Search results for: transient hot wire-laser beam technique
7551 Determination of Stresses in Vlasov Beam Sections
Authors: Semih Erdogan
Abstract:
In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties
Procedia PDF Downloads 697550 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems
Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket
Abstract:
The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives
Procedia PDF Downloads 967549 Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement
Authors: O. Vlcek
Abstract:
The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis.Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, experimental analysis
Procedia PDF Downloads 4777548 Proposed Design of an Optimized Transient Cavity Picosecond Ultraviolet Laser
Authors: Marilou Cadatal-Raduban, Minh Hong Pham, Duong Van Pham, Tu Nguyen Xuan, Mui Viet Luong, Kohei Yamanoi, Toshihiko Shimizu, Nobuhiko Sarukura, Hung Dai Nguyen
Abstract:
There is a great deal of interest in developing all-solid-state tunable ultrashort pulsed lasers emitting in the ultraviolet (UV) region for applications such as micromachining, investigation of charge carrier relaxation in conductors, and probing of ultrafast chemical processes. However, direct short-pulse generation is not as straight forward in solid-state gain media as it is for near-IR tunable solid-state lasers such as Ti:sapphire due to the difficulty of obtaining continuous wave laser operation, which is required for Kerr lens mode-locking schemes utilizing spatial or temporal Kerr type nonlinearity. In this work, the transient cavity method, which was reported to generate ultrashort laser pulses in dye lasers, is extended to a solid-state gain medium. Ce:LiCAF was chosen among the rare-earth-doped fluoride laser crystals emitting in the UV region because of its broad tunability (from 280 to 325 nm) and enough bandwidth to generate 3-fs pulses, sufficiently large effective gain cross section (6.0 x10⁻¹⁸ cm²) favorable for oscillators, and a high saturation fluence (115 mJ/cm²). Numerical simulations are performed to investigate the spectro-temporal evolution of the broadband UV laser emission from Ce:LiCAF, represented as a system of two homogeneous broadened singlet states, by solving the rate equations extended to multiple wavelengths. The goal is to find the appropriate cavity length and Q-factor to achieve the optimal photon cavity decay time and pumping energy for resonator transients that will lead to ps UV laser emission from a Ce:LiCAF crystal pumped by the fourth harmonics (266nm) of a Nd:YAG laser. Results show that a single ps pulse can be generated from a 1-mm, 1 mol% Ce³⁺-doped LiCAF crystal using an output coupler with 10% reflectivity (low-Q) and an oscillator cavity that is 2-mm long (short cavity). This technique can be extended to other fluoride-based solid-state laser gain media.Keywords: rare-earth-doped fluoride gain medium, transient cavity, ultrashort laser, ultraviolet laser
Procedia PDF Downloads 3607547 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface
Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju
Abstract:
The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.Keywords: reinforced concrete, FRP laminate, flexural capacity, ductility
Procedia PDF Downloads 2927546 Transient and Persistent Efficiency Estimation for Electric Grid Utilities Based on Meta-Frontier: Comparative Analysis of China and Japan
Authors: Bai-Chen Xie, Biao Li
Abstract:
With the deepening of international exchanges and investment, the international comparison of power grid firms has become the focus of regulatory authorities. Ignoring the differences in the economic environment, resource endowment, technology, and other aspects of different countries or regions may lead to efficiency bias. Based on the Meta-frontier model, this paper divides China and Japan into two groups by using the data of China and Japan from 2006 to 2020. While preserving the differences between the two countries, it analyzes and compares the efficiency of the transmission and distribution industries of the two countries. Combined with the four-component stochastic frontier model, the efficiency is divided into transient and persistent efficiency. We found that there are obvious differences between the transmission and distribution sectors in China and Japan. On the one hand, the inefficiency of the two countries is mostly caused by long-term and structural problems. The key to improve the efficiency of the two countries is to focus more on solving long-term and structural problems. On the other hand, the long-term and structural problems that cause the inefficiency of the two countries are not the same. Quality factors have different effects on the efficiency of the two countries, and this different effect is captured by the common frontier model but is offset in the overall model. Based on these findings, this paper proposes some targeted policy recommendations.Keywords: transmission and distribution industries, transient efficiency, persistent efficiency, meta-frontier, international comparison
Procedia PDF Downloads 1067545 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM
Authors: Clement Leroy, Guillaume Boitel
