Search results for: strength resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6326

Search results for: strength resistance

5996 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: concrete, air-entraining, compressive strength, mechanical properties

Procedia PDF Downloads 270
5995 Field Investigating the Effects of Lateral Support Elements on Lateral Resistance of Ballasted Tracks with Sharp Curves

Authors: Milad Alizadeh Galdiani, Jabbar Ali Zakeri

Abstract:

Lateral movement of CWR ballasted track occurs in sharp curves because of the lack of adequate lateral resistance. Several strategies have been proposed and used for increase the lateral resistance of ballasted tracks, but still there are some problems in tracks with small radius curves. In this paper, a new method has been presented for increase the lateral resistance. This method is using the lateral supports as numerical and field studies. In this paper, the field and laboratory tests have been conducted by using the single tie pressure test (STPT) and track panel loading test (LTPT). Then, their results were compared with the numerical results. The results of numerical and field tests showed that the lateral stiffness of ballasted tracks significantly increased when there were lateral supports in ballasted tracks. Also, the track structure had a bilinear behavior.

Keywords: ballasted railway, Lateral resistance, railway buckling, field and numerical studies

Procedia PDF Downloads 315
5994 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 197
5993 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 291
5992 The Subaltern Woman and the Reproductive Body - A Reading of Devi's 'Breast Stories'

Authors: Sharon Lopez

Abstract:

Much of critical thought dismisses the notion of subaltern women engaging in resistance because of her complex colonial identity. She is seen in postcolonial theory as being "doubly effaced" and removed from exercising control to speak up and taking part in defiance. This line of reasoning suggests a critical area in which engaging with issues unavoidably excludes subaltern women from the emerging resistance discourse. A position like this also suggests a closed-minded view of human experience and a desire to maintain subalternity. The argument here is that subaltern women might be understood as achieving agency when they engage in resistance and speak out about their circumstances, whether aloud or in silence. Using deductions from Mahasweta Devi's literary narratives such as Imaginary Maps and Breast Stories, the study investigates the tactics Devi employs to engage marginalised women into resistance and establishes that the 'body' emerges in her stories not just as a site of oppression but also as an important motif of power and resistance.

Keywords: subaltern woman, reproductive docy, breast giver, devi

Procedia PDF Downloads 96
5991 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 65
5990 Antibiotic Susceptibility Profile and Horizontal Gene Transfer in Pseudomonas sp. Isolated from Clinical Specimens

Authors: Sadaf Ilyas, Saba Riaz

Abstract:

The extensive use of antibiotics has led to increases emergence of antibiotic-resistant organisms. Pseudomonas is a notorious opportunistic pathogen involoved in nosocomial infections and exhibit innate resistance to many antibiotics. The present study was conducted to assess the prevalence, levels of antimicrobial susceptibility and resistance mechanisms of Pseudomonas. A total of thirty clinical strains of Pseudomonas were isolated from different clinical sites of infection. All clinical specimens were collected from Chughtais Lahore Lab. Jail road, during 8-07-2010 to 11-01-2011. Biochemical characterization was done using routine biochemical tests. Antimicrobial susceptibility was determined by Kirby-Baeur method. The plasmids were isolated from all the strains and digested with restriction enzyme PstI and EcoRI. Transfer of Multi-resistance plasmid was checked via transformation and conjugation to confirm the plasmid mediated resistance to antibiotics. The prevalence of Pseudomonas in clinical specimens was found out to be 14% of all bacterial infections. IPM has shown to be the most effective drug against Pseudomonas followed by CES, PTB and meropenem, wheareas most of the Pseudomonas strains have developed significant resistance against Penicillins and some Cephalasporins. Antibiotic resistance determinants were carried by plasmids, as they conferred resistance to transformed K1 strains. The isolates readily undergo conjugation, transferring the resistant genes to other strains, illustrating the high rates of cross infection and nosocomial infection in the immunocompromised patients.

