Search results for: spectrophotometer assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1346

Search results for: spectrophotometer assay

1016 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract

Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap

Abstract:

Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.

Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases

Procedia PDF Downloads 208
1015 Attenuation of Amyloid beta (Aβ) (1-42)-Induced Neurotoxicity by Luteolin

Authors: Dona Pamoda W. Jayatunga, Veer Bala Gupta, Eugene Hone, Ralph N. Martins

Abstract:

Being a neurodegenerative disorder, Alzheimer’s disease (AD) affects a majority of the elderly demented worldwide. The key risk factors for AD are age, metabolic syndrome, allele status of APOE gene, head injuries and lifestyle. The progressive nature of AD is characterized by symptoms of multiple cognitive deficits exacerbated over time, leading to death within a decade from clinical diagnosis. However, it is revealed that AD originates via a prodromal phase that spans from one to few decades before symptoms first manifest. The key pathological hallmarks of AD brains are deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT). However, the yet unknown etiology of the disease fails to distinguish mitochondrial dysfunction between a cause or an outcome. The absence of early diagnosis tools and definite therapies for AD have permitted recruits of nutraceutical-based approaches aimed at reducing the risk of AD by modulating lifestyle or be used as preventive tools during AD prodromal state before widespread neurodegeneration begins. The objective of the present study was to investigate beneficial effects of luteolin, a plant-based flavone compound, against AD. The neuroprotective effects of luteolin on amyloid beta (Aβ) (1-42)-induced neurotoxicity was measured using cultured human neuroblastoma BE(2)-M17 cells. After exposure to 20μM Aβ (1-42) for 48 h, the neuroblastoma cells exhibited marked apoptotic death. Co-treatment of 20μM Aβ (1-42) with luteolin (0.5-5μM) significantly protected the cells against Aβ (1-42)-induced toxicity, as assessed by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4sulfophenyl)-2H-tetrazolium, inner salt; MTS] reduction assay and the lactate dehydrogenase (LDH) cell death assay. The results suggest that luteolin prevents Aβ (1-42)-induced apoptotic neuronal death. However, further studies are underway to determine its protective mechanisms in AD including the activity against tau hyperphosphorylation and mitochondrial dysfunction.

Keywords: Aβ (1-42)-induced toxicity, Alzheimer’s disease, luteolin, neuroblastoma cells

Procedia PDF Downloads 135
1014 Fucoidan: A Potent Seaweed-Derived Polysaccharide with Immunomodulatory and Anti-inflammatory Properties

Authors: Tauseef Ahmad, Muhammad Ishaq, Mathew Eapen, Ahyoung Park, Sam Karpiniec, Vanni Caruso, Rajaraman Eri

Abstract:

Fucoidans are complex, fucose-rich sulfated polymers discovered in brown seaweeds. Fucoidans are popular around the world, particularly in the nutraceutical and pharmaceutical industries, due to their promising medicinal properties. Fucoidans have been shown to have a variety of biological activities, including anti-inflammatory effects. They are known to inhibit inflammatory processes through a variety of mechanisms, including enzyme inhibition and selectin blockade. Inflammation is a part of the complicated biological response of living systems to damaging stimuli, and it plays a role in the pathogenesis of a variety of disorders, including arthritis, inflammatory bowel disease, cancer, and allergies. In the current investigation, various fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for inhibition of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) in LPS induced human macrophage cell line (THP-1) and human peripheral blood mononuclear cells (PBMCs). Furthermore, we also sought to catalogue these extracts based on their anti-inflammatory effects in the current in-vitro cell model. Materials and Methods: To assess the cytotoxicity of fucoidan extracts, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5, -diphenyltetrazolium bromide) cell viability assay was performed. Furthermore, a dose-response for fucoidan extracts was performed in LPS induced THP-1 cells and PBMCs after pre-treatment for 24 hours, and levels of TNF-α, IL-1β, and IL-6 cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Results: The MTT cell viability assay demonstrated that fucoidan extracts exhibited no evidence of cytotoxicity in THP-1 cells or PBMCs after 48 hours of incubation. The results of the sandwich ELISA revealed that all fucoidan extracts suppressed cytokine production in LPS-stimulated PBMCs and human THP-1 cells in a dose-dependent manner. Notably, at lower concentrations, the lower molecular fucoidan (5-30 kDa) extract from Macrocystis pyrifera was a highly efficient inhibitor of pro-inflammatory cytokines. Fucoidan extracts from all species including Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica exhibited significant anti-inflammatory effects. These findings on several fucoidan extracts provide insight into strategies for improving their efficacy against inflammation-related diseases. Conclusion: In the current research, we have successfully catalogued several fucoidan extracts based on their efficiency in LPS-induced macrophages and PBMCs in downregulating the key pro-inflammatory cytokines (TNF-, IL-1 and IL-6), which are prospective targets in human inflammatory illnesses. Further research would provide more information on the mechanism of action, allowing it to be tested for therapeutic purposes as an anti-inflammatory medication.

