Search results for: fogging system
13866 Analysis of Crisis Management Systems of United Kingdom and Turkey
Authors: Recep Sait Arpat, Hakan Güreşci
Abstract:
Emergency, disaster and crisis management terms are generally perceived as the same processes. This conflict effects the approach and delegating policy of the political order. Crisis management starts in the aftermath of the mismanagement of disaster and emergency. In the light of the information stated above in this article Turkey and United Kingdom(UK)’s crisis management systems are analyzed. This article’s main aim is to clarify the main points of the emergency management system of United Kingdom and Turkey’s disaster management system by comparing them. To do this: A prototype model of the political decision making processes of the countries is drawn, decision making mechanisms and the planning functions are compared. As a result it’s found that emergency management policy in Turkey is reactive whereas it’s proactive in UK; as the delegating policy Turkey’s system is similar to UK; levels of emergency situations are similar but not the same; the differences are stemming from the civil order and nongovernmental organizations effectiveness; UK has a detailed government engagement model to emergencies, which shapes the doctrine of the approach to emergencies, and it’s successful in gathering and controlling the whole state’s efforts; crisis management is a sub-phase of UK emergency management whereas it’s accepted as a outmoded management perception and the focal point of crisis management perception in UK is security crisis and natural disasters while in Turkey it is natural disasters. In every anlysis proposals are given to Turkey.Keywords: crisis management, disaster management, emergency management, turkey, united kingdom
Procedia PDF Downloads 37413865 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 6913864 Indonesia's War on Terror and the Consequences on Indonesian Political System
Authors: Salieg L. Munestri
Abstract:
War on Terror became a principal war after the 9/11 attacks on U.S. homeland. Instead of helping to build up worldwide efforts to condemn terror and suicide bombings, the U.S.-led war on terror has given opportunities for the vast spread of terror. In much of Muslim world recently, the Bush’s Doctrine pushing all nations to choose sides in a war that is not truly a war has resulted worse effects. In the world’s most populous Muslim nation, Indonesia, more terror occurred since then. Instead of reinforcing the well-trained anti-terror military forces, Indonesian government established US-funded Special Detachment 88 to guarantee the accomplishment of war on terror in Indonesia and significantly to bring impact on regional security atmosphere. Indonesia is a potential power in Asia but it lacked off sophisticated military equipments. Consequently, Indonesia agrees to become a U.S. mutual partner in combating terrorism managed by Defense Security Cooperation Agency. The formation of elite anti-terror forces and U.S. partnerships perform Indonesia’s commitment to take a position beside the U.S. in coping with terrorism issue. However, this undeniably brings consequences on Indonesian political athmosphere, which encourages the writer to dig deep the consequences on the domestic environment of Indonesian political system. The establishment of the elite forces has aroused fluctuations within government, chiefly Indonesian House, concerning the establishment urgency, the large amount of funding, and the unpleasant performances, particularly the treatment toward suspected terrorists. Hence, evaluation process upon the Detachment 88 is highly demanding.Keywords: anti-terror forces, Indonesia, political system, war on terror
Procedia PDF Downloads 34713863 Uniaxial Alignment and Ion Exchange Doping to Enhance the Thermoelectric Properties of Organic Polymers
Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus
Abstract:
This project delves into the efficiency of uniaxial alignment and ion exchange doping as methods to optimize the thermoelectric properties of organic polymers. The anisotropic nature of charge transport in conjugated polymers is capitalized upon through the uniaxial alignment of polymer backbones, ensuring charge transport is streamlined along these backbones. Ion exchange doping has demonstrated superiority over traditional molecular and electrochemical doping methods, amplifying charge carrier densities. By integrating these two techniques, we've observed marked improvements in the thermoelectric attributes of specific conjugated polymers such as PBTTT and DPP based polymers. We demonstrate respectable power factors of 172.6 μW m⁻¹ K⁻² in PBTTT system and 41.7 μW m⁻¹ K⁻² in DPP system.Keywords: organic electronics, thermoelectrics, uniaxial alignment, ion exchange doping
Procedia PDF Downloads 7213862 Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities
Authors: Yoshiaki Shikata, Nobutane Hanayama
Abstract:
We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified.Keywords: processor sharing, multi-server, various capacity, N-priority classes, routing strategy, loss probability, mean sojourn time, mean waiting time, simulation
