Search results for: mechanical device
1958 The Impact of the Plagal Cadence on Nineteenth-Century Music
Authors: Jason Terry
Abstract:
Beginning in the mid-nineteenth century, hymns in the Anglo-American tradition often ended with the congregation singing ‘amen,’ most commonly set to a plagal cadence. While the popularity of this tradition is well-known still today, this research presents the origins of this custom. In 1861, Hymns Ancient & Modern deepened this convention by concluding each of its hymns with a published plagal-amen cadence. Subsequently, hymnals from a variety of denominations throughout Europe and the United States heavily adopted this practice. By the middle of the twentieth century the number of participants singing this cadence had suspiciously declined; however, it was not until the 1990s that the plagal-amen cadence all but disappeared from hymnals. Today, it is rare for songs to conclude with the plagal-amen cadence, although instrumentalists have continued to regularly play a plagal cadence underneath the singers’ sustained finalis. After examining a variety of music theory treatises, eighteenth-century newspaper articles, manuscripts & hymnals from the last five centuries, and conducting interviews with a number of scholars around the world, this study presents the context of the plagal-amen cadence through its history. The association of ‘amen’ and the plagal cadence was already being discussed during the late eighteenth century, and the plagal-amen cadence only grew in attractiveness from that time forward, most notably in the nineteenth and twentieth centuries. Throughout this research, the music of Thomas Tallis, primarily through his Preces and Responses, is reasonably shown to be the basis for the high status of the plagal-amen cadence in nineteenth- and twentieth-century society. Tallis’s immediate influence was felt among his contemporary English composers as well as posterity, all of whom were well-aware of his compositional styles and techniques. More importantly, however, was the revival of his music in nineteenth-century England, which had a greater impact on the plagal-amen tradition. With his historical title as the father of English cathedral music, Tallis was favored by the supporters of the Oxford Movement. Thus, with society’s view of Tallis, the simple IV–I cadence he chose to pair with ‘amen’ attained a much greater worth in the history of Western music. A musical device such as the once-revered plagal-amen cadence deserves to be studied and understood in a more factual light than has thus far been available to contemporary scholars.Keywords: amen cadence, Plagal-amen cadence, singing hymns with amen, Thomas Tallis
Procedia PDF Downloads 2331957 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre
Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila
Abstract:
The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment
Procedia PDF Downloads 3331956 Analysis of Transverse Vibrations in Uniform Beams Subject to Different End Restraints
Authors: Falek Kamel
Abstract:
Free vibration analysis of beams, based on the assumptions of Bernoulli-Euler theory, has been extensively studied. Many research works have focused on the study of transverse vibrations under the application of different boundary conditions where different theories have been applied. The stiffness and mass matrices considered are those obtained by assembling those resulting from the use of the finite element method. The Jacobi method has been used to solve the eigenvalue problem. These well-known concepts have been applied to the study of beams with constant geometric and mechanical characteristics having one to two overhangs with variable lengths. Murphy studied, by an algebraic solution approach, a simply supported beam with two overhangs of arbitrary length, allowing for an experimental determination of the elastic modulus E. The advantage of our article is that it offers the possibility of extending this approach to many interesting problems formed by transversely vibrating beams with various end constraints.Keywords: beam, finite element, transverse vibrations, end restreint, Bernoulli-Euler theory
Procedia PDF Downloads 831955 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems
Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake
Procedia PDF Downloads 3201954 TRAC: A Software Based New Track Circuit for Traffic Regulation
Authors: Jérôme de Reffye, Marc Antoni
Abstract:
Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies.Keywords: track section, track circuits, space-time crossing, adaptive track section, automatic railway signalling
Procedia PDF Downloads 3311953 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques
Authors: Zakaria Baka, Halima Alem
Abstract:
Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques
Procedia PDF Downloads 1961952 A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System
Authors: Tijing Cai, Qimeng Xu, Daijin Zhou
Abstract:
This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°.Keywords: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit), BDS (BeiDou Navigation Satellite System), dual-antenna, integrated navigation
Procedia PDF Downloads 1931951 Flexible Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposites Filled with Ternary Nanofillers for Energy Harvesting
