Search results for: citizenship learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7357

Search results for: citizenship learning

3757 The Use of Educational Language Games

Authors: April Love Palad, Charita B. Lasala

Abstract:

Mastery on English language is one of the important goals of all English language teachers. This goal can be seen based from the students’ actual performance using the target language which is English. Learning the English language includes hard work where efforts need to be exerted and this can be attained gradually over a long period of time. It is extremely important for all English language teachers to know the effects of incorporating games in teaching. Whether this strategy can have positive or negative effects in students learning, teachers should always consider what is best for their learners. Games may help and provide confidents language learners. These games help teachers to create context in which the language is suitable and significant. Focusing in accuracy and fluency is the heart of this study and this will be obtain in either teaching English using the traditional method or teaching English using language games. It is very important for all English teachers to know which strategy is effective in teaching English to be able to cope with students’ underachievement in this subject. This study made use of the comparative-experimental method. It made use of the pre-post test design with the aim to explore the effectiveness of the language games as strategy used in language teaching for high school students. There were two groups of students being observed, the controlled and the experimental, employing the two strategies in teaching English –traditional and with the use of language games. The scores obtained by two samples were compared to know the effectiveness of the two strategies in teaching English. In this study, it found out that language games help improve students’ fluency and accuracy in the use of target language and this is very evident in the results obtained in the pre-test and post –test result as well the mean gain scores by the two groups of students. In addition, this study also gives us a clear view on the positive effects on the use of language games in teaching which also supported by the related studies based from this research. The findings of the study served as the bases for the creation of the proposed learning plan that integrated language games that teachers may use in their own teaching. This study further concluded that language games are effective in developing students’ fluency in using the English language. This justifies that games help encourage students to learn and be entertained at the same time. Aside from that, games also promote developing language competency. This study will be very useful to teachers who are in doubt in the use of this strategy in their teaching.

Keywords: language games, experimental, comparative, strategy, language teaching, methodology

Procedia PDF Downloads 421
3756 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
3755 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 133
3754 Rohingya Refugees and Bangladesh: Balance of Human Rights and Rationalization

Authors: Kudrat-E-Khuda Babu

Abstract:

Rohingya refugees are the most marginalized and persecuted section of people in the world. The heinous brutality of Myanmar has forced the Muslim minority community to flee themselves to their neighboring country, Bangladesh for quite a few times now. The recent atrocity of the Buddhist country has added insult to injury on the existing crisis. In lieu of protection, the rights of the Rohingya community in Myanmar are being violated through exclusion from citizenship and steamroller of persecution. The mass influx of Rohingya refugees to Bangladesh basically took place in 1978, 1992, 2012, and 2017. At present, there are around one million Rohingyas staying at Teknaf, Ukhiya of Cox’s Bazar, the southern part of Bangladesh. The country, despite being a poverty-stricken one, has shown unprecedented generosity in sheltering the Rohingya people. For sheltering half of the total refugees in 2017, the Prime Minister of Bangladesh, Sheikh Hasina is now being regarded as the lighthouse of humanity or the mother of humanity. Though Bangladesh is not a ratifying state of the UN Refugee Convention, 1951 and its Additional Protocol, 1967, the country cannot escape its obligation under international human rights jurisprudence. Bangladesh is a party to eight human rights instruments out of nine core instruments, and thus, the country has an indirect obligation to protect and promote the rights of the refugees. Pressure from international bodies has also made Bangladesh bound to provide refuge to Rohingya people. Even though the demographic vulnerability and socio-economic condition of the country do not suggest taking over extra responsibility, the principle of non-refoulment as a part of customary international law reminds us to stay beside those persecuted or believed to have well-founded fear of persecution. In the case of HM Ershad v. Bangladesh and Others, 7 BLC (AD) 67, it was held that any international treaty or document after signing or ratification is not directly enforceable unless and until the parliament enacts a similar statute howsoever sweet the document is. As per Article 33(2) of the 1951 Refugee Convention, there are even exceptions for a state party in case of serious consequences like threat to national security, apprehension of serious crime and danger to safeguard state population. Bangladesh is now at a cross-road of human rights and national interest. The world community should come forward to resolve the crisis of the persecuted Rohingya people through repatriation, resettlement, and reintegration.