Procedia PDF Downloads 33213861 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems
Authors: Georgi Y. Georgiev, Matthew Brouillet
Abstract:
This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.Keywords: complexity, self-organization, agent based modelling, efficiency
Procedia PDF Downloads 6913860 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions
Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei
Abstract:
This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics
Procedia PDF Downloads 8713859 International Migration of Highly Skilled Indian Professionals: A Case Study of Indian IT Professionals in Japan, Preliminary Results
Authors: Rimpi Rani
Abstract:
In the 2000s, a new migration trend of highly skilled Indian professionals towards Japan has appeared. This paper examines the factors that set off the incoming of highly skilled Indian professionals in Japan, mainly focusing on IT professionals’ immigration, and the reasons of the increase in their number. It investigates the influence of four factors: The Japanese immigration policy, the bilateral relations between India and Japan, the higher education system in India and the American H-1B visa policy with its cap system. This study concludes that increased and continuous supply of highly skilled Indian professionals have intensified the competition for migration to traditional destinations like the USA. This led Indian professionals to consider other options such as Japan.Keywords: international migration, India, Japan, highly skilled professionals
Procedia PDF Downloads 31613858 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still
Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama
Abstract:
A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.Keywords: distillation, solar energy, heat transfer, mass transfer, average height
Procedia PDF Downloads 14713857 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions
Authors: Muthana A. M. Jamel Al-Gburi
Abstract:
Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level
Procedia PDF Downloads 8613856 Aeroelastic Analysis of Nonlinear All-Movable Fin with Freeplay in Low-Speed
Authors: Laith K. Abbas, Xiaoting Rui, Pier Marzocca
Abstract:
Aerospace systems, generally speaking, are inherently nonlinear. These nonlinearities may modify the behavior of the system. However, nonlinearities in an aeroelastic system can be divided into structural and aerodynamic. Structural nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities are spread over the whole structure representing the characteristic of materials and large motions. Concentrated nonlinearities act locally, representing loose of attachments, worn hinges of control surfaces, and the presence of external stores. The concentrated nonlinearities can be approximated by one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for example, a free-play and a cubic one. Compressibility, aerodynamic heating, separated flows and turbulence effects are important aspects that result in nonlinear aerodynamic behavior. An issue related to the low-speed flutter and its catastrophic/benign character represented by Limit Cycle Oscillation (LCO) of all-movable fin, as well to their control is addressed in the present work. To the approach of this issue: (1) Quasi-Steady (QS) Theory and Computational Fluid Dynamics (CFD) of subsonic flow are implemented, (2) Flutter motion equations of a two-dimensional typical section with cubic nonlinear stiffness in the pitching direction and free play gap are established, (3) Uncoupled bending/torsion frequencies of the selected fin are computed using recently developed Transfer Matrix Method of Multibody System Dynamics (MSTMM), and (4) Time simulations are carried out to study the bifurcation behavior of the aeroelastic system. The main objective of this study is to investigate how the LCO and chaotic behavior are influenced by the coupled aeroelastic nonlinearities and intend to implement a control capability enabling one to control both the flutter boundary and its character. By this way, it may expand the operational envelop of the aerospace vehicle without failure.Keywords: aeroelasticity, CFD, MSTMM, flutter, freeplay, fin
Procedia PDF Downloads 37113855 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.Keywords: car parking monitoring, sensor node, wireless sensor network, network protocol
Procedia PDF Downloads 53913854 Measurement and Monitoring of Graduate Attributes via iCGPA Implementation and ACADEMIA Programming: UNIMAS Case Study
Authors: Shanti Faridah Salleh, Azzahrah Anuar, Hamimah Ujir, Rohana Sapawi, Wan Hashim Wan Ibrahim, Noraziah Abdul Wahab, Majina Sulaiman, Raudhah Ahmadi, Al-Khalid Othman, Johari Abdullah
Abstract:
Integrated Cumulative Grade Point Average or iCGPA is an evaluation and reporting system that represents a comprehensive development of students’ achievement in their academic programs. Universiti Malaysia Sarawak, UNIMAS has started its implementation of iCGPA in 2016. iCGPA is driven by the Outcome-Based Education (OBE) system that has been long integrated into the higher education in Malaysia. iCGPA is not only a tool to enhance the OBE concept through constructive alignment but it is also an integrated mechanism to assist various stakeholders in making decisions or planning for program improvement. The outcome of this integrated system is the reporting of students’ academic performance in terms of cognitive (knowledge), psychomotor (skills), and affective (attitude) of which the students acquire throughout the duration of their study. The iCGPA reporting illustrates the attainment of student’s attribute in the eight domains of learning outcomes listed in the Malaysian Qualifications Framework (MQF). This paper discusses on the implementation of iCGPA in UNIMAS on the policy and strategy to direct the whole university to implement the iCGPA. The steps and challenges in integrating the exsting Outcome-Based Education and utilising iCGPA as a tool to quantify the students’ achievement are also highlighted in this paper. Finally, the ACADEMIA system, which is a dedicated centralised program ensure the implementation of iCGPA is a success has been developed. This paper discusses the structure and the analysis of ACADEMIA program and concludes the analysis made on the improvement made on the implementation of constructive alignment in all 40 programs involves in iCGPA implementation.Keywords: constructive alignment, holistic graduates, mapping of assessment, programme outcome
Procedia PDF Downloads 20913853 The Great Mimicker: A Case of Disseminated Tuberculosis
Authors: W. Ling, Mohamed Saufi Bin Awang
Abstract:
Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment.Keywords: central nervous system tuberculosis, intracranial tuberculosis, tuberculous encephalopathy, tuberculous meningitis
Procedia PDF Downloads 19113852 Establishment of an Information Platform Increases Spontaneous Reporting of Adverse Drug Reactions
Authors: Pei-Chun Chen, Chi-Ting Tseng, Lih-Chi Chen, Kai-Hsiang Yang
Abstract:
Introduction: The pharmacist is responsible for encouraging adverse drug reaction (ADR) reporting. In a local center in Northern Taiwan, promotion and rewarding of ADR reporting have continued for over six years but failed to bring significant changes. This study aims to find a solution to increase ADR reporting. Research question or hypothesis: We hypothesized that under-reporting is due to the inconvenience of the reporting system. Reports were made conventionally through printed sheets. We proposed that reports made per month will increase if they were computerized. Study design: An ADR reporting platform was established in April 2015, before which was defined as the first stage of this study (January-March, 2015) and after which the second stage. The third stage commenced in November, 2015, after adding a reporting module to physicians prescription system. ADRs could be reported simultaneously when documenting drug allergies. Methods: ADR report rates during the three stages of the study were compared. Effects of the information platform on reporting were also analyzed. Results: During the first stage, the number of ADR reports averaged 6 per month. In the second stage, the number of reports per month averaged 1.86. Introducing the information platform had little effect on the monthly number of ADR reports. The average number of reports each month during the third stage of the study was 11±3.06, with 70.43% made electronically. Reports per month increased significantly after installing the reporting module in November, 2015 (P<0.001, t-test). In the first two stages, 29.03% of ADR reports were made by physicians, as compared to 70.42% of cases in the third stage of the study. Increased physician reporting possibly account for these differences. Conclusion: Adding a reporting module to the prescription system significantly increased ADR reporting. Improved accessibility is likely the cause. The addition of similar modules to computer systems of other healthcare professions may be considered to encourage spontaneous ADR reporting.Keywords: adverse drug reactions, adverse drug reaction reporting systems, regional hospital, prescription system
Procedia PDF Downloads 35413851 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 19713850 Casteism in United Punjab: A Socio-Cultural Perspective
Authors: Zahoor Ahmad
Abstract:
Casteism has played a pivotal role in the social setup and political manipulations in Punjab. This tradition dates back to pre-British history. A number of scholars produced valuable work attributing the caste prejudice and division among the local communities. As a matter of fact, the history of Punjab witnessed a tangible economic, Muslim-non-Muslim, hatred culture towards low-profile castes & professions, and so on. It is obvious that caste ridden system already existed in Punjab before the advent of the British, who tremendously supported the same, and this division evidently affected every aspect of the political as well as social life of the region. This article highlights the characteristics of different castes and the contemptuous behavior of the low castes & professions in the area further, how the caste system influenced the local people and their culture.Keywords: casteism, caste prejudice, division, Punjab
