Search results for: solar thermal cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5268

Search results for: solar thermal cooling

1548 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 435
1547 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina

Abstract:

A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.

Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness

Procedia PDF Downloads 365
1546 Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography

Authors: Huy Q. Tran, Jungwon Huh, Kiseok Kwak, Choonghyun Kang

Abstract:

Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study.

Keywords: concrete building, infrared thermography, nondestructive evaluation, subsurface delamination

Procedia PDF Downloads 286
1545 Low Temperature Powders Synthesis of la1-xMgxAlO3 through Sol-Gel Method

Authors: R. Benakcha, M. Omari

Abstract:

Powders of La1-xMgxAlO3 (0 ≤ x ≤ 5) oxides, with large surface areas were synthesized by sol-gel process, utilizing citric acid. Heating of a mixed solution of CA, EtOH, and nitrates of lanthanum, aluminium and magnesium at 70°C gave transparent gel without any precipitation. The formation of pure perovskite La1-xMgxAlO3, occurred when the precursor was heat-treated at 800°C for 6 h. No X-ray diffraction evidence for the presence of crystalline impurities was obtained. The La1-xMgxAlO3 powders prepared by the sol-gel method have a considerably large surface area in the range of 12.9–20 m^2.g^-1 when compared with 0.3 m^2.g^-1 for the conventional solid-state reaction of LaAlO3. The structural characteristics were examined by means of conventional techniques namely X-ray diffraction, infrared spectroscopy, thermogravimetry and differential thermal (TG-DTA) and specific surface SBET. Pore diameters and crystallite sizes are in the 8.8-11.28 nm and 25.4-30.5 nm ranges, respectively. The sol-gel method is a simple technique that has several advantages. In addition to that of not requiring high temperatures, it has the potential to synthesize many kinds of mixed oxides and obtain other materials homogeneous and large purities. It also allows formatting a variety of materials: very fine powders, fibers and films.

Keywords: aluminate, lanthan, perovskite, sol-gel

Procedia PDF Downloads 279
1544 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 411
1543 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 567
1542 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: carbon fiber reinforced thermoplastic, finite element analysis, pre-impregnated textile composite, non-isothermal forming

Procedia PDF Downloads 430
1541 Ion-Acoustic Double Layers in a Non-Thermal Electronegative Magnetized Plasma

Authors: J. K. Chawla, S. K. Jain, M. K. Mishra

Abstract:

Ion-acoustic double layers have been studied in magnetized plasma. The modified Korteweg-de Vries (m-KdV) equation using reductive perturbation method is derived. It is found that for the selected set of parameters, the system supports rarefactive double layers depending upon the value of nonthermal parameters. It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, increases in the magnetization and the obliqueness angle (θ) between wave vector and magnetic field, affect the width of the double layers, however the amplitude of the double layers have no effect. An increase in the values of nonthermal parameter decreases the amplitude of the rarefactive double layer. The effect of the ion temperature ratio on the amplitude and width of the double layers are also discussed in detail.

Keywords: ion-acoustic double layers, magnetized electronegative plasma, reductive perturbation method, the modified Korteweg-de Vries (KdV) equation

Procedia PDF Downloads 614
1540 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 294
1539 Experimental Investigation of Nucleate Pool Boiling Heat Transfer Characteristics on Copper Surface with Laser-Textured Stepped Microstructures

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

Due to the rapid advancement of integrated circuits and the increasing trend towards miniaturizing electronic devices, the amount of heat produced by electronic devices has consistently exceeded the maximum limit for heat dissipation. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-textured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-textured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser texturing, micro structured surface, pool boiling

Procedia PDF Downloads 96
1538 Wear Behavior of Intermetallic (Ni3Al) Coating at High Temperature

Authors: K. Mehmood, Muhammad Asif Rafiq, A. Nasir Khan, M. Mudassar Rauf

Abstract:

Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After thermal spraying, the nickel aluminide intermetallic coatings were isothermal heat treated at various temperatures. In this regard, temperatures from 500 °C to 800 °C with 100 °C increments were selected. The coatings were soaked for 10, 30, 60 and 100 hours at the mentioned temperatures. These coatings were then tested by a pin on disk method. It was observed that the coatings exposed at comparatively higher temperature experienced lower wear rate. The decrease in wear rate is due to the formation of NiO phase. Further, the as sprayed and heat treated coatings were characterized by other tools such as Microhardness testing, optical and scanning electron microscopy (SEM) and X-Ray diffraction analysis. After isothermal heat treatment, NiO was observed the main phase by X-Ray diffraction technique. Moreover, the surface hardness was also determined higher than cross sectional hardness.

