Search results for: geospatial data management
27316 A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach
Authors: Ida Bagus Made Putra Jandhana, Teuku Yuri M. Zagloel, Rahmat Nurchayo
Abstract:
Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement.Keywords: industrial, measurement, resilience, sector
Procedia PDF Downloads 27827315 Investigation of Stress and Its Effects on Health Workers in Federal Medical Centres in Nigeria
Authors: Chisom N. Nwaigwe, Blessing N. Egbulefu, Angela Uwakwem
Abstract:
A study on Stress and its’ effect on the health of workers in Federal Medical Centres in Nigeria is presented. The aim is to evaluate how much stress related hazards health workers in our tertiary health institutions are exposed to and to create awareness and reduce the rate at which stress affect the health of the working population in Nigeria, using workers in Federal Medical Centre, Umuahia as a case study. The descriptive survey design was adopted with the aid of 100 questionnaires delivered to the respondents in order to obtain first-hand information. From the findings, the major causes of stress were identified as inadequate staffing, unresolved family problems and psychological/cultural factors like the return of a lactating mother to work after three months post-delivery. The effects of stress on the workers were identified as hypertension, poor job performances, depression, asthma, and peptic ulcers. The study recommended instituting counseling units for stress management, holding seminars on stress management and increasing the salary scale (remuneration) and proper roster planning as solutions to stress reduction in our hospitals. This study is important to management in planning staffing, roaster, and a rehabilitation programme for her staff.Keywords: stress, causes, effects, workers
Procedia PDF Downloads 47527314 The Challenge of the Decarbonization of Shipping and Complex Imo Regulations
Authors: Saiyeed Jakaria Baksh Imran
Abstract:
The earth is being endangered by many of the climate related issues today. The most serious issue for the world today is the global warming. Increase in Greenhouse gas (GHG) emissions post-industrial revolution period is the prime reason for global warming. Shipping is the fifth largest GHG emitting sector worldwide. The key reason for this is because, over 90% of the world trade is conducted through ocean as the ocean alone covers 70% of the earth surface. While the countries continue to develop, trade and commerce continue to increase between them simultaneously. However, there is no sign of reduction in GHG emission from shipping because of many concerned issues. Firstly, there is technological barrier for which ships cannot just become environment friendly immediately. Secondly, there is no alternative fuel available as well. Thirdly, there is no proper mechanism to measure how much ships emit as emission from ships vary according to the size, engine type and loading capacity of ships. The International Maritime Organization (IMO) being the governing body of the international shipping has implemented MARPOL Annex VI. However, the policy alone is not enough unless there is a proper data available regarding ship emissions, which the IMO is yet to figure out. This paper will present a critical analysis of existing IMO policies such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP), Data Collection System (SEEMP) and the IMO’s Initial Strategy on Reduction of Greenhouse Gas emissions from shipping. Also, the challenges exist in implementing such policies have been presented in the paper.Keywords: GHG, IMO, EEDI, SEEMP, DCS, greenhouse gas, decarbonization, shipping
Procedia PDF Downloads 7627313 Early Metastatic Cancer: A Review of Its Management and Outcomes
Authors: Diwei Lin, Amanda Jia Hui Tan
Abstract:
In 2012, testicular cancer was estimated to account for 940 disability adjusted life years in Australia; of these, 450 were years lost due to premature death and 500 were years of healthy life lost due to disease, disability or injury. Testicular choriocarcinoma is one of the rarest variants of testicular germ cell tumours, accounting for less than 1% of testicular germ cell tumours and only about 0.19% of all testicular tumours. Management involves radical orchiectomy followed by chemotherapy. Even then, the prognosis is extremely poor. This case report describes a 20-year-old male with pure testicular choriocarcinoma with pulmonary metastases.Keywords: testicular cancer, choriocarcinoma, cryptorchidism, chemotherapy, metastatic testicular cancer
Procedia PDF Downloads 36427312 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region
Authors: Kassem Natouf, Ihab Jnad
Abstract:
In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices
Procedia PDF Downloads 3527311 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes
Authors: Nadarajah I. Ramesh
Abstract:
Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model
Procedia PDF Downloads 27827310 Investigating the Road Maintenance Performance in Developing Countries
Authors: Jamaa Salih, Francis Edum-Fotwe, Andrew Price
Abstract:
One of the most critical aspects of the management of road infrastructure is the type and scale of maintenance systems adopted and the consequences of their inadequacy. The performance of road maintenance systems can be assessed by a number of important indicators such as: cost, safety, environmental impact, and level of complaints by users. A review of practice reveals that insufficient level of expenditure or poor management of the road network often has serious consequences for the economic and social life of a country in terms of vehicle operating costs (VOC), travel time costs, accident costs and environmental impact. Despite an increase in the attention paid by global road agencies to the environmental and the road users’ satisfaction, the overwhelming evidence from the available literature agree on the lack of similar levels of attention for the two factors in many developing countries. While many sources agree that the road maintenance backlog is caused by either the shortage of expenditures or lack of proper management or both, it appears that managing the available assets particularly in the developing countries is the main issue. To address this subject, this paper will concentrate on exposing the various issues related to this field.Keywords: environmental impact, performance indicators, road maintenance, users’ satisfaction
Procedia PDF Downloads 35727309 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model
Authors: Gholba Niranjan Dilip, Anil Kumar
Abstract:
Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector
Procedia PDF Downloads 16027308 Water Crisis or Crisis of Water Management: Assessing Water Governance in Iran
Authors: Sedigheh Kalantari
Abstract:
Like many countries in the arid and semi-arid belt, Iran experiences a natural limitation in the availability of water resources. However, rapid socioeconomic development has created a serious water crisis in a nation that was once one of the world’s pioneers in sustainable water management, due to the Persians’ contribution to hydraulic engineering inventions – the Qanat – throughout history. The exogenous issues like the changing climate, frequent droughts, and international sanctions are only crisis catalyzers, not the main cause of the water crisis; and a resilient water management system is expected to be capable of coping with these periodic external pressures. The current dramatic water security issues in Iran are rooted in managerial, political, and institutional challenges rather than engineering and technical issues, and the country is suffering from challenges in water governance. The country, instead of rigorous water conservation efforts, is still focused on supply-driven approach, technology and centralized methods, and structural solutions that aim to increase water supply; while the effectiveness of water governance and management has often left unused. To solve these issues, it is necessary to assess the present situation and its evolution over time. In this respect, establishing water governance assessment mechanisms will be a significant aspect of this paper. The research framework, however, is a conceptual framework to assess governance performance of Iran to critically diagnose problematic issues and areas, as well as proffer empirically based solutions and determine the best possible steps towards transformational processes. This concept aims to measure the adequacy of current solutions and strategies designed to ameliorate these problems and then develop and prescribe adequate futuristic solutions. Thus, the analytical framework developed in this paper seeks to provide insights on key factors influencing water governance in Iranian cities, institutional frameworks to manage water across scales and authorities, multi-level management gaps and policy responses, through an evidence-based approach and good practices to drive reform toward sustainability and water resource conservation. The findings of this paper show that the current structure of the water governance system in Iran, coupled with the lack of a comprehensive understanding of the root causes of the problem, leaves minimal hope for developing sustainable solutions to Iran’s increasing water crisis. In order to follow sustainable development approaches, Iran needs to replace symptom management with problem prevention.Keywords: governance, Iran, sustainable development, water management, water resources
Procedia PDF Downloads 2627307 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System
Authors: Pachawo Bisani, Goodall Nyirenda
Abstract:
The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy
Procedia PDF Downloads 9927306 Data Security and Privacy Challenges in Cloud Computing
Authors: Amir Rashid
Abstract:
Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud
Procedia PDF Downloads 29927305 Improving the Management Systems of the Ownership Risks in Conditions of Transformation of the Russian Economy
Authors: Mikhail V. Khachaturyan
Abstract:
The article analyzes problems of improving the management systems of the ownership risks in the conditions of the transformation of the Russian economy. Among the main sources of threats business owners should highlight is the inefficiency of the implementation of business models and interaction with hired managers. In this context, it is particularly important to analyze the relationship of business models and ownership risks. The analysis of this problem appears to be relevant for a number of reasons: Firstly, the increased risk appetite of the owner directly affects the business model and the composition of his holdings; secondly, owners with significant stakes in the company are factors in the formation of particular types of risks for owners, for which relations have a significant influence on a firm's competitiveness and ultimately determines its survival; and thirdly, inefficient system of management ownership of risk is one of the main causes of mass bankruptcies, which significantly affects the stable operation of the economy as a whole. The separation of the processes of possession, disposal and use in modern organizations is the cause of not only problems in the process of interaction between the owner and managers in managing the organization as a whole, but also the asymmetric information about the kinds and forms of the main risks. Managers tend to avoid risky projects, inhibit the diversification of the organization's assets, while owners can insist on the development of such projects, with the aim not only of creating new values for themselves and consumers, but also increasing the value of the company as a result of increasing capital. In terms of separating ownership and management, evaluation of projects by the ratio of risk-yield requires preservation of the influence of the owner on the process of development and making management decisions. It is obvious that without a clearly structured system of participation of the owner in managing the risks of their business, further development is hopeless. In modern conditions of forming a risk management system, owners are compelled to compromise between the desire to increase the organization's ability to produce new value, and, consequently, increase its cost due to the implementation of risky projects and the need to tolerate the cost of lost opportunities of risk diversification. Improving the effectiveness of the management of ownership risks may also contribute to the revitalization of creditors on implementation claims to inefficient owners, which ultimately will contribute to the efficiency models of ownership control to exclude variants of insolvency. It is obvious that in modern conditions, the success of the model of the ownership of risk management and audit is largely determined by the ability and willingness of the owner to find a compromise between potential opportunities for expanding the firm's ability to create new value through risk and maintaining the current level of new value creation and an acceptable level of risk through the use of models of diversification.Keywords: improving, ownership risks, problem, Russia
Procedia PDF Downloads 35027304 Development of the Integrated Quality Management System of Cooked Sausage Products
Authors: Liubov Lutsyshyn, Yaroslava Zhukova
Abstract:
Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».Keywords: cooked sausage products, HACCP, quality management, safety assurance
Procedia PDF Downloads 24727303 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 8927302 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 8627301 Effectiveness of ATMS (Advanced Transport Management Systems) in Asuncion, Paraguay
Authors: Sung Ho Oh
Abstract:
The advanced traffic lights, the system of traffic information collection and provision, the CCTVs for traffic control, and the traffic information center were installed in Asuncion, capital of Paraguay. After pre-post comparison of the installation, significant changes were found. Even though the traffic volumes were increased, travel speed was higher, so that travel time from origin to destination was decreased. the saving values for travel time, gas cost, and environmental cost are about 47 million US dollars per year. Satisfaction survey results for the installation were presented with statistical significance analysis.Keywords: advanced transport management systems, effectiveness, Paraguay, traffic lights
Procedia PDF Downloads 35227300 Simulation of Growth and Yield of Rice Under Irrigation and Nitrogen Management Using ORYZA2000
Authors: Mojtaba Esmaeilzad Limoudehi
Abstract:
To evaluate the model ORYZA2000, under the management of irrigation and nitrogen fertilization experiment, a split plot with a randomized complete block design with three replications on hybrid cultivars (spring) in the 1388-1387 crop year was conducted at the Rice Research Institute. Permanent flood irrigation as the main plot in the fourth level, around 5 days, from 11 days to 8 days away, and the four levels of nitrogen fertilizer as the subplots 0, 90, 120, and 150 kg N Ha were considered. Simulated and measured values of leaf area index, grain yield, and biological parameters using the regression coefficient, t-test, the root mean square error (RMSE), and normalized root mean square error (RMSEn) were performed. Results, the normalized root mean square error of 10% in grain yield, the biological yield of 9%, and 23% of maximum LAI was determined. The simulation results show that grain yield and biological ORYZA2000 model accuracy are good but do not simulate maximum LAI well. The results show that the model can support ORYZA2000 test results and can be used under conditions of nitrogen fertilizer and irrigation management.Keywords: evaluation, rice, nitrogen fertilizer, model ORYZA2000
Procedia PDF Downloads 7027299 Designing of Content Management Systems (CMS) for Web Development