Authors: D. Ponnamma, E. Alper, P. Sharma, M. A. AlMaadeed
Abstract:
Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a tri phasic filler combination of one-dimensional titanium dioxide nanotubes, two-dimensional reduced graphene oxide, and three-dimensional strontium titanate, introduced into a semi crystalline polymer, Poly(vinylidene fluoride-co-hexafluoropropylene). Simple mixing method is adopted for the composite fabrication after ensuring a high interaction among the various fillers. The films prepared were mainly tested for the piezoelectric responses and the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose an integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposites
Procedia PDF Downloads 2731950 The Examination of Parents’ Perceptions and Motivations Regarding Type 1 Diabetes Management Technologies
Authors: Maria Dora Horvath, Norbert Buzas, Zsanett Tesch
Abstract:
Diabetes management poses many unique challenges for children and their parents. The use of a diabetes management device should not be one of these challenges as the purpose of these devices is to make the management more convenient. The objective of our study was to examine how demographical, psychological and diabetes-related factors determine the choices parents make regarding their child’s diabetes management technologies and how they perceive advanced devices. We conducted the study using an online questionnaire with 318 parents (mostly mothers). The questions of the survey were about demographical, diabetes-related and psychological factors (diabetes management problems, diabetes management competence). In addition, we asked the parents opinions about advanced diabetes management devices. We expanded our data with semi-structured in-depth interviews. 61 % of the participants Self-Monitored Blood Glucose (SMBG), and 39 % used a Continuous Glucose Monitoring System (CGM). Considering insulin administration, 58 % used Multiple Daily Insulin Injections (MDII) and 42 % used Continuous Subcutaneous Insulin Infusion (CSII). Parents who used diverse combinations of diabetes management devices showed significant differences in age (parents’ and child’s), the monthly cost of diabetes, the duration of diabetes, the highest level of education and average monthly household income. CGM users perceived diabetes management problems significantly more severe than SMBG users and CSII users felt significantly more competent in diabetes management than MDII users. Avoiding CGM use due to lack of financial resources was determined by diagnosis duration. While avoiding its use by the cause of the child rejecting, it was determined by the child’s age and diabetes competence. Using MDII instead of CSII because of the child’s rejection was determined by the monthly cost of diabetes and child’s age. We conducted a complex empirical study in which we examined perceptions and experiences of advanced and less advanced diabetes management technologies comprehensively. Our study highlights the factors that fundamentally influence parents’ motivations and choices about diabetes management technologies. These results could contribute to developing diabetes management technologies more suitable for children living with type 1 diabetes and their parents.Keywords: advanced diabetes management technologies, children living with type 1 diabetes, diabetes management, motivation, parents
Procedia PDF Downloads 1351949 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response
Authors: Sharda Kumari
Abstract:
As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management
Procedia PDF Downloads 1011948 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 2991947 A Study on an Evacuation Test to Measure Delay Time in Using an Evacuation Elevator
Authors: Kyungsuk Cho, Seungun Chae, Jihun Choi
Abstract:
Elevators are examined as one of evacuation methods in super-tall buildings. However, data on the use of elevators for evacuation at a fire are extremely scarce. Therefore, a test to measure delay time in using an evacuation elevator was conducted. In the test, time taken to get on and get off an elevator was measured and the case in which people gave up boarding when the capacity of the elevator was exceeded was also taken into consideration. 170 men and women participated in the test, 130 of whom were young people (20 ~ 50 years old) and 40 were senior citizens (over 60 years old). The capacity of the elevator was 25 people and it travelled between the 2nd and 4th floors. A video recording device was used to analyze the test. An elevator at an ordinary building, not a super-tall building, was used in the test to measure delay time in getting on and getting off an elevator. In order to minimize interference from other elements, elevator platforms on the 2nd and 4th floors were partitioned off. The elevator travelled between the 2nd and 4th floors where people got on and off. If less than 20 people got on the elevator which was empty, the data were excluded. If the elevator carrying 10 passengers stopped and less than 10 new passengers got on the elevator, the data were excluded. Getting-on an empty elevator was observed 49 times. The average number of passengers was 23.7, it took 14.98 seconds for the passengers to get on the empty elevator and the load factor was 1.67 N/s. It took the passengers, whose average number was 23.7, 