Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1135

Search results for: damaged joint

1135 The Nonlinear Research on Rotational Stiffness of Cuplock Joint

Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu

Abstract:

As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.

Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis

Procedia PDF Downloads 23
1134 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP

Authors: N. Attari, S. Amziane, M. Chemrouk

Abstract:

A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 282
1133 Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading

Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams

Abstract:

Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP.

Keywords: damaged, concrete, impact, repaired

Procedia PDF Downloads 241
1132 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 171
1131 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 126
1130 Reconstructing Calvarial Bone Lesions Using PHBV Scaffolds and Cord Blood Mesenchymal Stem Cells in Rat

Authors: Hamed Hosseinkazemi, Esmaeil Biazar

Abstract:

For tissue engineering of bone, anatomical and operational reconstructions of damaged tissue seem to be vital. This is done via reconstruction of bone and appropriate biological joint with bone tissues of damaged areas. In this study the condition of biodegradable bed Nanofibrous PHBV and USSC cells were used to accelerate bone repair of damaged area. Hollow nanofabrication scaffold of damageable life was designed as PHBV by electrospinning and via determining the best factors such as the kind and amount of solvent, specific volume and rate. The separation of osseous tissue infiltration and evaluating its nature by flow cytometrocical analysis was done. Animal test including USSC as well as PHBV condition in the damaged bone was done in the rat. After 8 weeks the implanted area was analyzed using CT scan and was sent to histopathology ward. Finally, the rate and quality of reconstruction were determined after H and E coloring. Histomorphic analysis indicated a statistically significant difference between the experimental group of PHBV, USSC+PHBV and control group. Besides, the histopathologic analysis showed that bone reconstruction rate was high in the area containing USSC and PHBV, compared with area having PHBV and control group and consequently the reconstruction quality of bones and the relationship between the new bone tissues and surrounding bone tissues were high too. Using PHBR scaffold and USSC together could be useful in the amending of wide range of bone lesion.

Keywords: bone lesion, nanofibrous PHBV, stem cells, umbilical cord blood

Procedia PDF Downloads 235
1129 Seismic Response Analysis of Frame Structures Based on Super Joint Element Model

Authors: Li Xu, Yang Hong, T. Zhao Wen

Abstract:

Experimental results of many RC beam-column subassemblage indicate that slippage of longitudinal beam rebar within the joint and the shear deformation of joint core have significant influence on seismic behavior of the subassemblage. However, rigid joint assumption has been generally used in the seismic response analysis of RC frames, in which two kinds of inelastic deformation of joint have been ignored. Based on OpenSees platform, ‘Super Joint Element Model’ with more detailed inelastic mechanism is used to simulate the inelastic response of joints. Two finite element models of typical RC plane frame, namely considering or ignoring the inelastic deformation of joint respectively, were established and analyzed under seven strong earthquake waves. The simulated global and local inelastic deformations of the RC plane frame is shown and discussed. The analyses also confirm the security of the earthquake-resistant frame designed according to Chinese codes.

Keywords: frame structure, beam-column joint, longitudinal bar slippage, shear deformation, nonlinear analysis

Procedia PDF Downloads 297
1128 Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibrereinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 408
1127 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: spring, mass, damper, knee joint

Procedia PDF Downloads 148
1126 Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 340
1125 Behavior of Steel Moment Frames Subjected to Impact Load

Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim

Abstract:

This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.

Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA

Procedia PDF Downloads 179
1124 The Effect of Tool Type on Surface Morphology of FSJ Joint

Authors: Yongfang Deng, Dunwen Zuo

Abstract:

An attempt is made here to join 2024 aluminum alloy plate by friction stir joining (FSJ) using different types of tools. Joint surface morphology was observed, and both arc line spacing and flash were measured. Study is carried out on the effect of pin, shoulder and eccentricity of the tool on the surface topography of the joint and the formation of the joint surface topography is analyzed. It is found that, eccentric squeezing action of the tool is the mainly motive power to form arc lines contour and flash structure. Little flash appears in the advancing side but with severe deformation, while the flash in the retreating side is heavy but with soft deformation. The pin of tool has a deep impact on the flash on the advancing side of the joints. Shoulder can widen the arc lines, refine arcs structure, reduce flash in the retreat side, but will increase the flash in the advancing side. Increasing the amount of eccentricity, it has litter effect on the arc line spacing but will destroy the arc lines morphology in the joint surface and promote the formation of filamentous flash structure in the joint.