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Content Management Systems (CMS) have transformed the landscape of web development by providing an accessible and efficient platform for creating and managing digital content. This abstract explores the key features and benefits of CMS in web development, highlighting its impact on website creation and maintenance. CMS offers a user-friendly interface that empowers individuals to create, edit, and publish content without requiring extensive technical knowledge. With customizable templates and themes, users can personalize the design and layout of their websites, ensuring a visually appealing online presence. Furthermore, CMS facilitates efficient content organization through categorization and tagging, enabling visitors to navigate and search for information effortlessly. It also supports version control, allowing users to track and manage revisions effectively. Scalability is a notable advantage of CMS, as it offers a wide range of plugins and extensions to integrate additional features into websites. From e-commerce functionality to social media integration, CMS adapts to evolving business needs. Additionally, CMS enhances collaborative workflows by allowing multiple user roles and permissions. This enables teams to collaborate effectively on content creation and management, streamlining processes and ensuring smooth coordination. In conclusion, CMS serves as a powerful tool in web development, simplifying content creation, customization, organization, scalability, and collaboration. With CMS, individuals and businesses can create dynamic and engaging websites, establishing a strong online presence with ease.Keywords: web development, content management systems, information technology, programming
Procedia PDF Downloads 8527298 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis
Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi
Abstract:
The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH researchKeywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis
Procedia PDF Downloads 8927297 Comparing Two Unmanned Aerial Systems in Determining Elevation at the Field Scale
Authors: Brock Buckingham, Zhe Lin, Wenxuan Guo
Abstract:
Accurate elevation data is critical in deriving topographic attributes for the precision management of crop inputs, especially water and nutrients. Traditional ground-based elevation data acquisition is time consuming, labor intensive, and often inconvenient at the field scale. Various unmanned aerial systems (UAS) provide the capability of generating digital elevation data from high-resolution images. The objective of this study was to compare the performance of two UAS with different global positioning system (GPS) receivers in determining elevation at the field scale. A DJI Phantom 4 Pro and a DJI Phantom 4 RTK(real-time kinematic) were applied to acquire images at three heights, including 40m, 80m, and 120m above ground. Forty ground control panels were placed in the field, and their geographic coordinates were determined using an RTK GPS survey unit. For each image acquisition using a UAS at a particular height, two elevation datasets were generated using the Pix4D stitching software: a calibrated dataset using the surveyed coordinates of the ground control panels and an uncalibrated dataset without using the surveyed coordinates of the ground control panels. Elevation values for each panel derived from the elevation model of each dataset were compared to the corresponding coordinates of the ground control panels. The coefficient of the determination (R²) and the root mean squared error (RMSE) were used as evaluation metrics to assess the performance of each image acquisition scenario. RMSE values for the uncalibrated elevation dataset were 26.613 m, 31.141 m, and 25.135 m for images acquired at 120 m, 80 m, and 40 m, respectively, using the Phantom 4 Pro UAS. With calibration for the same UAS, the accuracies were significantly improved with RMSE values of 0.161 m, 0.165, and 0.030 m, respectively. The best results showed an RMSE of 0.032 m and an R² of 0.998 for calibrated dataset generated using the Phantom 4 RTK UAS at 40m height. The accuracy of elevation determination decreased as the flight height increased for both UAS, with RMSE values greater than 0.160 m for the datasets acquired at 80 m and 160 m. The results of this study show that calibration with ground control panels improves the accuracy of elevation determination, especially for the UAS with a regular GPS receiver. The Phantom 4 Pro provides accurate elevation data with substantial surveyed ground control panels for the 40 m dataset. The Phantom 4 Pro RTK UAS provides accurate elevation at 40 m without calibration for practical precision agriculture applications. This study provides valuable information on selecting appropriate UAS and flight heights in determining elevation for precision agriculture applications.Keywords: unmanned aerial system, elevation, precision agriculture, real-time kinematic (RTK)
Procedia PDF Downloads 16427296 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 19727295 Analysis of the Effect of Increased Self-Awareness on the Amount of Food Thrown Away
Authors: Agnieszka Dubiel, Artur Grabowski, Tomasz Przerywacz, Mateusz Roganowicz, Patrycja Zioty
Abstract:
Food waste is one of the most significant challenges humanity is facing nowadays. Every year, reports from global organizations show the scale of the phenomenon, although society's awareness is still insufficient. One-third of the food produced in the world is wasted at various points in the food supply chain. Wastes are present from the delivery through the food preparation and distribution to the end of the sale and consumption. The first step in understanding and resisting the phenomenon is a thorough analysis of the everyday behaviors of humanity. This concept is understood as finding the correlation between the type of food and the reason for throwing it out and wasting it. Those actions were identified as a critical step in the start of work to develop technology to prevent food waste. In this paper, the problem mentioned above was analyzed by focusing on the inhabitants of Central Europe, especially Poland, aged 20-30. This paper provides an insight into collecting data through dedicated software and an organized database. The proposed database contains information on the amount, type, and reasons for wasting food in households. A literature review supported the work to answer research questions, compare the situation in Poland with the problem analyzed in other countries, and find research gaps. The proposed article examines the cause of food waste and its quantity in detail. This review complements previous reviews by emphasizing social and economic innovation in Poland's food waste management. The paper recommends a course of action for future research on food waste management and prevention related to the handling and disposal of food, emphasizing households, i.e., the last link in the supply chain.Keywords: food waste, food waste reduction, consumer food waste, human-food interaction
Procedia PDF Downloads 11927294 Human Resource Information System: Role in HRM Practices and Organizational Performance
Authors: Ejaz Ali M. Phil
Abstract:
Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.Keywords: enterprise resource planning, human resource, information system, human capital
Procedia PDF Downloads 39627293 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce
Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada
Abstract:
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.Keywords: distributed algorithm, MapReduce, multi-class, support vector machine
Procedia PDF Downloads 40127292 The Effect of Music Therapy on Anxiety, Fear and Pain Management in 6-12 Year Old Children Undergoing Surgery
Authors: Özgür Bahadir, Meltem Kurtuncu
Abstract:
The study was designed as quasi-experimental and conducted to determine the effect of music therapy on anxiety, fear and pain management in 6-12-year-old children undergoing surgery. The present study was carried out between 01.01.2016 and 19.08.2016 in BEU. Application and Research Center. The children aged 6 -12 who applied for surgery between the mentioned dates constituted the universe of the study. In the quasi-experimental study that was conducted in the clinics where children received operational treatment, two groups were formed: experimental group (the children who received musical therapy before the surgery) and control group (the children who were administered surveys and the surgery service routines only). Each group consisted of 30 children, and the participants of the study were 60 children in total. Necessary permissions were obtained from the parents of the children hospitalized before the beginning of the implementation. The data was collected through Child Anxiety Sensitivity Index (CASI), “Fear In Medical Treatment Scale”, Face, Legs, Activity, Cry, Consolability Scale (FLACC), Visual Analog Scale (VAS) and Participant Information Form. In the analysis of the data, Kolmogorov-Smirnov distribution scale was used to examine the normality of the distribution along with descriptive statistics methods (Frequency, Percentage, Mean, Standard Deviation). Data was presented in the tables in numbers and percentages. Means were demonstrated along with the standard deviations. The research compared children received; case and control groups include socio-demographic perspective, non-significant difference statistically among similar groups are intertwined. The general level of fear regarding the medical processes before returning to service after the operation and 30 minutes before getting discharged was found to be significantly low in the experimental group compared to control group (p<0.05). No statistically significant difference was found between experimental and control groups in terms of general level of fear regarding the medical processes before the operation, during the operation day and in the recovery room after the operation (p>0.05). Total CASI AD (anxiety sensitivity) levels before the operation, day of the operation and 30 minutes before the discharge for patients in experimental group was found to be significantly higher than the control group (p>0.05). There was no statistically significant difference between the experimental and control groups in the total CASI AD levels for the post-operative recovery room and for returning to the service room after the operation (p>0.05). VAS levels for patients in the experimental group in the post-operative recovery room was significantly higher than the control group (p>0.05). There was no statistically significant difference between the groups in terms of VAS findings in returning to service room after the operation and in 30 minutes before the discharge (p>0.05). As a result of the research; applied children music therapy in the experimental group anxiety, fear, and pain of the scales, their scores average, is lower than the control group children in this situation an increase in the satisfaction of children and parents was observed. In line with this, music therapy preoperative anxiety, fear, and can be used as an effective method of decreasing postoperative pain clinics is suggested.Keywords: anxiety, children, fear, music therapy, pain