Keywords: Rohingya refugees, human rights, Bangladesh, Myanmar

Procedia PDF Downloads 188
3753 Teaching Audiovisual Translation (AVT):Linguistic and Technical Aspects of Different Modes of AVT

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Teachers constantly need to innovate and redefine materials for their lectures, especially in areas such as Language for Specific Purposes (LSP) and Translation Studies (TS). It is therefore essential for the lecturers to be technically skilled to handle the never-ending evolution in software and technology, which are necessary elements especially in certain courses at university level. This need becomes even more evident in Audiovisual Translation (AVT) Modules and Courses. AVT has undergone considerable growth in the area of teaching and learning of languages for academic purposes. We have witnessed the development of a considerable number of masters and postgraduate courses where AVT becomes a tool for L2 learning. The teaching and learning of different AVT modes are components of undergraduate and postgraduate courses. Universities, in which AVT is offered as part of their teaching programme or training, make use of professional or free software programs. This paper presents an approach in AVT withina specific university context, in which technology is used by means of professional and nonprofessional software. Students take an AVT subject as part of their English Linguistics Master’s Degree at the Complutense University (UCM) in which they are using professional (Spot) and nonprofessional (Subtitle Workshop, Aegisub, Windows Movie Maker) software packages. The students are encouraged to develop their tasks and projects simulating authentic professional experiences and contexts in the different AVT modes: subtitling for hearing and deaf and hard of hearing population, audio description and dubbing. Selected scenes from TV series such as X-Files, Gossip girl, IT Crowd; extracts from movies: Finding Nemo, Good Will Hunting, School of Rock, Harry Potter, Up; and short movies (Vincent) were used. Hence, the complexity of the audiovisual materials used in class as well as the activities for their projects were graded. The assessment of the diverse tasks carried out by all the students are expected to provide some insights into the best way to improve their linguistic accuracy and oral and written productions with the use of different AVT modes in a very specific ESP university context.

Keywords: ESP, audiovisual translation, technology, university teaching, teaching

Procedia PDF Downloads 518
3752 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 162
3751 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 439
3750 A Comparison of the First Language Vocabulary Used by Indonesian Year 4 Students and the Vocabulary Taught to Them in English Language Textbooks

Authors: Fitria Ningsih

Abstract:

This study concerns on the process of making corpus obtained from Indonesian year 4 students’ free writing compared to the vocabulary taught in English language textbooks. 369 students’ sample writings from 19 public elementary schools in Malang, East Java, Indonesia and 5 selected English textbooks were analyzed through corpus in linguistics method using AdTAT -the Adelaide Text Analysis Tool- program. The findings produced wordlists of the top 100 words most frequently used by students and the top 100 words given in English textbooks. There was a 45% match between the two lists. Furthermore, the classifications of the top 100 most frequent words from the two corpora based on part of speech found that both the Indonesian and English languages employed a similar use of nouns, verbs, adjectives, and prepositions. Moreover, to see the contextualizing the vocabulary of learning materials towards the students’ need, a depth-analysis dealing with the content and the cultural views from the vocabulary taught in the textbooks was discussed through the criteria developed from the checklist. Lastly, further suggestions are addressed to language teachers to understand the students’ background such as recognizing the basic words students acquire before teaching them new vocabulary in order to achieve successful learning of the target language.

Keywords: corpus, frequency, English, Indonesian, linguistics, textbooks, vocabulary, wordlists, writing

Procedia PDF Downloads 187
3749 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127
3748 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: humanized care service, volunteer activity, nursing student, learning log

Procedia PDF Downloads 307
3747 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 194
3746 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners

Authors: Anna-Maria Ramezanzadeh

Abstract:

Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.

Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics

Procedia PDF Downloads 166
3745 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses

Authors: David Philpott, Karen Kennedy

Abstract:

In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.

Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis

Procedia PDF Downloads 292
3744 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 20
3743 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu

Abstract:

Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 250
3742 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
3741 Co-Creating an International Flipped Faculty Development Model: A US-Afghan Case Study

Authors: G. Alex Ambrose, Melissa Paulsen, Abrar Fitwi, Masud Akbari

Abstract:

In 2016, a U.S. business college was awarded a sub grant to work with FHI360, a nonprofit human development organization, to support a university in Afghanistan funded by the State Department’s U.S. Agency for International Development (USAID). A newly designed Master’s Degree in Finance and Accounting is being implemented to support Afghanistan’s goal of 20% females in higher education and industry by 2020 and to use finance and accounting international standards to attract capital investment for economic development. This paper will present a case study to describe the co-construction of an approach to an International Flipped Faculty Development Model grounded in blended learning theory. Like education in general, faculty development is also evolving from the traditional face to face environment and interactions to the fully online and now to a best of both blends. Flipped faculty development is both a means and a model for careful integration of the strengths of the synchronous and asynchronous dynamics and technologies with the combination of intentional sequencing to pre-online interactions that prepares and enhances the face to face faculty development and mentorship residencies with follow-up post-online support. Initial benefits from this model include giving the Afghan faculty an opportunity to experience and apply modern teaching and learning strategies with technology in their own classroom. Furthermore, beyond the technological and pedagogical affordances, the reciprocal benefits gained from the mentor-mentee, face-to-face relationship will be explored. Evidence to support this model includes: empirical findings from pre- and post-Faculty Mentor/ Mentee survey results, Faculty Mentorship group debriefs, Faculty Mentorship contact logs, and student early/end of semester feedback. In addition to presenting and evaluating this model, practical challenges and recommendations for replicating international flipped faculty development partnerships will be provided.

Keywords: educational development, faculty development, international development, flipped learning

Procedia PDF Downloads 189
3740 The Effect of Organizational Justice on Management by Values Perception and Intention to Leave: A Study among Nurses

Authors: Arzu K. Harmanci Seren, Burcu Alacam, Serap Altuntas, Ulku Baykal

Abstract:

Organizational justice has been evaluated as a concept related to rules developed with regards to distributing gains and making decisions of distribution such as duty, goods, service, reward, punishment, fee, organizational position, opportunity or role among those working in that organization, and to social norms on which these rules are based. Studies of organizational justice are crucial for analyzing the organizational life. It is considered that organization justice will be positively influential upon organizational behaviours such as employees’ level of work satisfaction, their performance, and behaviours of organization citizenship, management by values perception, tendency towards cooperation, and towards quitting their jobs. However, when the literature related to health and nurse management is examined, authors could not reach enough findings related to the influence of nurses’ perception of organizational justice upon the perception of management and the intention of quitting in accordance with the values. For that reason, this study has been carried out with the purpose of determining the influence of nurses’ perception of organizational justice upon the perception of management and the intention of quitting in accordance with the values. The study has been carried out with 176 nurses working in a university hospital in Istanbul and a private hospital who accepted to take part in the study, and it is definitive and relation-seeking. Before the data has been collected, ethics committee approval and institutional permissions have been taken, Organizational Justice Scale, Management by Values, Intention to Leave Scale with a questionnaire including 8 questions that aims at defining the personal and professional characteristics of the nurses have been used as a means of data collection. The data collected between 1 May and 20 June 2016 have been evaluated by the researchers in a computer via definitive, relation-seeking and psychometric statistic. As a result of the study, it has been determined that most of the nurses are working in a university hospital (70.5%), that they are 30 and over (49.4%), women (91.5%), single (52.8%) and have a Bachelor’s Degree (48.3%), working in a surgery unit (17.6), have 5 year or less institutional experience (44.9%), 11 year or more professional experience. Cronbach alpha values of the scales used in this study are .94, .95 and .56. Nurses’ average scores of Organizational Justice Scale is M= 3.35±.96, Management by Values Scale is M=3.30±.74, Intention to Leave Scale is M=8.36±3.14. As a result of the analysis carried out in order to determine the influence of nurses’ perception of organizational justice upon the perception of management and the intention of quitting in accordance with the values, it has been pointed out that the Perception of Organizational Justice influenced the perception of Management by Values positively, Intention to Leave negatively.