Abstract:
This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery
Procedia PDF Downloads 2067544 Band Gap Tuning Based on Adjustable Stiffness of Local Resonators
Authors: Hossein Alimohammadi, Kristina Vassiljeva, Hassan HosseinNia, Eduard Petlenkov
Abstract:
This research article discusses the mechanisms for bandgap tuning of beam-type resonators to achieve broadband vibration suppression through adjustable stiffness. The method involves changing the center of mass of the cantilever-type resonator to achieve piezo-free tuning of stiffness. The study investigates the effect of the center of masses variation (δ) of attached masses on the bandgap and vibration suppression performance of a non-uniform beam-type resonator within a phononic structure. The results suggest that the cantilever-type resonator beam can be used to achieve tunability and real-time control and indicate that varying δ significantly impacts the bandgap and transmittance response. Additionally, the research explores the use of the first and second modes of resonators for tunability and real-time control. These findings examine the feasibility of this approach, demonstrate the potential for improving resonator performance, and provide insights into the design and optimization of metamaterial beams for vibration suppression applications.Keywords: bandgap, adjustable stiffness, spatial variation, tunability
Procedia PDF Downloads 927543 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA
Authors: J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen
Abstract:
Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel center line temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003 mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.Keywords: FRAPTRAN, TRACE, LOCA, PWR
Procedia PDF Downloads 5167542 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project
Authors: Ahmed Bensreti, Mohamed Gouarsha
Abstract:
This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics
Procedia PDF Downloads 787541 Thermal Conductivity and Optical Absorption of GaAsPN/GaP for Tandem Solar Cells: Effect of Rapid Thermal Annealing
Authors: S. Ilahi, S. Almosni, F. Chouchene, M. Perrin, K. Zelazna, N. Yacoubi, R. Kudraweic, P. Rale, L. Lombez, J. F. Guillemoles, O. Durand, C. Cornet
Abstract:
Great efforts have been dedicated to obtain high quality of GaAsPN. The properties of GaAsPN have played a great part on the development of solar cells devices based in Si substrate. The incorporation of N in GaAsPN that having a band gap around of 1.7 eV is of special interest in view of growing in Si substrate. In fact, post-growth and rapid thermal annealing (RTA) could be an effective way to improve the quality of the layer. Then, the influence of growth conditions and post-growth annealing on optical and thermal parameters is considered. We have used Photothermal deflection spectroscopy PDS to investigate the impact of rapid thermal annealing on thermal and optical properties of GaAsPN. In fact, the principle of the PDS consists to illuminate the sample by a modulated monochromatic light beam. Then, the absorbed energy is converted into heat through the nonradiative recombination process. The generated thermal wave propagates into the sample and surrounding media creating a refractive-index gradient giving rise to the deflection of a laser probe beam skimming the sample surface. The incident light is assumed to be uniform, and only the sample absorbs the light. In conclusion, the results are promising revealing an improvement in absorption coefficient and thermal conductivity.Keywords: GaAsPN absorber, photothermal defelction technique PDS, photonics on silicon, thermal conductivity
Procedia PDF Downloads 3577540 Simultaneous Measurement of Displacement and Roll Angle of Object
Authors: R. Furutani, K. Ishii
Abstract:
Laser interferometers are now widely used for length and displacement measurement. In conventional methods, the optical path difference between two mirrors, one of which is a reference mirror and the other is a target mirror, is measured, as in Michelson interferometry, or two target mirrors are set up and the optical path difference between the two targets is measured, as in differential interferometry. In these interferometers, the two laser beams pass through different optical elements so that the measurement result is affected by the vibration and other effects in the optical paths. In addition, it is difficult to measure the roll angle around the optical axis. The proposed interferometer simultaneously measures both the translational motion along the optical axis and the roll motion around it by combining the retroreflective principle of the ball lens (BL) and the polarization. This interferometer detects the interferogram by the two beams traveling along the identical optical path from the beam source to BL. This principle is expected to reduce external influences by using the interferogram between the two lasers in an identical optical path. The proposed interferometer uses a BL so that the reflected light from the lens travels on the identical optical path as the incident light. After reaching the aperture of the He-Ne laser oscillator, the reflected light is reflected