Keywords: fucoidan, PBMCs, THP-1, TNF-α, IL-1β, IL-6, inflammation

Procedia PDF Downloads 42
1013 Phytochemical and Antioxidant Activity Test of Water Fraction Extract of Sisik Naga (Drymoglossum piloselloides) Leaves

Authors: Afifah Nur Aini, Elsa Mega Suryani, Betty Lukiaty

Abstract:

Drymoglossum piloselloides or more commonly known as sisik naga fern is a member of Polipodiaceae Family that is abundant and widely distributed in nature. That being said, there hasn’t been many studies reporting about the benefits of this fern. The aim of this study was to find out the active compounds and antioxidant activity of water fraction extract of sisik naga leaves. The study will be able to optimize the use of this fern in the future. In this study, phytochemical test was done qualitatively by using Mayer, Dragendorff and Wagner reagent for alkaloid test; FeCl3 for phenolic test; Shinoda test for flavonoid; Liebermann-Burchard test for triterprnoid and Forth test for saponin. Antioxidant activity test was done by using 20D spectronic spectrophotometer to determine the percentage of DPPH free radical inhibition. The results showed that water fraction extract of sisik naga leaves contain phenolic and IC50 = 5.44 μg/ml. This means that sisik naga leaves can be used as an antioxidant.

Keywords: antioxidant activity test, dpph, phytochemical test, drymoglossum piloselloides

Procedia PDF Downloads 880
1012 Developing Novel Bacterial Primase (DnaG) Inhibitors

Authors: Shanakr Bhattarai, V. S. Tiwari, Barak Akabayov

Abstract:

The plummeting number of infections and death is due to the development of drug-resistant bacteria. In addition, the number of approved antibiotic drugs by the Food and Drug Administration (FDA) is insufficient. Therefore, developing new drugs and finding novel targets for central metabolic pathways in bacteria is urgently needed. One of the promising targets is DNA replication machinery which consists of many essential proteins and enzymes. DnaG primase is an essential enzyme and a central part of the DNA replication machinery. DnaG primase synthesizes short RNA primers that initiate the Okazaki fragments by the lagging strand DNA polymerase. Therefore, it is reasonable to assume that inhibition of primase activity will stall DNA replication and prevent bacterial proliferation. We did the expression and purification of eight different bacterial DnaGs (Mycobacterium tuberculosis(Mtb), Bacillus anthracis (Ba), Mycobacterium smegmatis (Msmeg), Francisella tularencis (Ft), Vibrio cholerae (Vc) and Yersinia pestis (Yp), Staphylococcus aureus(Saureus), Escherichia coli(Ecoli)) followed by the radioactive activity assay. After obtaining the pure and active protein DnaG, we synthesized the inhibitors for them. The inhibitors were divided into five different groups, each containing five molecules, and the cocktail inhibition assay was performed against each DnaGs. The groups of molecules inhibiting the DnaGs were further tested with individual molecules belonging to inhibiting groups. Each molecule showing inhibition was titrated against the corresponding DnaGs to find IC50. We got a molecule(VS167) that acted as broad inhibitors, inhibiting all eight DnaGs. Molecules VS180 and VS186 inhibited seven DnaGs (except Saureus). Similarly, two molecules(VS 173, VS176) inhibited five DnaGs (Mtb, Ba, Ft, Yp, Ecoli). VS261 inhibited four DnaGs (Mtb, Ba, Ft, Vc). MS50 inhibited Ba and Vc DnaGs. And some of the inhibitors inhibited only one DnaGs. Thus we found the broad and specific inhibitors for different bacterial DnaGs, and their Structure-activity analysis(SAR) was done. Further, We tried to explain the similarities among the enzyme DnaGs from different bacteria based on their inhibition pattern.