Keywords: intention to leave, management by values, nursing, organizational justice

Procedia PDF Downloads 267
3739 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 39
3738 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 297
3737 Special Education in the South African Context: A Bio-Ecological Perspective

Authors: Suegnet Smit

Abstract:

Prior to 1994, special education in South Africa was marginalized and fragmented. Moving away from a Medical model approach to special education, the Government, after 1994, promoted an Inclusive approach, as a means to transform education in general, and special education in particular. This transformation, however, is moving at too a slow pace for learners with barriers to learning and development to benefit fully from their education. The goal of the Department of Basic Education is to minimize, remove, and prevent barriers to learning and development in the educational setting, by attending to the unique needs of the individual learner. However, the implementation of Inclusive education is problematic, and general education remains poor. This paper highlights the historical development of special education in South Africa, underpinned by a bio-ecological perspective. Problematic areas within the systemic levels of the education system are highlighted in order to indicate how the interactive processes within the systemic levels affect special needs learners on the personal dimension of the bio-ecological approach. As part of the methodology, thorough document analysis was conducted on information collected from a large body of research literature, which included academic articles, reports, policies, and policy reviews. Through a qualitative analysis, data were grouped and categorized according to the bio-ecological model systems, which revealed various successes and challenges within the education system. The challenges inhibit change, growth, and development for the child, who experience barriers to learning. From these findings, it is established that special education in South Africa has been, and still is, on a bumpy road. Sadly, the transformation process of change, envisaged by implementing Inclusive education, is still yet a dream, not fully realized. Special education seems to be stuck at what is, and the education system has not moved forward significantly enough to reach what special education should and could be. The gap that exists between a vision of Inclusive quality education for all, and the current reality, is still too wide. Problems encountered in all the education system levels, causes a funnel-effect downward to learners with special educational needs, with negative effects for the development of these learners.

Keywords: bio-ecological perspective, education systems, inclusive education, special education

Procedia PDF Downloads 144
3736 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 90
3735 Effects of Classroom Management Strategies on Students’ Well-Being at Secondary Level

Authors: Saba Latif

Abstract:

The study is about exploring the Impact of Classroom Management Techniques on students’ Well-being at the secondary level. The objectives of the study are to identify the classroom management practices of teachers and their impact on students’ achievement. All secondary schools of Lahore city are the population of study. The researcher randomly selected ten schools, and from these schools, two hundred students participated in this study. Data has been collected by using Classroom Management and Students’ Wellbeing questionnaire. Frequency analysis has been applied. The major findings of the study are calculated as follows: The teacher’s instructional activities affect classroom management. The secondary school students' seating arrangement can influence the learning-teaching process. Secondary school students strongly disagree with the statement that the large size of the class affects the teacher’s classroom management. The learning environment of the class helps students participate in question-and-answer sessions. All the activities of the teachers are in accordance with practices in the class. The discipline of the classroom helps the students to learn more. The role of the teacher is to guide, and it enhances the performance of the teacher. The teacher takes time on disciplinary rules and regulations of the classroom. The teacher appreciates them when they complete the given task. The teacher appreciates teamwork in the class.

Keywords: classroom management, strategies, wellbeing, practices

Procedia PDF Downloads 51
3734 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness

Authors: Marzieh Karimihaghighi, Carlos Castillo

Abstract:

This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.

Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism

Procedia PDF Downloads 152
3733 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 149
3732 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities

Authors: Shoba Rathilal

Abstract:

High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.

Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development

Procedia PDF Downloads 77
3731 Exploring Students’ Voices in Lecturers’ Teaching and Learning Developmental Trajectory

Authors: Khashane Stephen Malatji, Makwalete Johanna Malatji

Abstract:

Student evaluation of teaching (SET) is the common way of assessing teaching quality at universities and tracing the professional growth of lecturers. The aim of this study was to investigate the role played by student evaluation in the teaching and learning agenda at one South African University. The researchers used a qualitative approach and a case study research design. With regards to data collection, document analysis was used. Evaluation reports were reviewed to monitor the growth of lecturers who were evaluated during the academic years 2020 and 2021 in one faculty. The results of the study reveal that student evaluation remains the most relevant tool to inform the teaching agenda at a university. Lecturers who were evaluated were found to grow academically. All lecturers evaluated during 2020 have shown great improvement when evaluated repeatedly during 2021. Therefore, it can be concluded that student evaluation helps to improve the pedagogical and professional proficiency of lecturers. The study therefore, recommends that lecturers conduct an evaluation for each module they teach every semester or annually in case of year modules. The study also recommends that lecturers attend to all areas that draw negative comments from students in order to improve.

Keywords: students’ voices, teaching agenda, evaluation, feedback, responses

Procedia PDF Downloads 89
3730 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 53
3729 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers

Authors: Cansu Bozer, Saadet İrem Turgut

Abstract:

Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.

Keywords: education, child development, artificial intelligence, preschool teachers

Procedia PDF Downloads 19
3728 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 162