Keywords: pseudomonas, antibiotics, drug resistance, horizontal gene transfer

Procedia PDF Downloads 336
5989 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri

Abstract:

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Keywords: motor drive, sensorless control, adaptive observer, stator resistance estimation

Procedia PDF Downloads 367
5988 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity

Procedia PDF Downloads 128
5987 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: compressive strength, GGBS, normal concrete, self-consolidating concrete

Procedia PDF Downloads 420
5986 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 332
5985 Variations of Testing Concrete Mechanical Properties by European Standard and American Code

Authors: Ahmed M. Seyam, Rita Nemes, Salem Georges Nehme

Abstract:

Europe and the United States have a worldwide significance in the field of concrete control and construction; according to that, a lot of countries adopted their standards and regulations in the concrete field, as proof of the Europe and US strong standards and due to lack of own regulations. The main controlled property of concrete are the compressive strength, flexure tensile strength, and modulus of elasticity as it relates both to its bearing capacity and to the durability of the elements built with it, so in this paper, ASTM standard and EN standards method of testing those properties were put under the microscope to compare the variations between them.

Keywords: concrete, ASTM, EU standards, compressive strength, flexural strength, modulus of elasticity

Procedia PDF Downloads 82
5984 Insecticide Resistance Detection on Dengue Vector, Aedes albopictus Obtained from Kapit, Kuching and Sibu Districts in Sarawak State, Malaysia

Authors: Koon Weng Lau, Chee Dhang Chen, Abdul Aziz Azidah, Mohd Sofian-Azirun

Abstract:

Recently, Sarawak state of Malaysia encounter an outbreak of dengue fever. Aedes albopictus has incriminated as one of the important vectors of dengue transmission. Without an effective vaccine, approaches to control or prevent dengue will be a focus on the vectors. The control of Aedes mosquitoes is still dependent on the use of chemical insecticides and insecticide resistance represents a threat to the effectiveness of vector control. This study was conducted to determine the resistance status of 11 active ingredients representing four major insecticide classes: DDT, dieldrin, malathion, fenitrothion, bendiocarb, propoxur, etofenprox, deltamethrin, lambda-cyhalothrin, cyfluthrin, and permethrin. Standard WHO test procedures were conducted to determine the insecticide susceptibility. Aedes albopictus collected from Kapit (resistance ratio, RR = 1.04–3.02), Kuching (RR = 1.17–4.61), and Sibu (RR = 1.06–3.59) exhibited low resistance toward all insecticides except dieldrin. This study reveled that dieldrin is still effective against Ae. albopictus, followed by fenitrothion, cyfluthrin, and deltamethrin. In conclusion, Ae. albopictus in Sarawak exhibited different resistance levels toward various insecticides and alternative solutions should be implemented to prevent further deterioration of the condition.

Keywords: Aedes albopictus, dengue, insecticide resistance, Malaysia

Procedia PDF Downloads 346
5983 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 196
5982 Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant

Authors: S. B. V. S. P. Sastry, V. V. S. Kesava Rao

Abstract:

In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines.

Keywords: bar mill, design of experiment, taguchi, yield strength

Procedia PDF Downloads 233
5981 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance

Procedia PDF Downloads 168
5980 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 244
5979 Preparation and Properties of PP/EPDM Reinforced with Graphene

Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy

Abstract:

Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).

Keywords: nanocomposite, graphene, microstructure, mechanical properties

Procedia PDF Downloads 322
5978 The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablous, Mofied M. Elnemry

Abstract:

The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content.