Procedia PDF Downloads 22327291 Aircraft Line Maintenance Equipped with Decision Support System
Authors: B. Sudarsan Baskar, S. Pooja Pragati, S. Raj Kumar
Abstract:
The cost effectiveness in aircraft maintenance is of high privilege in the recent days. The cost effectiveness can be effectively made when line maintenance activities are incorporated at airports during Turn around time (TAT). The present work outcomes the shortcomings that affect the dispatching of the aircrafts, aiming at high fleet operability and low maintenance cost. The operational and cost constraints have been discussed and a suggestive alternative mechanism is proposed. The possible allocation of all deferred maintenance tasks to a set of all deferred maintenance tasks to a set of suitable airport resources have termed as alternative and is discussed in this paper from the data’s collected from the kingfisher airlines.Keywords: decision support system, aircraft maintenance planning, maintenance-cost, RUL(remaining useful life), logistics, supply chain management
Procedia PDF Downloads 50227290 Railway Ballast Volumes Automated Estimation Based on LiDAR Data
Authors: Bahar Salavati Vie Le Sage, Ismaïl Ben Hariz, Flavien Viguier, Sirine Noura Kahil, Audrey Jacquin, Maxime Convert
Abstract:
The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated.Keywords: ballast, railroad, LiDAR , cloud point, track ballast, 3D point
Procedia PDF Downloads 10927289 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints
Authors: Amjad Khan
Abstract:
The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking
Procedia PDF Downloads 28427288 Knowledge about Dementia: Why Should Family Caregivers Know that Dementia is a Terminal Disease?
Authors: Elzbieta Sikorska-Simmons
Abstract:
Dementia is a progressive terminal disease. Despite this recognition, research shows that most family caregivers do not know it, and it is unclear how this knowledge affects the quality of patient care. The aim of this qualitative study of 20 family caregivers for patients with advanced dementia is to examine how the caregiver's knowledge about dementia affects the quality of patient care in the context of healthcare decision-making, advanced care planning, and access to adequate support systems. Knowledge about dementia implies family caregivers' understanding of dementia trajectories, common symptoms/complications, and alternative treatment options (e.g., comfort feeding versus tube feeding). Data were collected in semi-structured interviews with 20 family caregivers. The interviews were conducted in person by the author and designed to elicit rich descriptions of family caregivers' experiences with healthcare decision-making and the management of common symptoms/complications of end-stage dementia as patient healthcare proxies. The study findings suggest that caregivers who recognize that dementia is a terminal disease are less likely to opt for life-extending treatments during the advanced stages. They are also more likely to seek palliative/hospice care, and consequently, they are better able to avoid unnecessary hospitalizations or medical procedures. For example, those who know that dementia is a terminal disease tend to opt for "comfort feeding" rather than "tube feeding" in managing the swallowing difficulties that accompany advanced dementia. In the context of advance care planning, family caregivers who know that dementia is a terminal disease tend to have more meaningful advance directives (e.g., Power of Attorney and Do Not Resuscitate orders). They are better prepared to anticipate common problems and pursue treatments that foster the best quality of patient life and care. Greater knowledge about advanced dementia helps them make more informed decisions that focus on enhancing the quality of patient life rather than just survival. In addition, those who know that dementia is a terminal disease are more likely to establish adequate support systems to help them cope with the complex demands of caregiving. For example, they are more likely to seek dementia-oriented primary care programs that offer house visits or respite services. Based on the study findings, knowledge about dementia as a terminal disease is critical in the optimal management of patient care needs and the establishment of adequate support systems. More research is needed to better understand what caregivers need to know to better prepare them for the complex demands of dementia caregiving.Keywords: dementia education, family caregiver, management of dementia, quality of care
Procedia PDF Downloads 10027287 Traffic Prediction with Raw Data Utilization and Context Building
Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.Keywords: traffic prediction, raw data utilization, context building, data reduction
Procedia PDF Downloads 127