (FR) is determined by the state of material science problems. The last includes not only the routine problems of nuclear engineering but also a number of entirely new problems connected with extreme conditions of materials operation – irradiation environment, hydrogenation, thermocycling, etc. Limiting data suggest that the combined effect of these factors is more severe than any one of them alone. To clarify the possible influence of the in-service synergistic phenomena on the FR structural materials properties we have studied hydrogen-irradiated steel interaction including alternating hydrogenation and heat treatment (annealing). Available information indicates that the life of the first wall could be expanded by means of periodic in-place annealing. The effects of neutron fluence and irradiation temperature on steel/hydrogen interactions (adsorption, desorption, diffusion, mechanical properties at different loading velocities, post-irradiation annealing) were studied. Experiments clearly reveal that the higher the neutron fluence and the lower the irradiation temperature, the more hydrogen-radiation defects occur, with corresponding effects on the steel mechanical properties. Hydrogen accumulation analyses and thermal desorption investigations were performed to prove the evidence of hydrogen trapping at irradiation defects. Extremely high susceptibility to hydrogen embrittlement was observed with specimens which had been irradiated at relatively low temperature. However, the susceptibility decreases with increasing irradiation temperature. To evaluate methods for the RPV’s residual lifetime evaluation and prediction, more work should be done on the irradiated metal–hydrogen interaction in order to monitor more reliably the status of irradiated materials.

Keywords: hydrogen, radiation, stability, structural steel

Procedia PDF Downloads 264
4573 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 158
4572 Precise CNC Machine for Multi-Tasking

Authors: Haroon Jan Khan, Xian-Feng Xu, Syed Nasir Shah, Anooshay Niazi

Abstract:

CNC machines are not only used on a large scale but also now become a prominent necessity among households and smaller businesses. Printed Circuit Boards manufactured by the chemical process are not only risky and unsafe but also expensive and time-consuming. A 3-axis precise CNC machine has been developed, which not only fabricates PCB but has also been used for multi-tasks just by changing the materials used and tools, making it versatile. The advanced CNC machine takes data from CAM software. The TB-6560 controller is used in the CNC machine to adjust variation in the X, Y, and Z axes. The advanced machine is efficient in automatic drilling, engraving, and cutting.

Keywords: CNC, G-code, CAD, CAM, Proteus, FLATCAM, Easel

Procedia PDF Downloads 150
4571 Engineering Economic Analysis of Implementing a Materials Recovery Facility in Jamaica: A Green Industry Approach towards a Sustainable Developing Economy

Authors: Damian Graham, Ashleigh H. Hall, Damani R. Sulph, Michael A. James, Shawn B. Vassell

Abstract:

This paper assesses the design and feasibility of a Materials Recovery Facility (MRF) in Jamaica as a possible green industry approach to the nation’s economic and solid waste management problems. Jamaica is a developing nation that is vulnerable to climate change that can affect its blue economy and tourism on which it is heavily reliant. Jamaica’s National Solid Waste Management Authority (NSWMA) collects only a fraction of all the solid waste produced annually which is then transported to dumpsites. The remainder is either burnt by the population or disposed of illegally. These practices negatively impact the environment, threaten the sustainability of economic growth from blue economy and tourism and its waste management system is predominantly a cost centre. The implementation of an MRF could boost the manufacturing sector, contribute to economic growth, and be a catalyst in creating a green industry with multiple downstream value chains with supply chain linkages. Globally, there is a trend to reuse and recycle that created an international market for recycled solid waste. MRFs enable the efficient sorting of solid waste into desired recoverable materials thus providing a gateway for entrance to the international trading of recycled waste. Research into the current state and effort to improve waste management in Jamaica in contrast with the similar and more advanced territories are outlined. The study explores the concept of green industrialization and its applicability to vulnerable small state economies like Jamaica. The study highlights the possible contributions and benefits derived from MRFs as a seeding factory that can anchor the reverse and forward logistics of other green industries as part of a logistic-cantered economy. Further, the study showcases an engineering economic analysis that assesses the viability of the implementation of an MRF in Jamaica. This research outlines the potential cost of constructing and operating an MRF and provides a realistic cash flow estimate to establish a baseline for profitability. The approach considers quantitative and qualitative data, assumptions, and modelling using industrial engineering tools and techniques that are outlined. Techniques of facility planning, system analysis and operations research with a focus on linear programming techniques are expressed. Approaches to overcome some implementation challenges including policy, technology and public education are detailed. The results of this study present a reasonable judgment of the prospects of incorporating an MRF to improve Jamaica’s solid waste management and contribute to socioeconomic and environmental benefits and an alternate pathway for economic sustainability.