Keywords: proportion of carbon in the steel, corrosion rate, erosion, corrosion resistance in carbon-steel

Procedia PDF Downloads 589
5977 An Assessment of the Anthropometric Characteristics of Malaysian Cricket Batsmen

Authors: Muhammad Zia ul Haq, Ong Kuan Boon, Jeffrey Low Fook Lee, Bendri Bin Dasril, Amna Iqbal, Muhammad Saleem

Abstract:

This study is bond of two purpose, first is to establish the anthropometric profile of Malaysian cricket batsmen and second, to find the variances among the anthropometric characteristics of ten under-16 years, eight under-19 years and eight senior teams batsmen. The anthropometric variables were measured as 8 skinfolds, 12 circumferences, 06 lengths and 05 breadths, stature, sitting height, arm span, body mass, hand grip strength and leg strength. The batsmen of under-19 and under-16 found similar in skinfolds, sum of skinfolds, circumferences and breadth measurements but significantly lesser than the senior team batsmen. Senior and Under-19 batsmen were almost found similar in segmental lengths, heights and arm span but significantly higher than the under-16 batsmen. Breadth measurements the under-19 found higher than the senior and u-16 batsmen. The hand grips strength of the senior batsmen significantly high than the uder-19 and under-16 players and both groups were similar and no significant difference were found in leg strength of all three groups batsmen. Leg strength were found significant correlation with wrist, hip, thigh, and calf girth and handgrip strength. The hand grip strength were found correlated with all variables except biceps, mid-thigh skinfold, segmental length, humerus breadth. It is concluded from the present study that the girth segments and hand grip strength are the predictors of good performance in cricket batting.

Keywords: cricket batting, batsmen, anthropometry, body segments, hand grip strength

Procedia PDF Downloads 569
5976 Correlation between the Undrained Shear Strength of Clay of the Champlain Sea as Determined by the Vane Test and the Swedish Cone

Authors: Tahar Ayadat

Abstract:

The undrained shear strength is an essential parameter for determining the consistency and the ultimate bearing capacity of a clay layer. The undrained shear strength can be determined by field tests such as the in situ vane test or in laboratory, including hand vane test, triaxial, simple compression test, and the consistency penetrometer (i.e. Swedish cone). However, the field vane test and the Swedish cone are the most commonly used tests by geotechnical experts. In this technical note, a comparison between the shear strength results obtained by the in situ vane test and the cone penetration test (Swedish cone) was conducted. A correlation between the results of these two tests, concerning the undrained shear strength of the Champlain sea clay, has been developed. Moreover, some applications of the proposed correlation on some geotechnical problems have been included, such as the determination of the consistency and the bearing capacity of a clay layer.

Keywords: correlation, shear strength, clay, vane test, Swedish cone

Procedia PDF Downloads 384
5975 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India

Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander

Abstract:

Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.

Keywords: salmonella, pefloxacin, surrogate marker, chloramphenicol

Procedia PDF Downloads 972
5974 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 554
5973 Participants’ Perception and a Student Protest of Peking University in 2014

Authors: Ruanzhenghao Shi

Abstract:

Student movements have persisted in mainland China, especially in elite universities since the Tiananmen Prodemocracy Movement, contrary to the lack of studies on them. However, the participants' repertoire, mobilization and mode of interaction with authorities are vastly different from their predecessors in the 1980s as well as their western counterparts. In most of the cases, agents, cognizant of the high cost of action and their vulnerability to the authorities, consciously curtailed certain repertoire and themes of resistance. Thus these movements, without appreciable organized force, were self-interested, fragmentally mobilized, lowly integrated and limited within the campus. This study documents the 2014 protest against Yanching Academy program at Peking University, a top-tier Chinese university that played the leading role in the 1989 protest. The 2014 case is different from abovementioned trend of submissive resistance in the last twenty years, insofar as it is a value-oriented and emotion-driven collective action with the resurgence of some repertoire. The participants perceived the university's contemporary ineffectiveness and clumsiness in control and administration, higher Party authorities' indifference to less-political themes, and an increasing number of potential advocates, including students, intellectuals and social media. It shows that resisters' perception of their relative strength to their opponents - in this case, the university and its system for controlling students - under specific circumstances, not merely political opportunities or institutional changes, stimulates the participants and thus contributes to the mobilization and organization of a collective action, even under severe social control.