10.84 seconds to get off the elevator and the unload factor was 2.33 N/s. When an elevator’s capacity is exceeded, the excessive number of people should get off. Time taken for it and the probability of the case were measure in the test. 37% of the times of boarding experienced excessive number of people. As the number of people who gave up boarding increased, the load factor of the ride decreased. When 1 person gave up boarding, the load factor was 1.55 N/s. The case was observed 10 times, which was 12.7% of the total. When 2 people gave up boarding, the load factor was 1.15 N/s. The case was observed 7 times, which was 8.9% of the total. When 3 people gave up boarding, the load factor was 1.26 N/s. The case was observed 4 times, which was 5.1% of the total. When 4 people gave up boarding, the load factor was 1.03 N/s. The case was observed 5 times, which was 6.3% of the total. Getting-on and getting-off time data for people who can walk freely were obtained from the test. In addition, quantitative results were obtained from the relation between the number of people giving up boarding and time taken for getting on. This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-16-02-KICT).Keywords: evacuation elevator, super tall buildings, evacuees, delay time
Procedia PDF Downloads 1771946 Study on the Retaining Sleeve Structure for the Reduction of Eddy Current in SPMSM
Authors: Hyun-Woo Jun, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
In high-speed SPMSM design, the rotor-retaining sleeve is inserted into rotor to prevent permanent magnet’s damage. It is quite efficient way considering manufacturability, but the sleeve becomes major source of ohm loss in high-speed operation. In this paper, the high-speed motor for turbo-blower at the rating of 100kW was introduced. To improve its efficiency, the retaining sleeve’s optimal design was needed. Within the range of satisfies the mechanical safety, sleeve’s some design variables have been changed. The effect of changing design variables of the sleeve was studied. This paper presents the optimized sleeve’s advantages in electrical efficiency from the result of electromagnetic FEA (finite element analysis) software. Finally, it suggests the optimal sleeve design to reduce eddy current loss, which is related to motor shape.Keywords: SPMSM, sleeve, eddy current, high efficiency
Procedia PDF Downloads 4241945 Investigation of Alumina Membrane Coated Titanium Implants on Osseointegration
Authors: Pinar Erturk, Sevde Altuntas, Fatih Buyukserin
Abstract:
In order to obtain an effective integration between an implant and a bone, implant surfaces should have similar properties to bone tissue surfaces. Especially mimicry of the chemical, mechanical and topographic properties of the implant to the bone is crucial for fast and effective osseointegration. Titanium-based biomaterials are more preferred in clinical use, and there are studies of coating these implants with oxide layers that have chemical/nanotopographic properties stimulating cell interactions for enhanced osseointegration. There are low success rates of current implantations, especially in craniofacial implant applications, which are large and vital zones, and the oxide layer coating increases bone-implant integration providing long-lasting implants without requiring revision surgery. Our aim in this study is to examine bone-cell behavior on titanium implants with an aluminum oxide layer (AAO) on effective osseointegration potential in the deformation of large zones with difficult spontaneous healing. In our study, aluminum layer coated titanium surfaces were anodized in sulfuric, phosphoric, and oxalic acid, which are the most common used AAO anodization electrolytes. After morphologic, chemical, and mechanical tests on AAO coated Ti substrates, viability, adhesion, and mineralization of adult bone cells on these substrates were analyzed. Besides with atomic layer deposition (ALD) as a sensitive and conformal technique, these surfaces were coated with pure alumina (5 nm); thus, cell studies were performed on ALD-coated nanoporous oxide layers with suppressed ionic content too. Lastly, in order to investigate the effect of the topography on the cell behavior, flat non-porous alumina layers on silicon wafers formed by ALD were compared with the porous ones. Cell viability ratio was similar between anodized surfaces, but pure alumina coated titanium and anodized surfaces showed a higher viability ratio compared to bare titanium and bare anodized ones. Alumina coated titanium surfaces, which anodized in phosphoric acid, showed significantly different mineralization ratios after 21 days over other bare titanium and titanium surfaces which anodized in other electrolytes. Bare titanium was the second surface that had the highest mineralization ratio. Otherwise, titanium, which is anodized in oxalic acid electrolyte, demonstrated the lowest mineralization. No significant difference was shown between bare titanium and anodized surfaces except AAO titanium surface anodized in phosphoric acid. Currently, osteogenic activities of these cells on the genetic level are investigated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis results of RUNX-2, VEGF, OPG, and osteopontin genes. Also, as a result of the activities of the genes mentioned before, Western Blot will be used for protein detection. Acknowledgment: The project is supported by The Scientific and Technological Research Council of Turkey.Keywords: alumina, craniofacial implant, MG-63 cell line, osseointegration, oxalic acid, phosphoric acid, sulphuric acid, titanium