Keywords: engineering-economic analysis, facility design, green industry, MRF, manufacturing, plant layout, solid-waste management, sustainability, waste disposal

Procedia PDF Downloads 222
4570 The Youth Employment Peculiarities in Post-Soviet Georgia

Authors: M. Lobzhanidze, N. Damenia

Abstract:

The article analyzes the current structural changes in the economy of Georgia, liberalization and integration processes of the economy. In accordance with this analysis, the peculiarities and the problems of youth employment are revealed. In the paper, the Georgian labor market and its contradictions are studied. Based on the analysis of materials, the socio-economic losses caused by the long-term and mass unemployment of young people are revealed, the objective and subjective circumstances of getting higher education are studied. The youth employment and unemployment rates are analyzed. Based on the research, the factors that increase unemployment are identified. According to the analysis of the youth employment, it has appeared that the unemployment share in the number of economically active population has increased in the younger age group. It demonstrates the high requirements of the labour market in terms of the quality of the workforce. Also, it is highlighted that young people are exposed to a highly paid job. The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend, etc.) and qualitative research (in-depth interview), as well as analysis, induction and comparison methods. The article presents the data by the National Statistics Office of Georgia and the Ministry of Agriculture of Georgia, policy documents of the Parliament of Georgia, scientific papers by Georgian and foreign scientists, analytical reports, publications and EU research materials on similar issues. The work estimates the students and graduates employment problems existing in the state development strategy and priorities. The measures to overcome the challenges are defined. The article describes the mechanisms of state regulation of youth employment and the ways of improving this regulatory base. As for major findings, it should be highlighted that the main problems are: lack of experience and incompatibility of youth qualification with the requirements of the labor market. Accordingly, it is concluded that the unemployment rate of young people in Georgia is increasing.

Keywords: migration of youth, youth employment, migration management, youth employment and unemployment

Procedia PDF Downloads 143
4569 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 95
4568 Decoration in Anatolian Seljuk Minarets

Authors: Turkan Harmanbasi, Zeliha Busra Eryigit

Abstract:

The Anatolian Seljuk State was established in Anatolia by the Seljuks and continued its existence between the 11th and 14th centuries. Iznik was the first capital of Anatolian Seljuks. With the conquest of Konya in 1086, this place was declared as the capital. The Anatolian Seljuk State, with its numerous cultural elements, has produced valuable and permanent works for more than two centuries. Most of the important and monumental works were built in Konya. Anatolian Seljuk Art that makes unique; the technique in his works is the difference in material and style. It has gained an important place in Islamic architecture with this feature. In this period, rich embellishment programs emerged with the use of geometrical ornaments, floral motifs and calligraphy belts. In the Anatolian Seljuks, decoration was mainly applied with façade, crown gates, doors, windows, mihrab, mimbar, cover, transition elements and minarets; built with stone, brick and wooden materials. The minarets are located adjacent to the mosques or outside, as a high place that can be reached by stairs, which is made to invite people to worship and to announce this to people. They are architectural elements that have always been important in Islamic architecture with their compositions, construction techniques and ornaments. In different countries where Islam has spread, it has gained different appearances with the influence of local traditions. In the Seljuk art, minarets have become indispensable architectural elements of mosques and masjids. Stone and brick are generally used as a material in the minarets, and in some examples it can be seen that the tile was accompanied by the material. Ornamental motifs are formed by bringing these materials side by side vertically or horizontally. The scope of this study, the decoration details of the minarets built during the Anatolian Seljuk period will be examined. As a study area, samples from various Anatolian cities, especially Konya, were selected. Aim of studying the decoration of the Anatolian Seljuk minaret can shed some light on one of the most important aspects of the Islamic architecture in Anatolia and the development of the minaret in the Islamic World.