Keywords: air plasma spraying, Ni -20Al, tribometer, intermetallic coating, nickel aluminide

Procedia PDF Downloads 337
1537 X-Ray Diffraction and Precision Dilatometer Study of Neutron-Irradiated Nuclear Graphite Recovery Process up to 1673K

Authors: Yuhao Jin, Zhou Zhou, Katsumi Yoshida, Zhengcao Li, Tadashi Maruyama, Toyohiko Yano

Abstract:

Four kinds of nuclear graphite, IG-110U, ETP-10, CX-2002U and IG-430U were neutron-irradiated at different fluences and temperatures, ranged from 1.38 x 1024 to 7.4 x 1025 n/m2 (E > 1.0 MeV) at 473K, 573K and 673K. To take into account the disorder in the microstructure, such as stacking faults and anisotropic coherent lengths, the X-ray diffraction patterns were interpreted using a comprehensive structural model and a refinement program CARBONXS. The deduced structural parameters show the changes of lattice parameters, coherent lengths along the c-axis and the basal plane, and the degree of turbostratic disorder as a function of the irradiation dose. Our results reveal neutron irradiation effects on the microstructure and macroscopic dimension, which are consistent with previous work. The methodology used in this work enables the quantification of the damage on the microstructure of nuclear graphite induced by neutron irradiation.

Keywords: nuclear graphite, neutron irradiation, thermal annealing, recovery behavior, dimensional change, CARBONX, XRD analysis

Procedia PDF Downloads 405
1536 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 311
1535 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour

Abstract:

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

Keywords: deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming

Procedia PDF Downloads 460
1534 Thiazolo [5,4-d] Thiazole Based Polymers and Investigation of Optical Properties for Electronic Applications

Authors: Zeynep Dikmen, Vural Bütün

Abstract:

Electron donor or acceptor capability to participate in electron conjugation is the requirement for an electroactive material. Conjugated molecules and polymers bearing heterocyclic units have potential as optically electroactive materials. Thiazolo thiazole based compounds have attention for last two decades, because they have attractive electronic and optical properties, these compounds are useful for electronic application areas such as dye sentisized solar cells (DSSCs), organic light emitting diodes (OLEDs) and field effect transistors (FETs). Thiazolo[5,4-d]thiazole is bicyclic aromatic structure contains N and S atoms which act as electron donor. A new electron accepting or donating group bound to thiazolo [5,4-d] thiazole fused ring can change the electronic, spectroscopic, stability and dyeing properties of the new material. Polyphenylene(thiazolo [5,4-d] thiazole) (p-PhTT) compound was synthesized via condensation reaction of terephthalaldehyde with dithiooxamide. The chemical structure was determined with solid state 13C NMR spectroscopy. Optical properties (i.e. absorbance and band gap) was determined via solid UV-vis spectroscopy. The insoluble polymer was quarternized with 4-vinylbenzyl chloride (VBC). Colorless VBC changed into a yellow liquid. AgNO3 complex were prepared and optical properties were investigated with UV-Vis, fluorescence spectroscopy and X-ray spectroscopy and cyclic voltammetry studies were examined in this research. This structure exhibits good absorbance and fluorescence in UV-vis region. Synthesis scheme of PyTT and preparation of metal complexes are given. PyTT has absorbance at ~360 nm and fluorescence at ~420 nm.

Keywords: thiazolo thiazole, quarternized polymers, polymeric ligands, Ag complexes

Procedia PDF Downloads 269
1533 Acoustic and Thermal Compliance from the Execution Theory

Authors: Saou Mohamed Amine

Abstract:

The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. However, an overwhelming issue of existing non-energy efficient buildings which exceeds the number of new building could be ineffective if the buildings are not refurbished through the energy efficient measures. Thus, energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability that offers significant opportunities for reducing global energy consumption and greenhouse gas emissions. However, the quality of design team attributes and the characteristics of the refurbishment building projects have been argued to be the main factors that determine the energy efficiency performance of the building.

Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics

Procedia PDF Downloads 370
1532 Rollet vs Rocket: A New in-Space Propulsion Concept

Authors: Arthur Baraov

Abstract:

Nearly all rocket and spacecraft propulsion concepts in existence today can be linked one way or the other to one of the two ancient warfare devices: the gun and the sling. Chemical, thermoelectric, ion, nuclear thermal and electromagnetic rocket engines – all fall into the first group which, for obvious reasons, can be categorized as “hot” space propulsion concepts. Space elevator, orbital tower, rolling satellite, orbital skyhook, tether propulsion and gravitational assist – are examples of the second category which lends itself for the title “cold” space propulsion concepts. The “hot” space propulsion concepts skyrocketed – literally and figuratively – from the naïve ideas of Jules Verne to the manned missions to the Moon. On the other hand, with the notable exception of gravitational assist, hardly any of the “cold” space propulsion concepts made any progress in terms of practical application. Why is that? This article aims to show that the right answer to this question has the potential comparable by its implications and practical consequences to that of transition from Jules Verne’s stillborn and impractical conceptions of space flight to cogent and highly fertile ideas of Konstantin Tsiolkovsky and Yuri Kondratyuk.