Procedia PDF Downloads 1311944 Possibilities of Postmortem CT to Detection of Gas Accumulations in the Vessels of Dead Newborns with Congenital Sepsis
Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh
Abstract:
It is well known that the gas formed as a result of postmortem decomposition of tissues can be detected already 24-48 hours after death. In addition, the conditions of keeping and storage of the corpse (temperature and humidity of the environment) significantly determine the rate of occurrence and development of posthumous changes. The presence of sepsis is accompanied by faster postmortem decomposition and decay of the organs and tissues of the body. The presence of gas in the vessels and cavities can be revealed fully at postmortem CT. Radiologists must certainly report on the detection of intraorganic or intravascular gas, wich was detected at postmortem CT, to forensic experts or pathologists before the autopsy. This gas can not be detected during autopsy, but it can be very important for establishing a diagnosis. To explore the possibility of postmortem CT for the evaluation of gas accumulations in the newborns' vessels, who died from congenital sepsis. Researched of 44 newborns bodies (25 male and 19 female sex, at the age from 6 hours to 27 days) after 6 - 12 hours of death. The bodies were stored in the refrigerator at a temperature of +4°C in the supine position. Grouped 12 bodies of newborns that died from congenital sepsis. The control group consisted of 32 bodies of newborns that died without signs of sepsis. Postmortem CT examination was performed at the GEMINI TF TOF16 device, before the autopsy. The localizations of gas accumulations in the vessels were determined on the CT tomograms. The sepsis diagnosis was on the basis of clinical and laboratory data and autopsy results. Gases in the vessels were detected in 33.3% of cases in the group with sepsis, and in the control group - in 34.4%. A group with sepsis most often the gas localized in the heart and liver vessels - 50% each, of observations number with the detected gas in the vessels. In the heart cavities, aorta and mesenteric vessels - 25% each. In control most often gas was detected in the liver (63.6%) and abdominal cavity (54.5%) vessels. In 45.5% the gas localized in the cavities, and in 36.4% in the vessels of the heart. In the cerebral vessels and in the aorta gas was detected in 27.3% and 9.1%, respectively. Postmortem CT has high diagnostic capabilities to detect free gas in vessels. Postmortem changes in newborns that died from sepsis do not affect intravascular gas production within 6-12 hours. Radiation methods should be used as a supplement to the autopsy, including as a kind of ‘guide’, with the indication to the forensic medical expert of certain changes identified during CT studies, for better definition of pathological processes during the autopsy. Postmortem CT can be recommend as a first stage of autopsy.Keywords: congenital sepsis, gas, newborn, postmortem CT
Procedia PDF Downloads 1461943 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys
Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio
Abstract:
Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling
Procedia PDF Downloads 2211942 Basic Characteristics and Prospects of Synchronized Stir Welding
Authors: Shoji Matsumoto
Abstract:
Friction Stir Welding (FSW) has been widely used in the automotive, aerospace, and high-tech industries due to its superior mechanical properties after welding. However, when it becomes a matter to perform a high-quality joint using FSW, it is necessary to secure an advanced tilt angle (usually 1 to 5 degrees) using a dedicated FSW machine and to use a joint structure and a restraining jig that can withstand the tool pressure applied during the jointing process using a highly rigid processing machine. One issue that has become a challenge in this process is ‘productivity and versatility’. To solve this problem, we have conducted research and development of multi-functioning machines and robotics with FSW tools, which combine cutting/milling and FSW functions as one in recent years. However, the narrow process window makes it prone to welding defects and lacks repeatability, which makes a limitation for FSW its use in the fields where precisions required. Another reason why FSW machines are not widely used in the world is because of the matter of very high cost of ownership.Keywords: synchronized, stir, welding, friction, traveling speed, synchronized stir welding, friction stir welding
Procedia PDF Downloads 531941 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming
Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter
Abstract:
High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.Keywords: hyperelastic, anisotropic, polymer film, thermoforming
Procedia PDF Downloads 6171940 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles
Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego
Abstract:
Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline
Procedia PDF Downloads 4521939 Manufacturing Commercial Bricks with Construction and Demolition Wastes
Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal
Abstract:
This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.Keywords: commercial brick, construction and demolition waste, manufacturing, recycling
Procedia PDF Downloads 3571938 Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey
Authors: İsmail İnce, Osman Günaydin, Fatma Özer
Abstract:
Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied.Keywords: cultural heritage, Kilistra ancient city, non-destructive techniques, weathering
Procedia PDF Downloads 3591937 Green Technologies and Sustainability in the Care and Maintenance of Protective Textiles
Authors: R. Nayak, T. Panwar, R. Padhye
Abstract:
Protective textiles get soiled, stained and even worn during their use, which may not be usable after a certain period due to the loss of protective performance. They need regular cleaning and maintenance, which helps to extend the durability of the clothing, retains their useful properties and ensures that fresh clothing is ready to wear when needed. Generally, the cleaning processes used for various protective clothing include dry-cleaning (using solvents) or wet cleaning (using water). These cleaning processes can alter the fabric surface properties, dimensions, and physical, mechanical and performance properties. The technology of laundering and dry-cleaning has undergone several changes. Sustainable methods and products are available for faster, safer and improved cleaning of protective textiles. We performed a comprehensive and systematic review of green technologies and eco-friendly products for sustainable cleaning of protective textiles. Special emphasis is given on the care and maintenance procedures of protective textiles for protection from fire, bullets, chemical and other types of protective clothing.Keywords: Sustainable cleaning, protective textiles, ecofriendly cleaning, ozone laundering, ultrasonic cleaning
Procedia PDF Downloads 2381936 Microstructural Characterization and Mechanical Properties of Al-2Mn-5Fe Ternary Eutectic Alloy
Authors: Emin Çadirli, Izzettin Yilmazer, Uğur Büyük, Hasan Kaya
Abstract:
Al-2Mn-5Fe eutectic alloy (wt.%) was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upward at a constant temperature gradient in four different of growth rates by using a Bridgman method. The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependence of eutectic spacing on the growth rate was determined by using linear regression analysis. The microhardness and tensile strength of the studied alloy also were measured from directionally solidified samples. The dependency of the microhardness and tensile strength for directionally solidified Al-2Mn-5Fe eutectic alloy on the growth rate were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: eutectic alloy, microhardness, microstructure, tensile strength
Procedia PDF Downloads 4731935 Effects of Flexible Flat Feet on Electromyographic Activity of Erector Spinae and Multifidus
Authors: Abdallah Mohamed Kamel Mohamed Ali, Samah Saad Zahran, Mohamed Hamed Rashad
Abstract:
Background: Flexible flatfoot (FFF) has been considered as a risk factor for several lower limb injuries and mechanical low back pain. This was attributed to the dysfunction of the lumbopelvic-hip complex musculature. Objective: To investigate the influence of FFF on electromyographic activities of erector spinae and multifidus. Methods: A cross-section study was held between an FFF group (20 subjects) and a normal foot group (20 subjects). A surface electromyography was used to assess the electromyographic activity of erector spinae and multifidus. Group differences were assessed by the T-test. Results: There was a significant increase in EMG activities of erector spinae and multifidus in the FFF group compared with the normal group. Conclusion: There is an increase in EMG activities in erector spinae and multifidus in FFF subjects compared with normal subjects.Keywords: electromyography, flatfoot, low back pain, paraspinal muscles
Procedia PDF Downloads 2131934 Exploring the In-Between: An Examination of the Contextual Factors That Impact How Young Children Come to Value and Use the Visual Arts in Their Learning and Lives
Authors: S. Probine
Abstract:
The visual arts have been proven to be a central means through which young children can communicate their ideas, reflect on experience, and construct new knowledge. Despite this, perceptions of, and the degree to which the visual arts are valued within education, vary widely within political, educational, community and family contexts. These differing perceptions informed my doctoral research project, which explored the contextual factors that affect how young children come to value and use the visual arts in their lives and learning. The qualitative methodology of narrative inquiry with inclusion of arts-based methods was most appropriate for this inquiry. Using a sociocultural framework, the stories collected were analysed through the sociocultural theories of Lev Vygotsky as well as the work of Urie Bronfenbrenner, together with postmodern theories about identity formation. The use of arts-based methods such as teacher’s reflective art journals and the collection of images by child participants and their parent/caregivers allowed the research participants to have a