Keywords: FSJ, surface morphology, tool, joint

Procedia PDF Downloads 246
1123 Development of a New Method for T-Joint Specimens Testing under Shear Loading

Authors: Radek Doubrava, Roman Ruzek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology

Procedia PDF Downloads 329
1122 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model

Procedia PDF Downloads 389
1121 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams

Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim

Abstract:

As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.

Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 320
1120 Evaluation of Joint Contact Forces and Muscle Forces in the Subjects with Non-Specific Low Back Pain

Authors: Mohammad Taghi Karimi, Maryam Hasan Zahraee

Abstract:

Background: Low back pain (LBP) is a common health and socioeconomic problem, especially the chronic one. The joint contact force is an important parameter during walking which increases the incidence of injury and degenerative joint disease. To our best knowledge, there are not enough evidences in literature on the muscular forces and joint contact forces in subjects with low back pain. Purpose: The main hypothesis associated with this research was that joint contact force of L4/L5 of non-specific chronic low back pain subjects was the same as that of normal. Therefore, the aim of this study was to determine the joint contact force difference between non-specific chronic low back pain and normal subjects. Method: This was an experimental-comparative study. 20 normal subjects and 20 non-specific chronic low back pain patients were recruited in this study. Qualysis motion analysis system and a Kistler force plate were used to collect the motions and the force applied on the leg, respectively. OpenSimm software used to determine joint contact force and muscle forces in this study. Some parameters such as force applied on the legs (pelvis), kinematic of hip and pelvic, peaks of muscles, force of trunk musculature and joint contact force of L5/S1 were used for further analysis. Differences between mean values of all data were measured using two-sample t-test among the subjects. Results: The force produced by Semitendinosus, Biceps Femoris, and Adductor muscles were significantly different between low back pain and normal subjects. Moreover, the mean value of breaking component of the force of the knee joint increased significantly in low back pain subjects, besides a significant decrease in mean value of the vertical component of joint reaction force compared to the normal ones. Conclusions: The forces produced by the trunk and pelvic muscles, and joint contact forces differ significantly between low back pain and normal subjects. It seems that those with non-specific chronic low back pain use trunk muscles more than normal subjects to stabilize the pelvic during walking.

Keywords: low back pain, joint contact force, kinetic, muscle force

Procedia PDF Downloads 104
1119 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 253
1118 Biomechanical Study of a Type II Superior Labral Anterior to Posterior Lesion in the Glenohumeral Joint Using Finite Element Analysis

Authors: Javier A. Maldonado E., Duvert A. Puentes T., Diego F. Villegas B.

Abstract:

The SLAP lesion (Superior Labral Anterior to Posterior) involves the labrum, causing pain and mobility problems in the glenohumeral joint. This injury is common in athletes practicing sports that requires throwing or those who receive traumatic impacts on the shoulder area. This paper determines the biomechanical behavior of soft tissues of the glenohumeral joint when type II SLAP lesion is present. This pathology is characterized for a tear in the superior labrum which is simulated in a 3D model of the shoulder joint. A 3D model of the glenohumeral joint was obtained using the free software Slice. Then, a Finite Element analysis was done using a general purpose software which simulates a compression test with external rotation. First, a validation was done assuming a healthy joint shoulder with a previous study. Once the initial model was validated, a lesion of the labrum built using a CAD software and the same test was done again. The results obtained were stress and strain distribution of the synovial capsule and the injured labrum. ANOVA was done for the healthy and injured glenohumeral joint finding significant differences between them. This study will help orthopedic surgeons to know the biomechanics involving this type of lesion and also the other surrounding structures affected by loading the injured joint.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, superior labral anterior to posterior lesion