Keywords: propulsion, rocket, rollet, spacecraft

Procedia PDF Downloads 542
1531 Photoluminescence Properties of Lu1.98Er0.02Ti2O7 Pyrochlore (A2B2O7) Phosphor

Authors: Esra Öztürk, Erkul Karacaoglu

Abstract:

Pyrochlores, having compounds of the general formula, A2B2O7 (A and B are metals/rare earths) are important class of materials thanks to having technological applications like in luminescence, ionic conductivity, nuclear waste immobilization etc. The rare earths included pyrochlore compounds have also potential photoluminescence characteristics. In this context, Er3+-activated Lu2Ti2O7 pyrochlore was chosen and synthesized through a high-temperature solid-state reaction route that was sintered under the open atmosphere in this study. The optimal reaction conditions to obtain expected single phase system, the thermal analysis (DTA/TG) were carried out. The X-ray powder diffraction (XRD) was used to determine phase properties of the sample. The photoluminescence (PL) results were done to obtain excitation, emission and decay time properties by a PL spectrometer under room temperature. According to the PL, there are excitation bands at 352 nm, 388 nm, 423 nm and 453 nm that are due to 4I15/2 → 2G7/2, 4I15/2 → 4G11/2 and 4I15/2 → 4F5/2 transitions of Er3+ ions, respectively. The emission bands are placed at 582 nm, 677 nm and 762 nm that are associated with 2H11/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2, 4I9/2 → 4I15/2 transitions of Er3+ ions, respectively.

Keywords: Er3+, Lu2Ti2O7, photoluminescence, pyrochlore, rare-earths

Procedia PDF Downloads 273
1530 Climate Change Impact on Mortality from Cardiovascular Diseases: Case Study of Bucharest, Romania

Authors: Zenaida Chitu, Roxana Bojariu, Liliana Velea, Roxana Burcea

Abstract:

A number of studies show that extreme air temperature affects mortality related to cardiovascular diseases, particularly among elderly people. In Romania, the summer thermal discomfort expressed by Universal Thermal Climate Index (UTCI) is highest in the Southern part of the country, where Bucharest, the largest Romanian urban agglomeration, is also located. The urban characteristics such as high building density and reduced green areas enhance the increase of the air temperature during summer. In Bucharest, as in many other large cities, the effect of heat urban island is present and determines an increase of air temperature compared to surrounding areas. This increase is particularly important during heat wave periods in summer. In this context, the researchers performed a temperature-mortality analysis based on daily deaths related to cardiovascular diseases, recorded between 2010 and 2019 in Bucharest. The temperature-mortality relationship was modeled by applying distributed lag non-linear model (DLNM) that includes a bi-dimensional cross-basis function and flexible natural cubic spline functions with three internal knots in the 10th, 75th and 90th percentiles of the temperature distribution, for modelling both exposure-response and lagged-response dimensions. Firstly, this study applied this analysis for the present climate. Extrapolation of the exposure-response associations beyond the observed data allowed us to estimate future effects on mortality due to temperature changes under climate change scenarios and specific assumptions. We used future projections of air temperature from five numerical experiments with regional climate models included in the EURO-CORDEX initiative under the relatively moderate (RCP 4.5) and pessimistic (RCP 8.5) concentration scenarios. The results of this analysis show for RCP 8.5 an ensemble-averaged increase with 6.1% of heat-attributable mortality fraction in future in comparison with present climate (2090-2100 vs. 2010-219), corresponding to an increase of 640 deaths/year, while mortality fraction due to the cold conditions will be reduced by 2.76%, corresponding to a decrease by 288 deaths/year. When mortality data is stratified according to the age, the ensemble-averaged increase of heat-attributable mortality fraction for elderly people (> 75 years) in the future is even higher (6.5 %). These findings reveal the necessity to carefully plan urban development in Bucharest to face the public health challenges raised by the climate change. Paper Details: This work is financed by the project URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by Ministry of Environment, Romania with co-funding by the European Union (Grant 690462). A part of this work performed by one of the authors has received funding from the European Union’s Horizon 2020 research and innovation programme from the project EXHAUSTION under grant agreement No 820655.

Keywords: cardiovascular diseases, climate change, extreme air temperature, mortality

Procedia PDF Downloads 132
1529 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 346
1528 Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda

Authors: Jean Paul Hategekimana, Dukuzumuremyi Yvonne, Mukeshimana Marthe, Alexandre Niyonshima

Abstract:

Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage.