significant role in the research. Three early childhood settings at which the visual arts were deeply valued as a meaning-making device in children’s learning, were purposively selected to be involved in the research. At each setting, the study found a unique and complex web of influences and interconnections, which shaped how children utilised the visual arts to mediate their thinking. Although the teachers' practices at all three centres were influenced by sociocultural theories, each settings' interpretations of these theories were unique and resulted in innovative interpretations of the role of the teacher in supporting visual arts learning. These practices had a significant impact on children’s experiences of the visual arts. For many of the children involved in this study, visual art was the primary means through which they learned. The children in this study used visual art to represent their experiences, relationships, to explore working theories, their interests (including those related to popular culture), to make sense of their own and other cultures, and to enrich their imaginative play. This research demonstrates that teachers have fundamental roles in fostering and disseminating the importance of the visual arts within their educational communities.Keywords: arts-based methods, early childhood education, teacher's visual arts pedagogies, visual arts
Procedia PDF Downloads 1391933 Structure of Grain Boundaries in α-Zirconium and Niobium
Authors: Divya Singh, Avinash Parashar
Abstract:
Due to superior mechanical, creep and nuclear cross section, zirconium and niobium (Zr-Nb) based alloys are commonly used as nuclear materials for the manufacturing of fuel cladding and pressure tubes in nuclear power plants. In this work, symmetrical tilt grain boundary (STGB) structures in α-Zr are studied for their structure and energies along two tilt axes- [0001] and [0-110] using MD based simulations. Tilt grain boundaries are obtained along [0001] tilt axis, and special twin structures are obtained along [0-110] tilt axis in α-Zr. For Nb, STGBs are constructed along [100] and [110] axis using atomistic simulations. The correlation between GB structures and their energies is subsequently examined. A close relationship is found to exist between individual GB structure and its energy in both α-Zr and Nb. It is also concluded that the energies of the more coherent twin grain boundaries are lower than the symmetrical tilt grain boundaries.Keywords: grain boundaries, molecular dynamics, grain boundary energy, hcp crystal
Procedia PDF Downloads 2641932 Mechanistic Studies of Compacted and Sintered Rock Salt
Authors: Claudia H. Swanson, Jens Günster
Abstract:
This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.Keywords: rock salt, sinter, anhydrite, nuclear safety
Procedia PDF Downloads 4891931 Load Relaxation Behavior of Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
High-temperature deformation behavior of ferritic stainless steels such as STS 409L, STS 430J1L, and STS 429EM has been investigated in this study. Specimens with fully annealed microstructure were obtained by heat treatment. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 200 to 900oC to construct flow curves in the strain rate range from 10-6 s-1 to 10-3 s-1. Strain hardening was not observed at high temperatures above 800oC in any stainless steels. Load relaxation behavior at the temperature was closely related with high-temperature mechanical properties such as the thermal fatigue and tensile behaviors. Load drop ratio of 436L stainless steel was much higher than that of the other steels. With increasing temperature, strength and load drop ratio of ferritic stainless steels showed entirely different trends.Keywords: ferritic stainless steel, high temperature deformation, load relaxation, microstructure, strain rate sensitivity
Procedia PDF Downloads 3351930 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display
Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay
Abstract:
Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission
Procedia PDF Downloads 5011929 Building on Local People Capacities as Key Resources in Making Livable Environments
Authors: Ouassim Chemrouk, Naima Chabbi-Chemrouk
Abstract:
Contemporary settlements and urban places are becoming increasingly complex involving technologically advanced building materials, and mechanical systems for controlling environmental quality such as thermal comfort, lighting, acoustics and other building performances. These systems, which rely exclusively on the utilization of nonrenewable energy are often expensive and environment pollutants. The proposed paper illustrates the important role of traditional knowledge and practice and what is sometimes called intangible cultural heritage assume in the design of the built environment. It shows that some traditional “ways of doing” that are transmitted at local scales from generation to generation could be built upon to become key resources for more livable urban places. Based on evidence from documentary sources and field surveys, it also shows how different attempts were made to translate some traditional practices and local know-how in the proposal of new urban schemes.Keywords: key resource, know-how, local people, capacity building, liveable built environments
Procedia PDF Downloads 210