Keywords: collective action, China, university students, resistance

Procedia PDF Downloads 141
5972 Role of ABC-Type Efflux Transporters in Antifungal Resistance of Candida auris

Authors: Mohamed Mahdi Alshahni, Takashi Tamura, Koichi Makimura

Abstract:

Objective: The objective of this study is to evaluate roles of ABC-type efflux transporters in the resistance of Candida auris against common antifungal agents. Material and Methods: A wild-type C. auris strain and its antifungal resistant derivative strain that is generated through induction by antifungal agents were used in this study. The strains were cultured onto media containing beauvericin alone or in combination with azole agents. Moreover, expression levels of four ABC-type transporter’s homologs in those strains were analyzed by real time PCR with or without antifungal stress by fluconazole or voriconazole. Results: Addition of beauvericin helped to partially restore the susceptibility of the resistant strain against fluconazole, suggesting participation of ABC-type transporters in the resistance mechanism. Real time PCR results showed that mRNA levels of three out of the four analyzed transporters in the resistant strain were more than 2-fold higher than their counterparts in the wild-type strain under negative control and antifungal agent-containing conditions. Conclusion: C. auris is an emerging multidrug-resistant pathogen causing human mortality worldwide. Providing effective treatment has been hampered by the resistance to antifungal drugs, demanding understanding the resistance mechanism in order to devise new therapeutic strategies. Our data suggest a partial contribution of ABC-type transporters to the resistance of this pathogen.

Keywords: resistance, C. auris, transporters, antifungi

Procedia PDF Downloads 156
5971 Effect of the Concrete Cover on the Bond Strength of the FRP Wrapped and Non-Wrapped Reinforced Concrete Beam with Lap Splice under Uni-Direction Cyclic Loading

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

Many of the reinforced concrete structures subject to cyclic load constructed before the modern bond and fatigue design code. One of the main issue face on exists structure is the bond strength of the longitudinal steel bar and the surrounding concrete. A lap splice is a common connection method to transfer the force between the steel rebar in a reinforced concrete member. Usually, the lap splice is the weak connection on the bond strength. Fatigue flexural loading imposes severe demands on the strength and ductility of the lap splice region in reinforced concrete structures and can lead to a brittle and sudden failure of the member. This paper investigates the effect of different concrete covers on the fatigue bond strength of reinforcing concrete beams containing a lap splice under a fatigue loads. It includes tests of thirty-seven beams divided into three groups. Each group has beams with 30 mm and 50 mm clear side and bottom concrete covers. The variables that were addressed where the concrete cover, the presence or absence of CFRP or GFRP sheet wrapping, the type of loading (monotonic or fatigue) and the fatigue load ranges. The test results showed that an increase in the concrete cover led to an increase in the bond strength under both monotonic and fatigue loading for both the unwrapped and wrapped beams. Also, the FRP sheets increased both the fatigue strength and the ductility for both the 30 mm and the 50 mm concrete covers.

Keywords: bond strength, fatigue, Lap splice, FRp wrapping

Procedia PDF Downloads 475
5970 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber

Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima

Abstract:

Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.

Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis

Procedia PDF Downloads 81
5969 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 308
5968 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: recycled concrete aggregate, re-use, workability, compressive strength

Procedia PDF Downloads 359
5967 Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Authors: Moaz H. Ali, Ahmed H. Al-Saadi

Abstract:

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, lightweight, and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provide a serious challenge for cutting tool material during the machining process. The reduction in cutting temperature distributions leads to an increase in tool life and a decrease in wear rate. Hence, the chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The result of low thermal conductivity and diffusivity of this alloy in the concentration of high temperatures at the tool-work-piece and tool-chip interface. Consequently, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. Otherwise, the result will be accelerating tool wear, increasing manufacturing cost and time consuming.

Keywords: machinability, titanium alloy (ti-6al-4v), chip formation, milling process

Procedia PDF Downloads 433