by a mirror with a very high reflectivity installed in the aperture and is irradiated back toward the BL. Both the first laser beam that enters the BL and the second laser beam that enters the BL after the round trip interferes with each other, enabling the measurement of displacement along the optical axis. In addition, for the measurement of the roll motion, a quarter-wave plate is installed on the optical path to change the polarization state of the laser. The polarization states of the first laser beam and second laser beam are different by the roll angle of the target. As a result, this system can measure the displacement and the roll angle of BL simultaneously. It was verified by the simulation and the experiment that the proposed optical system could measure the displacement and the roll angle simultaneously.Keywords: common path interferometer, displacement measurement, laser interferometer, simultaneous measurement, roll angle measurement
Procedia PDF Downloads 907539 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 4247538 Overhead Lines Induced Transient Overvoltage Analysis Using Finite Difference Time Domain Method
Authors: Abdi Ammar, Ouazir Youcef, Laissaoui Abdelmalek
Abstract:
In this work, an approach based on transmission lines theory is presented. It is exploited for the calculation of overvoltage created by direct impacts of lightning waves on a guard cable of an overhead high-voltage line. First, we show the theoretical developments leading to the propagation equation, its discretization by finite difference time domain method (FDTD), and the resulting linear algebraic equations, followed by the calculation of the linear parameters of the line. The second step consists of solving the transmission lines system of equations by the FDTD method. This enabled us to determine the spatio-temporal evolution of the induced overvoltage.Keywords: lightning surge, transient overvoltage, eddy current, FDTD, electromagnetic compatibility, ground wire
Procedia PDF Downloads 907537 Thermal Image Segmentation Method for Stratification of Freezing Temperatures
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image
Procedia PDF Downloads 3237536 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting
Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan
Abstract:
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology
Procedia PDF Downloads 1177535 Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones
Authors: Zaidour Mohamed, Ghalem Ali Jr., Achit Henni Mohamed
Abstract:
This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question.Keywords: beam–column joints, cyclic loading, shearing force, damaged joint
Procedia PDF Downloads 5557534 Theoretical Research for Influence of Irradiation on Transient Creep of Metals
Authors: Pavlo Selyshchev, Tetiana Didenko
Abstract:
Via formalism of the Complex systems and in the framework of the climb - glide model a theoretical approach to describe the influence of irradiation on transient creep of metals. We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion that consists in climb and glide. It is shown that there are qualitatively different regimes of a creep as a result of irradiation. Simulation and analysis of this phenomenon are performed. The time dependence of creep rate of metal under an irradiation is theoretically obtained. The conditions of zero minimums of the creep-rate existence as well as the times of their appearance are determined. The changing of the position of creep-rate dips in the conditions of the temperature exposure change is investigated. The obtained results are compared with the experimentally observed dependence of the creep rate on time.Keywords: creep, climb and glide of dislocations, irradiation, non-linear feed-back, point defects
Procedia PDF Downloads 2037533 Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System
Authors: Won Hyuck Kim, Chang Hwan Kim, Hyun Wook Kim, Myoung Hoon Lee, Chan Hong Park, Hyeon Yeong Park
Abstract:
We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey.Keywords: Anmok, beach survey, Shipborne Mobile LiDAR System, submarine topography
Procedia PDF Downloads 4327532 Effect of Rapid Thermal Annealing on the Optical Properties of InAs Quantum Dots Grown on (100) and (311)B GaAs Substrates by Molecular Beam Epitaxy
Authors: Amjad Almunyif, Amra Alhassni, Sultan Alhassan, Maryam Al Huwayz, Saud Alotaibi, Abdulaziz Almalki, Mohamed Henini
Abstract:
The effect of rapid thermal annealing (RTA) on the optical properties of InAs quantum dots (QDs) grown at an As overpressure of 2x 10⁻⁶ Torr by molecular beam epitaxy (MBE) on (100) and (311)B GaAs substrates was investigated using photoluminescence (PL) technique. PL results showed that for the as-grown samples, the QDs grown on the high index plane (311)B have lower PL intensity and lower full width at half maximum (FWHM) than those grown on the conventional (100) plane. The latter demonstrates that the (311)B QDs have better size uniformity than (100) QDs. Compared with as-grown samples, a blue-shift was observed for all samples with increasing annealing temperature from 600°C to 700°C. For (100) samples, a narrowing of the FWHM was observed with increasing annealing temperature