Keywords: ZECC, orange fleshed sweet potato, perforated sacs, storage conditions

Procedia PDF Downloads 74
1527 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources

Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou

Abstract:

The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.

Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test

Procedia PDF Downloads 107
1526 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 217
1525 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 179
1524 Preliminary Study of the Cost-Effectiveness of Green Walls: Analyzing Cases from the Perspective of Life Cycle

Authors: Jyun-Huei Huang, Ting-I Lee

Abstract:

Urban heat island effect is derived from the reduction of vegetative cover by urban development. Because plants can improve air quality and microclimate, green walls have been applied as a sustainable design approach to cool building temperature. By using plants to green vertical surfaces, they decrease room temperature and, as a result, decrease the energy use for air conditioning. Based on their structures, green walls can be divided into two categories, green façades and living walls. A green façade uses the climbing ability of a plant itself, while a living wall assembles planter modules. The latter one is widely adopted in public space, as it is time-effective and less limited. Although a living wall saves energy spent on cooling, it is not necessarily cost-effective from the perspective of a lifecycle analysis. The Italian study shows that the overall benefit of a living wall is only greater than its costs after 47 years of its establishment. In Taiwan, urban greening policies encourage establishment of green walls by referring to their benefits of energy saving while neglecting their low performance on cost-effectiveness. Thus, this research aims at understanding the perception of appliers and consumers on the cost-effectiveness of their living wall products from the lifecycle viewpoint. It adopts semi-structured interviews and field observations on the maintenance of the products. By comparing the two results, it generates insights for sustainable urban greening policies. The preliminary finding shows that stakeholders do not have a holistic sense of lifecycle or cost-effectiveness. Most importantly, a living wall well maintained is often with high input due to the availability of its maintenance budget, and thus less sustainable. In conclusion, without a comprehensive sense of cost-effectiveness throughout a product’s lifecycle, it is very difficult for suppliers and consumers to maintain a living wall system while achieve sustainability.

Keywords: case study, maintenance, post-occupancy evaluation, vertical greening

Procedia PDF Downloads 269
1523 Investigation on the Performance and Emission Characteristics of Biodiesel (Animal Oil): Ethanol Blends in a Single Cylinder Diesel Engine

Authors: A. Veeresh Babu, M. Vijay Kumar, P. Ravi Kumar, Katam Ganesh Babu

Abstract:

Biodiesel can be considered as a potential alternative fuel for compression ignition engines. These can be obtained from various resources. However, the usage of biodiesel in high percentage in compression ignition may cause some technical problems because of their higher viscosity, high pour point, and low volatility. Ethanol can be used as a fuel extender to enable use of higher percentage of biodiesel in CI engine. Blends of ethanol-animal fat oil biodiesel-diesel have been prepared and experimental study has been carried out. We have found that B40E20 fuel blend (40% biodiesel and 20 % ethanol in diesel) reduces the specific fuel consumption and improves brake thermal efficiency of engine compared to B40 fuel blend. We observed that fuel characteristics improved considerably with addition of ethanol to biodiesel. Emissions of CO, HC and smoke were reduced while CO2 emissions were increased because of more complete combustion of the blend.

Keywords: diesel, biodiesel, ethanol, CI engine, engine performance, exhaust emission

Procedia PDF Downloads 716
1522 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 89
1521 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 86
1520 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md. Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 88
1519 Solid Polymer Electrolyte Prepared From Nostoc Commune Cyanobacteria Exopolysaccharides

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

A wide range of bacteria synthesizes and secretes polymeric substances composed of a mixture of high-molecular-mass heteropolysaccharides. Nostoc commune cyanobacteria grow in colonial spherules of 10-20 mm in diameter. These spherules are filled with an internal gel made from a variety of polysaccharides known as Nostoc commune exopolysaccharides (NCE). In this paper, we report the use of these exopolysaccharides as a raw material for the preparation of a solid polymer electrolyte. Ammonium iodide and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) salts were used to provide NCE films with ionic conductivity. In addition, a carboxymethylation treatment was used to further increase the conductivity of NCE films. The structural characterization of the NCE films was assessed by FTIR, XRD, and DSC tests. Broadband dielectric spectroscopy (BDS) and dielectric thermal analysis (DETA) were used to evaluate the ionic conductivity of the samples. The results showed that NCE can be used to prepare solid polymer electrolyte films and that carboxymethylation improves their ionic conductivity. These NCE films can be used in the development of novel energy storage devices such as flat batteries or supercapacitors.

Keywords: polymer electrolyte, Nostoc commune, cyanobacteria, exopolysaccharides

Procedia PDF Downloads 220