Keywords: DNA replication, DnaG, okazaki fragments, antibiotic drugs

Procedia PDF Downloads 74
1011 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 56
1010 Opto-Electronic Study of the Silicon Nitride Doped Cerium Thin Films Deposed by Evaporation

Authors: Bekhedda Kheira

Abstract:

Rare earth-doped luminescent materials (Ce, Eu, Yb, Tb, etc.) are now widely used in flat-screen displays, fluorescent lamps, and photovoltaic solar cells. They exhibit several fine emission bands in a spectral range from near UV to infrared when added to inorganic materials. This study chose cerium oxide (CeO2) because of its exceptional intrinsic properties, energy levels, and ease of implementation of doped layer synthesis. In this study, thin films were obtained by the evaporation deposition technique of cerium oxide (CeO2) on silicon Nitride (SiNx) layers and then annealing under nitrogen N2. The characterization of these films was carried out by different techniques, scanning electron microscopy (SEM) to visualize morphological properties and (EDS) was used to determine the elemental composition of individual dots, optical analysis characterization of thin films was studied by a spectrophotometer in reflectance mode to determine different energies gap of the nanostructured layers and to adjust these values for the photovoltaic application.

Keywords: thin films, photovoltaic, rare earth, evaporation

Procedia PDF Downloads 60
1009 Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation

Authors: Sutapa Som Chaudhury, Chitrangada Das Mukhopadhyay

Abstract:

Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease.

Keywords: Alzheimer’s disease, alternative medication, amyloid beta, PEGylated peptide

Procedia PDF Downloads 191
1008 Application of Dissolved Air Flotation for Removal of Oil from Wastewater

Authors: Talat Ghomashchi, Zahra Akbari, Shirin Malekpour, Marjan Alimirzaee

Abstract:

Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively.

Keywords: dissolved air flotation, oil industry, waste water, treatment

Procedia PDF Downloads 507
1007 Treatment of Isosporiasis in Neonate Dogs – Case Report

Authors: Maria Lucia G. Lourenco, Viviane Y. Hibaru, Keylla H. N. P. Pereira, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

Isosporiasis is an affliction caused by coccidial protozoa belonging to genera Isospora spp. or Cystoisospora spp., which may parasitize the small and large intestines of dogs, of which neonates and young animals present higher risk of infection. This study aims at reporting a case of isosporiasis in neonate Pitbull dogs, as well as the diagnosis and treatment. Seven Pitbull puppies were admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil, with history of yellowish diarrhea without mucus or blood for the past two days. The animals were five days old. The history of the mother, a primiparous two-year-old, revealed that she was properly vaccinated, not de-wormed and did not present diarrhea. The clinical examination revealed that the neonates weighted between 308 and 360 grams, and presented normal reflexes, moderate dehydration, body temperatures between 36.8 and 37.2 ºC, blood sugar between 103 and 124 mg/dL and normal appetite. A full blood count and a parasitology assay were performed to aid in the diagnosis. The full blood count detected eosinophilia, without any other relevant alterations. The parasitology assay (Willis-Molly & Faust) revealed the presence of Cystoisospora spp. The treatment was instituted with heated fluid therapy with Ringer’s Lactate (4 mL/100 g, subcutaneous) and antibiotic therapy with sulfamethoxazole-trimethoprim (15 mg/kg, orally) every 12 hours for ten days. The mother and other dogs that came in contact with the newborns were also treated. The environment was disinfected for 10 minutes with 1.6% quaternary ammonium. After 10 days, the newborns presented normal clinical signs and no alterations in the full blood count. Isosporiasis is an affliction with high mortality rates in litters that should be diagnosed and treated as soon as possible to increase the survival rates in these patients.