from 600°C to 700°C. However, in (311)B samples, the FWHM showed a different behaviour; it slightly increased when the samples were annealed at 600°C and then decreased when the annealing temperature increased to 700°C. As expected, the PL peak intensity for all samples increased when the laser excitation power increased. The PL peak energy temperature dependence showed a strong redshift when the temperature was increased from 10 K to 120 K. The PL peak energy exhibited an abnormal S-shape behaviour as a function of temperature for all samples. Most samples exhibited a significant enhancement in their activation energies when annealed at 600°C and 700°C, suggesting that annealing annihilated defects created during sample growth. Procedia PDF Downloads 1807531 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem
Authors: Kapse Swapnil, K. Shankar
Abstract:
Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam
Procedia PDF Downloads 5227530 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer
Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu
Abstract:
Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free
Procedia PDF Downloads 1737529 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 3787528 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction
Authors: Anjela Koblischka-Veneva, Michael R. Koblischka
Abstract:
In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇
Procedia PDF Downloads 1377527 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings
Authors: A. W. J. Wong, I. H. Ibrahim
Abstract:
Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.Keywords: buildings, CFD Simulations, natural ventilation, urban airflow
Procedia PDF Downloads 2247526 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 967525 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections
Authors: G. Akgun, I. Algul, H. Kurtaran
Abstract:
In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.Keywords: generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section
Procedia PDF Downloads 3017524 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control
Procedia PDF Downloads 1737523 Raman Tweezers Spectroscopy Study of Size Dependent Silver Nanoparticles Toxicity on Erythrocytes
Authors: Surekha Barkur, Aseefhali Bankapur, Santhosh Chidangil
Abstract:
Raman Tweezers technique has become prevalent in single cell studies. This technique combines Raman spectroscopy which gives information about molecular vibrations, with optical tweezers which use a tightly focused laser beam for trapping the single cells. Thus Raman Tweezers enabled researchers analyze single cells and explore different applications. The applications of Raman Tweezers include studying blood cells, monitoring blood-related disorders, silver nanoparticle-induced stress, etc. There is increased interest in the toxic effect of nanoparticles with an increase in the various applications of nanoparticles. The interaction of these nanoparticles with the cells may vary with their size. We have studied the effect of silver nanoparticles of sizes 10nm, 40nm, and 100nm on erythrocytes using Raman Tweezers technique. Our aim was to investigate the size dependence of the nanoparticle effect on RBCs. We used 785nm laser (Starbright Diode Laser, Torsana Laser Tech, Denmark) for both trapping and Raman spectroscopic studies. 100 x oil immersion objectives with high numerical aperture (NA 1.3) is used to focus the laser beam into a sample cell. The back-scattered light is collected using the same microscope objective and focused into the spectrometer (Horiba Jobin Vyon iHR320 with 1200grooves/mm grating blazed at 750nm). Liquid nitrogen cooled CCD (Symphony CCD-1024x256-OPEN-1LS) was used for signal detection. Blood was drawn from healthy volunteers in vacutainer tubes and centrifuged to separate the blood components. 1.5 ml of silver nanoparticles was washed twice with distilled water leaving 0.1 ml silver nanoparticles in the bottom of the vial. The concentration of silver nanoparticles is 0.02mg/ml so the 0.03mg of nanoparticles will be present in the 0.1 ml nanoparticles obtained. The 25 ul of RBCs were diluted in 2 ml of PBS solution and then treated with 50 ul (0.015mg) of nanoparticles and incubated in CO2 incubator. Raman spectroscopic measurements were done after 24 hours and 48 hours of incubation. All the spectra were recorded with 10mW laser power (785nm diode laser), 60s of accumulation time and 2 accumulations. Major changes were observed in the peaks 565 cm-1, 1211 cm-1, 1224 cm-1, 1371 cm-1, 1638 cm-1. A decrease in intensity of 565 cm-1, increase in 1211 cm-1 with a reduction in 1224 cm-1, increase in intensity of 1371 cm-1 also peak disappearing at 1635 cm-1 indicates deoxygenation of hemoglobin. Nanoparticles with higher size were showing maximum spectral changes. Lesser changes observed in case of 10nm nanoparticle-treated erythrocyte spectra.Keywords: erythrocytes, nanoparticle-induced toxicity, Raman tweezers, silver nanoparticles
Procedia PDF Downloads 2977522 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization
Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir
Abstract:
Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink
Procedia PDF Downloads 113