Procedia PDF Downloads 9613849 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 20713848 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System
Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng
Abstract:
This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator
Procedia PDF Downloads 52313847 TNF-Kinoid® in Autoimmune Diseases
Authors: Yahia Massinissa, Melakhessou Med Akram, Mezahdia Mehdi, Marref Salah Eddine
Abstract:
Cytokines are natural proteins which act as true intercellular communication signals in immune and inflammatory responses. Reverse signaling pathways that activate cytokines help to regulate different functions at the target cell, causing its activation, its proliferation, the differentiation, its survival or death. It was shown that malfunctioning of the cytokine regulation, particularly over-expression, contributes to the onset and development of certain serious diseases such as chronic rheumatoid arthritis, Crohn's disease, psoriasis, lupus. The action mode of Kinoid® technology is based on the principle vaccine: The patient's immune system is activated so that it neutralizes itself and the factor responsible for the disease. When applied specifically to autoimmune diseases, therapeutic vaccination allows the body to neutralize cytokines (proteins) overproduced through a highly targeted stimulation of the immune system.Keywords: cytokines, Kinoid tech, auto-immune diseases, vaccination
Procedia PDF Downloads 33913846 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system
Procedia PDF Downloads 15513845 Money Laundering and Governance in Cryptocurrencies: The Double-Edged Sword of Blockchain Technology
Abstract:
With the growing popularity of bitcoin transactions, criminals have exploited the bitcoin like cryptocurrencies, and cybercriminals such as money laundering have thrived. Unlike traditional currencies, the Internet-based virtual currencies can be used anonymously via the blockchain technology underpinning. In this paper, we analyze the double-edged sword features of blockchain technology in the context of money laundering. In particular, the traceability feature of blockchain-based system facilitates a level of governance, while the decentralization feature of blockchain-based system may bring governing difficulties. Based on the analysis, we propose guidelines for policy makers in governing blockchain-based cryptocurrency systems.Keywords: cryptocurrency, money laundering, blockchain, decentralization, traceability
Procedia PDF Downloads 20513844 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems
Authors: Baba Mbaye
Abstract:
In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering
Procedia PDF Downloads 21913843 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach
Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez
Abstract:
The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling
Procedia PDF Downloads 4213842 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine
Authors: Nadia Allouache
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system
Procedia PDF Downloads 7513841 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 15713840 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis
Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert
Abstract:
The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation
Procedia PDF Downloads 14813839 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System
Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song
Abstract:
In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.Keywords: MIMO-OFDM, QRD-M, channel condition, BER
Procedia PDF Downloads 37213838 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device
Authors: Won Jun Jo, Man Young Kim
Abstract:
To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics
Procedia PDF Downloads 29713837 Economic Growth and Total Factor Productivity by the Use of Rail Way Transport in the City of Medellín - Colombia in the Period 2012-2016
Authors: Mauricio Molina
Abstract:
The present research project aims to determine whether it is possible to have a statement, allowing you to have an economic model to establish clearly if the population that uses the rail system underground in the city of Medellin with an increase in productivity total factor. The present project aims to concentrate on the surroundings to the system underground for a period of 60 months in the city of Medellin. According to the review bibliographic is can establish that in it most of them cases, the cities that have with systems of transport rail are more productive. And should to its time present is an analysis that may lead to determine if effectively the use of the transport railway improves the productivity of a city and its inhabitants.Keywords: economic growth, mobility urban, total factor productivity, rail transport
Procedia PDF Downloads 290