Keywords: Cystoisospora spp., neonatal infection, puppies, diarrhea,

Procedia PDF Downloads 109
1006 Gut Mycobiome Dysbiosis and Its Impact on Intestinal Permeability in Attention-Deficit/Hyperactivity Disorder

Authors: Liang-Jen Wang, Sung-Chou Li, Yuan-Ming Yeh, Sheng-Yu Lee, Ho-Chang Kuo, Chia-Yu Yang

Abstract:

Background: Dysbiosis in the gut microbial community might be involved in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The fungal component of the gut microbiome, namely the mycobiota, is a hyperdiverse group of multicellular eukaryotes that can influence host intestinal permeability. This study therefore aimed to investigate the impact of fungal mycobiome dysbiosis and intestinal permeability on ADHD. Methods: Faecal samples were collected from 35 children with ADHD and from 35 healthy controls. Total DNA was extracted from the faecal samples, and the internal transcribed spacer (ITS) regions were sequenced using high-throughput next-generation sequencing (NGS). The fungal taxonomic classification was analysed using bioinformatics tools, and the differentially expressed fungal species between the ADHD and healthy control groups were identified. An in vitro permeability assay (Caco-2 cell layer) was used to evaluate the biological effects of fungal dysbiosis on intestinal epithelial barrier function. Results: The β-diversity (the species diversity between two communities), but not α-diversity (the species diversity within a community), reflected the differences in fungal community composition between ADHD and control groups. At the phylum level, the ADHD group displayed a significantly higher abundance of Ascomycota and significantly lower abundance of Basidiomycota than the healthy control group. At the genus level, the abundance of Candida (especially Candida albicans) was significantly increased in ADHD patients compared to the healthy controls. In addition, the in vitro cell assay revealed that C. albicans secretions significantly enhanced the permeability of Caco-2 cells. Conclusions: The current study is the first to explore altered gut mycobiome dysbiosis using the NGS platform in ADHD. The findings from this study indicated that dysbiosis of the fungal mycobiome and intestinal permeability might be associated with susceptibility to ADHD.

Keywords: ADHD, fungus, gut–brain axis, biomarker, child psychiatry

Procedia PDF Downloads 87
1005 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments

Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie

Abstract:

Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.

Keywords: antibody engineering, biosensor, phage display, unnatural amino acids

Procedia PDF Downloads 125
1004 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.

Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence

Procedia PDF Downloads 137
1003 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels

Authors: Özge Yılmaz Gel, Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın

Abstract:

In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels.

Keywords: absorbance, heavy metal, removal of heavy metals, fruit peels

Procedia PDF Downloads 61
1002 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves

Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas

Abstract:

Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.

Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid

Procedia PDF Downloads 429
1001 Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria

Authors: M. I. Mohammed, U. M. Ahmad

Abstract:

Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements.