Procedia PDF Downloads 82
1117 A Case Study on the Field Surveys and Repair of a Marine Approach-Bridge

Authors: S. H. Park, D. W. You

Abstract:

This study is about to the field survey and repair works in a marine approach-bride. In order to evaluate the stability of the ground and the structure, field surveys such as exterior inspection, non-destructive inspection, measurement, and geophysical exploration are carried out. Numerical analysis is conducted to investigate the cause of the abutment displacement at the same time. In addition, repair works are practiced to the region damaged with intent to sustain long-term safety.

Keywords: field survey, expansion joint, repair, maintenance

Procedia PDF Downloads 184
1116 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts

Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang

Abstract:

In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.

Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts

Procedia PDF Downloads 287
1115 Beam, Column Joints Concrete in Seismic Zone

Authors: Khalifa Kherafa

Abstract:

This east project consists in studying beam–column joints concrete subjected to seismic loads. A bibliographical study was introduced to clarify the work undertaken by the researchers in the field during the three last decades and especially the two last year’s results which were to study for the determination of the method of calculating of transverse reinforcement in the various nodes of a structure. For application, the efforts in the posts el the beams of a building in R+4 in zone 3 were calculate according to the finite element method through the software .

Keywords: beam–column joints, cyclic loading, shearing force, damaged joint

Procedia PDF Downloads 305
1114 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 252
1113 Measuring Audit Quality Using Text Analysis: An Empirical Study of Indian Companies

Authors: Leesa Mohanty, Ashok Banerjee

Abstract:

Better audit quality signifies the financial statements of the auditee firm reflect true and fair view of their actual state of affairs, which reduces information asymmetry between management and shareholders, as a result, helps protect interests of shareholders. This study examines the impact of joint audit on audit quality. It is motivated by the ongoing debate where The Institute of Chartered Accountants of India (ICAI), the regulatory body governing auditors, has advocated the finance ministry and the Reserve Bank of India (RBI) for the mandatory use of joint audit in private banks to enhance the quality of audit. Earlier, the Government of India had rejected the plea by ICAI for mandatory joint audits in large companies stating it is not a viable option for promoting domestic firms. We introduce a new measure of audit quality. Drawing from the domain of text analytics, we use relevant phrases in audit reports to gauge audit quality and demonstrate that joint audit improves audit quality. We also, for robustness, use prevalent proxy for audit quality (Big N Auditor, ratio of audit fees to total fees) and find negative effect of joint audit on audit quality. We, therefore highlight that different proxy for audit quality show opposite effect of joint audit.

Keywords: audit fees, audit quality, Big N. Auditor, joint audit

Procedia PDF Downloads 168
1112 A Numerical Study of Adherend Geometry on the Stress Distribution in Adhesively Lap Joint

Authors: Ahmet Calik

Abstract:

In present study, the effect of adherend geometry on the tensile strength of adhesively single lap aluminum structures joint, bonded was numerically studied using by three dimensional finite element model. Six joint model were investigated. Analyses were performed in ANSYS commercial software. The results shows that the adherends shape has the highest effect on peel and shear stresses.

Keywords: adhesive, adherend, single lap joints, finite element

Procedia PDF Downloads 180
1111 Pushover Experiment of Traditional Dieh-Dou Timber Frame

Authors: Ren Zuo Wang

Abstract:

In this paper, in order to investigate the joint behaviors of the Dieh-Dou structure. A pushover experiment of Dieh-Dou Jia-Dong is implemented. NDI, LVDT and image measurement system are used to measure displacements of joints and deformations of Dieh-Dou Jia-Dong. In addition, joint rotation-moment relationships of column restoring force, purlin-supporting, Dou-Shu, Dou-Gong brackets, primary beam-Gua Tong, secondary beam-Gua Tong, Tertiary beam are builied. From Jia-Dong experiments, formulations of joint rotation are proposed.