Keywords: Anatolian Seljuk, decoration, Islamic architecture, minaret, ornament

Procedia PDF Downloads 131
4567 Microbial Bioproduction with Design of Metabolism and Enzyme Engineering

Authors: Tomokazu Shirai, Akihiko Kondo

Abstract:

Technologies of metabolic engineering or synthetic biology are essential for effective microbial bioproduction. It is especially important to develop an in silico tool for designing a metabolic pathway producing an unnatural and valuable chemical such as fossil materials of fuel or plastics. We here demonstrated two in silico tools for designing novel metabolic pathways: BioProV and HyMeP. Furthermore, we succeeded in creating an artificial metabolic pathway by enzyme engineering.

Keywords: bioinformatics, metabolic engineering, synthetic biology, genome scale model

Procedia PDF Downloads 331
4566 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike

Abstract:

In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new Finite Element Method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.

Keywords: simulation, FEM, air viscosity, slit

Procedia PDF Downloads 365
4565 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti

Abstract:

Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: compost, home compost, reducing waste, waste management

Procedia PDF Downloads 418
4564 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application

Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.

Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage

Procedia PDF Downloads 55
4563 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II

Authors: Heerak Banerjee, Sourov Roy

Abstract:

Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.

Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry

Procedia PDF Downloads 124
4562 The Influence of Mechanical and Physicochemical Characteristics of Perfume Microcapsules on Their Rupture Behaviour and How This Relates to Performance in Consumer Products

Authors: Andrew Gray, Zhibing Zhang

Abstract:

The ability for consumer products to deliver a sustained perfume response can be a key driver for a variety of applications. Many compounds in perfume oils are highly volatile, meaning they readily evaporate once the product is applied, and the longevity of the scent is poor. Perfume capsules have been introduced as a means of abating this evaporation once the product has been delivered. The impermeable capsules are aimed to be stable within the formulation, and remain intact during delivery to the desired substrate, only rupturing to release the core perfume oil through application of mechanical force applied by the consumer. This opens up the possibility of obtaining an olfactive response hours, weeks or even months after delivery, depending on the nature of the desired application. Tailoring the properties of the polymeric capsules to better address the needs of the application is not a trivial challenge and currently design of capsules is largely done by trial and error. The aim of this work is to have more predictive methods for capsule design depending on the consumer application. This means refining formulations such that they rupture at the right time for the specific consumer application, not too early, not too late. Finding the right balance between these extremes is essential if a benefit is sought with respect to neat addition of perfume to formulations. It is important to understand the forces that influence capsule rupture, first, by quantifying the magnitude of these different forces, and then by assessing bulk rupture in real-world applications to understand how capsules actually respond. Samples were provided by an industrial partner and the mechanical properties of individual capsules within the samples were characterized via a micromanipulation technique, developed by Professor Zhang at the University of Birmingham. The capsules were synthesized such as to change one particular physicochemical property at a time, such as core: wall material ratio, and the average size of capsules. Analysis of shell thickness via Transmission Electron Microscopy, size distribution via the use of a Mastersizer, as well as a variety of other techniques confirmed that only one particular physicochemical property was altered for each sample. The mechanical analysis was subsequently undertaken, showing the effect that changing certain capsule properties had on the response under compression. It was, however, important to link this fundamental mechanical response to capsule performance in real-world applications. As such, the capsule samples were introduced to a formulation and exposed to full scale stresses. GC-MS headspace analysis of the perfume oil released from broken capsules enabled quantification of what the relative strengths of capsules truly means for product performance. Correlations have been found between the mechanical strength of capsule samples and performance in terms of perfume release in consumer applications. Having a better understanding of the key parameters that drive performance benefits the design of future formulations by offering better guidelines on the parameters that can be adjusted without worrying about the performance effects, and singles out those parameters that are essential in finding the sweet spot for capsule performance.

Keywords: consumer products, mechanical and physicochemical properties, perfume capsules, rupture behaviour

Procedia PDF Downloads 129