Keywords: mineral elements, coarse grains, staple food, Kano, Nigeria

Procedia PDF Downloads 258
1000 Pegylated Liposomes of Trans Resveratrol, an Anticancer Agent, for Enhancing Therapeutic Efficacy and Long Circulation

Authors: M. R. Vijayakumar, Sanjay Kumar Singh, Lakshmi, Hithesh Dewangan, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a natural molecule proved for cancer preventive and therapeutic activities devoid of any potential side effects. However, the therapeutic application of RES in disease management is limited because of its rapid elimination from blood circulation thereby low biological half life in mammals. Therefore, the main objective of this study is to enhance the circulation as well as therapeutic efficacy using PEGylated liposomes. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is applied as steric surface decorating agent to prepare RES liposomes by thin film hydration method. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Encapsulation efficiency and invitro drug release were determined by dialysis bag method. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies were performed in sprague dawley rats. The prepared liposomes were found to be spherical in shape. Particle size and zeta potential of prepared formulations varied from 64.5±3.16 to 262.3±7.45 nm and -2.1 to 1.76 mV, respectively. DSC study revealed absence of potential interaction. XRD study revealed presence of amorphous form in liposomes. Entrapment efficiency was found to be 87.45±2.14 % and the drug release was found to be controlled up to 24 hours. Minimized MEC in MTT assay and tremendous enhancement in circulation time of RES PEGylated liposomes than its pristine form revealed that the stearic stabilized PEGylated liposomes can be an alternative tool to commercialize this molecule for chemopreventive and therapeutic applications in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating liposomes, bioavailability enhancement, liposomes for cancer therapy, PEGylated liposomes

Procedia PDF Downloads 566
999 Heavy Metals in Selected Infant Milk Formula

Authors: Suad M. Abuzariba, M. Gazette

Abstract:

To test for the presence of toxic heavy metals, specifically Arsenic, Lead, and Mercury in formula milk available in Misrata city north of Libya for infants aged 6-12 months through Atomic Absorption Spectrophotometer,30 samples of imported milk formula in Libyan markets subjected to test to accurate their pollution with heavy metals, We get concentration of Hg, Ar, Pb in milk formula samples was between 0.002-1.37, 1.62-0.04–2.16, 0.15–0.65 respectively, when compared the results with Libyan &WHO standards ,they were within standards of toxic heavy metals. The presence or absence of toxic heavy metals (Lead, Arsenic, and Mercury) in selected infant formula milk and their levels within or beyond standards set by the WHO. The three infant formulas tested, all were negative for Arsenic and Lead, while two out of the three infant formulas tested positive for Mercury with levels of 0.6333ppm and 0.8333ppm. The levels of Mercury obtained, expressed in parts per million (ppm), from the two infant formulas tested were above the Provisional Tolerable Weekly Intake of total Mercury, which is 0.005ppm, as set by the FAO, WHO, and JECFA.

Keywords: heavy metals, milk formula, Libya, toxic

Procedia PDF Downloads 478
998 Gold Nanoprobes Assay for the Identification of Foodborn Pathogens Such as Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis

Authors: D. P. Houhoula, J. Papaparaskevas, S. Konteles, A. Dargenta, A. Farka, C. Spyrou, M. Ziaka, S. Koussisis, E. Charvalos

Abstract:

Objectives: Nanotechnology is providing revolutionary opportunities for the rapid and simple diagnosis of many infectious diseases. Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis are important human pathogens. Diagnostic assays for bacterial culture and identification are time consuming and laborious. There is an urgent need to develop rapid, sensitive, and inexpensive diagnostic tests. In this study, a gold nanoprobe strategy developed and relies on the colorimetric differentiation of specific DNA sequences based approach on differential aggregation profiles in the presence or absence of specific target hybridization. Method: Gold nanoparticles (AuNPs) were purchased from Nanopartz. They were conjugated with thiolated oligonucleotides specific for the femA gene for the identification of members of Staphylococcus aureus, the mecA gene for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus, hly gene encoding the pore-forming cytolysin listeriolysin for the identification of Listeria monocytogenes and the invA sequence for the identification of Salmonella enteritis. DNA isolation from Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis cultures was performed using the commercial kit Nucleospin Tissue (Macherey Nagel). Specifically 20μl of DNA was diluted in 10mMPBS (pH5). After the denaturation of 10min, 20μl of AuNPs was added followed by the annealing step at 58oC. The presence of a complementary target prevents aggregation with the addition of acid and the solution remains pink, whereas in the opposite event it turns to purple. The color could be detected visually and it was confirmed with an absorption spectrum. Results: Specifically, 0.123 μg/μl DNA of St. aureus, L.monocytogenes and Salmonella enteritis was serially diluted from 1:10 to 1:100. Blanks containing PBS buffer instead of DNA were used. The application of the proposed method on isolated bacteria produced positive results with all the species of St. aureus and L. monocytogenes and Salmonella enteritis using the femA, mecA, hly and invA genes respectively. The minimum detection limit of the assay was defined at 0.2 ng/μL of DNA. Below of 0.2 ng/μL of bacterial DNA the solution turned purple after addition of HCl, defining the minimum detection limit of the assay. None of the blank samples was positive. The specificity was 100%. The application of the proposed method produced exactly the same results every time (n = 4) the evaluation was repeated (100% repeatability) using the femA, hly and invA genes. Using the gene mecA for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus the method had a repeatability 50%. Conclusion: The proposed method could be used as a highly specific and sensitive screening tool for the detection and differentiation of Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis. The use AuNPs for the colorimetric detection of DNA targets represents an inexpensive and easy-to-perform alternative to common molecular assays. The technology described here, may develop into a platform that could accommodate detection of many bacterial species.

Keywords: gold nanoparticles, pathogens, nanotechnology, bacteria

Procedia PDF Downloads 325
997 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)

Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan

Abstract:

Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.

Keywords: antibacterial, FtsZ, zingiberaceae, docking

Procedia PDF Downloads 451
996 Phytochemical Screening, Antioxidant Activity, Lipid Profile Effect of Citrus reticulata Fruit Peel, Zingiber officinale Rhizome, and Sesamum indicum Seed Extracts

Authors: Samar Saadeldin Abdelmotalab Omer, Ikram Mohammed Eltayeb Elsiddig, Amna Beshir Medani Ahmed, Saad Mohammed Hussein Ayoub

Abstract:

Many herbal medicinal products are considered as potential hypocholesterolemic agents with encouraging safety profiles, however, only a limited amount of clinical research exists to support their efficacy. The present study was designed to compare the antihypercholesterolaemic and antioxidant activities of the crude ethanolic extracts of Citrus reticulata peel, Zingiber officinale rhizome, and Sesamum indicum seeds. Forty-five rats were used throughout the experiment, which were divided into nine groups, five rats in each as follows; normal control group (normal rats fed with standard normal diet), rats fed hypercholesterolemic diet consisting of 1% cholesterol and 10% saturated animal fat, which were further divided into eight groups; hypercholesterolemic control group (rats only fed hypercholesterolemic diet), groups 3,4,5,6,7, and 8 were given Citrus reticulata, Zingiber officinale, and Sesamum indicum ethanolic extracts at doses of (250mg/kg and 500mg/kg, respectively) orally; and group 9 rats were given atorvastatin (0.18mg/kg) orally as a reference antihypercholesterolaemic drug. Blood samples were obtained four weeks following treatment from the retro-orbital venous plexus after fasting overnight from all groups and the lipid profile (serum total cholesterol (TC), high-density-lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and triglycerides levels) was measured and the risk ratio (TC/HDL-C) was assessed. The antioxidant activity of the three plant extracts was determined using DPPH free-radical assay. Results of in vivo and in vitro antihypercholesterolaemic and antioxidant assay, respectively, revealed that the three extracts possess comparable antioxidant and anti-hypercholesterolaemic activities.