Keywords: pushover experiment, Dieh-Dou timber frame, image measurement system, joint rotation-moment relationships

Procedia PDF Downloads 307
1110 Composite Behavior of Precast Concrete Coping with Internal Connector and Precast Girder

Authors: Junki Min, Heeyoung Lee, Wonseok Chung

Abstract:

Traditional marine concrete structures are difficult to construct and may cause environmental pollution. This study presents new concrete bridge system in the marine. The main feature of the proposed bridge is that precast girders and precast coping are applied to facilitate assembly and to improve constructability. In addition, the moment of the girder is reduced by continuation the joint. In this study, a full-scale joint specimen with a span of 7.0 m was fabricated and tested to evaluate the composite behavior of the joint. A finite element model was also developed and compared against the experimental results. All members of the test specimen behaved stably up to the design load. It was found that the precast joint of the proposed bridge showed the composite behavior efficiently before the failure.

Keywords: finite element analysis, full-scale test, coping, joint performance, marine structure, precast

Procedia PDF Downloads 95
1109 Experimental Study on Connection Method of Precast Beam-Column Using CFRPS

Authors: Harmonis Rante, Rudy Djamaluddin, Herman Parung, Victor Sampebulu

Abstract:

Many research of FRP strengthening on beam-column joint have been done. They used FRP as a strengthening material but not as a connection method. This paper presents a result of experimental-study on connection method of precast beam-column using CFRP sheet to investigate the possibility of CFRP sheet to be a connecting material. Six specimens were prepared and tested to investigate the behavior of CFRP-s connection capacity. The performance of two-connection method is presented in this paper. Three specimens have been tested so far, they were specimen without belt, specimen using one belt and monolith specimen as a control specimen. Result indicated that FRP joint system without belt reached higher capacity than joint system using one belt, but both are lower than monolith joint. Capacity of joint system without belt is 90.6% and 62.5% for the joint system using one belt, respectively compared to the control specimen.

Keywords: belt, CFRP-s, connection method, strengthening

Procedia PDF Downloads 138
1108 Testing of the Decreasing Bond Strength of Polyvinyl Acetate Adhesive by Low Temperatures

Authors: Pavel Boška, Jan Bomba, Tomáš Beránek, Jiří Procházka

Abstract:

When using wood products bonded by polyvinyl acetate, glues such as windows are the most limiting element of degradation of the glued joint due to weather changes. In addition to moisture and high temperatures, the joint may damage the low temperature below freezing point, where dimensional changes in the material and distortion of the adhesive film occur. During the experiments, the joints were exposed to several degrees of sub-zero temperatures from 0 °C to -40 °C and then to compare how the decreasing temperature affects the strength of the joint. The experiment was performed on wood beech samples (Fagus sylvatica), bonded with PVAc with D3 resistance and the shear strength of bond was measured. The glued and treated samples were tested on a laboratory testing machine, recording the strength of the joint. The statistical results have given us information that the strength of the joint gradually decreases with decreasing temperature, but a noticeable and statistically significant change is achieved only at very low temperatures.

Keywords: adhesives, bond strength, low temperatures, polyvinyl acetate

Procedia PDF Downloads 235
1107 Biases in Numerically Invariant Joint Signatures

Authors: Reza Aghayan

Abstract:

This paper illustrates that numerically invariant joint signatures suffer biases in the resulting signatures. Next, we classify the arising biases as Bias Type 1 and Bias Type 2 and show how they can be removed.

Keywords: Euclidean and affine geometries, differential invariant signature curves, numerically invariant joint signatures, numerical analysis, numerical bias, curve analysis

Procedia PDF Downloads 451
1106 Finite Element Modelling of Log Wall Corner Joints

Authors: Reza Kalantari, Ghazanfarah Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. 8% variability is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia PDF Downloads 53