Keywords: anti hypercholesterolemic effects, antioxidant activity, HDL, LDL, TC, TGs, citrus reticulata, sesamum indicum, zingiber officinale

Procedia PDF Downloads 442
995 The Pathology of Bovine Rotavirus Infection in Calves That Confirmed by Enzyme Linked Immunosorbant Assay, Reverse Transcription Polymerase Chain Reaction and Real-Time RT-PCR

Authors: Shama Ranjan Barua, Tofazzal M. Rakib, Mohammad Alamgir Hossain, Tania Ferdushy, Sharmin Chowdhury

Abstract:

Rotavirus is one of the main etiologies of neonatal diarrhea in bovine calves that causes significant economic loss in Bangladesh. The present study was carried out to investigate the pathology of neonatal enteritis in calves due to bovine rotavirus infection in south-eastern part of Bangladesh. Rotavirus was identified by using ELISA, RT-PCR (Reverse Transcription Polymerase Chain Reaction), real-time RT-PCR. We examined 12 dead calves with history of diarrhea during necropsy. Among 12 dead calves, in gross examination, 6 were found with pathological changes in intestine, 5 calves had congestion of small intestine and rest one had no distinct pathological changes. Intestinal contents and/or faecal samples of all dead calves were collected and examined to confirm the presence of bovine rotavirus A using Enzyme linked immunosorbant assay (ELISA), RT-PCR and real-time RT-PCR. Out 12 samples, 5 (42%) samples revealed presence of bovine rotavirus A in three diagnostic tests. The histopathological changes were found almost exclusively limited in the small intestine. The lesions of rotaviral enteritis ranged from slight to moderate shortening (atrophy) of villi in the jejunum and ileum with necrotic crypts. The villi were blunt and covered by immature epithelial cells. Infected cells, stained with Haematoxylin and Eosin staining method, showed characteristic syncytia and eosinophilc intracytoplasmic inclusion body. The presence of intracytoplasmic inclusion bodies in enterocytes is the indication of viral etiology. The presence of rotavirus in the affected tissues and/or lesions was confirmed by three different immunological and molecular tests. The findings of histopathological changes will be helpful in future diagnosis of rotaviral infection in dead calves.

Keywords: calves, diarrhea, pathology, rotavirus

Procedia PDF Downloads 229
994 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis

Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo

Abstract:

Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.

Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine

Procedia PDF Downloads 146
993 Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Salmonella enterica Typhimurium

Authors: Jun Hyung Lee, Robin B. Guevarra, Jin Ho Cho, Bo-Ra Kim, Jiwon Shin, Doo Wan Kim, Young Hwa Kim, Minho Song, Hyeun Bum Kim

Abstract:

Salmonella is one of the most important swine pathogens, causing acute or chronic digestive diseases, such as enteritis. The acute form of enteritis is common in young pigs of 2-4 months of age. Salmonellosis in swine causes a huge economic burden to swine industry by reducing production. Therefore, it is necessary that swine industries should strive to decrease Salmonellosis in pigs in order to reduce economic losses. Thus, we tested three types of natural plant extracts(PEs) to evaluate antibacterial effects against Salmonella enterica Typhimurium isolated from the piglet with Salmonellosis. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour; then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.5cm, 2.7cm, and 2.8cm diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit Salmonella growth significantly after 4hours. The garlic essential oil retained the ability to inhibit Salmonella growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit Salmonella growth by all the tests. Even though further in-vivo tests will be needed to verify effects of garlic essential oil for the Salmonellosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Salmonellosis in swine.

Keywords: garlic essential oil, pig, salmonellosis, Salmonella enterica

Procedia PDF Downloads 154
992 Soil Degradation Resulting from Migration of Ion Leachate in Gosa Dumpsite, Abuja

Authors: S. Ebisintei, M. A. Olutoye, A. S. Kovo, U. G. Akpan

Abstract:

The effect of soil degradation due to ion leachate migration using dumpsite located at Idu industrial area of Abuja was investigated. It was done to assess the health and environmental pollution consequences caused by heavy metals’ concentration in the soil on inhabitants around the settlement. Soil samples collected from four cardinal points and at the center during the dry and wet season were pretreated, digested and heavy metal concentrations present were analyzed using Atomic Absorption Spectrophotometer. The concentrations of Pb, Cu, Mn, Ni, and Cr, were determined and also for control sample obtained 300 m away from the dumpsite. Water samples were collected from three wells to test for physiochemical properties of pH, COD, BOD, DO, hardness, conductivity, and alkalinity. The result showed a significant difference in concentration of toxic heavy metals in the dumpsite as compared to the control sample. A mathematical model was developed to predict the heavy metal concentrations beyond the sampling point. The results indicate that metal concentrations in both dry and wet season were above the WHO, and SON set standards. The trend, if unrestrained, portends danger to human life, reduces agricultural productivity and sustainability.

Keywords: soil degradation, ion leachate, productivity, environment, sustainability

Procedia PDF Downloads 330
991 Adsorption of Methylene Blue by Pectin from Durian (Durio zibethinus) Seeds

Authors: Siti Nurkhalimah, Devita Wijiyanti, Kuntari

Abstract:

Methylene blue is a popular water-soluble dye that is used for dyeing a variety of substrates such as bacteria, wool, and silk. Methylene blue discharged into the aquatic environment will cause health problems for living things. Treatment method for industrial wastewater may be divided into three main categories: physical, chemical, and biological. Among them, adsorption technology is generally considered to be an effective method for quickly lowering the concentration of dissolved dyes in a wastewater. This has attracted considerable research into low-cost alternative adsorbents for adsorbing or removing coloring matter. In this research, pectin from durian seeds was utilized here to assess their ability for the removal of methylene blue. Adsorption parameters are contact time and dye concentration were examined in the batch adsorption processes. Pectin characterization was performed by FTIR spectrometry. Methylene blue concentration was determined by using UV-Vis spectrophotometer. FTIR results show that the samples showed the typical fingerprint in IR spectrogram. The adsorption result on 10 mL of 5 mg/L methylene blue solution achieved 95.12% when contact time 10 minutes and pectin 0.2 g.

Keywords: pectin, methylene blue, adsorption, durian seed

Procedia PDF Downloads 162
990 Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Shiga Toxin-Producing Escherichia coli

Authors: Jun Hyung Lee, Robin B. Guevarra, Jin Ho Cho, Bo-Ra Kim, Jiwon Shin, Doo Wan Kim, Young Hwa Kim, Minho Song, Hyeun Bum Kim

Abstract:

Colibacillosis is one of the major health problems in young piglets ultimately resulting in their death, and it is common especially in young piglets. For the swine industry, colibacillosis is one of the important economic burdens. Therefore, it is necessary for the swine industries to prevent Colibacillosis in piglets in order to reduce economic losses. Thus, we tested three types of natural plant extracts (PEs) to evaluate antibacterial effects against Shiga toxin-producing Escherichia coli (STEC) isolated from the piglet. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour, then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.1cm, 3.0cm, and 3.6 cm in diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit STEC growth significantly after 4 hours. The garlic essential oil retained the ability to inhibit STEC growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit STEC growth by all the tests. Even though further tests using the piglets will be required to evaluate effects of garlic essential oil for the Colibacillosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Colibacillosis in swine.

Keywords: garlic essential oil, pig, Colibacillosis, Escherichia coli

Procedia PDF Downloads 237
989 Methylglyoxal Induced Glycoxidation of Human Low Density Lipoprotein: A Biophysical Perspective and Its Role in Diabetes and Periodontitis

Authors: Minhal Abidi, Moinuddin

Abstract:

Diabetes mellitus (DM) induced metabolic abnormalities causes oxidative stress which leads to the pathogenesis of complications associated with diabetes like retinopathy, nephropathy periodontitis etc. Combination of glycation and oxidation 'glycoxidation' occurs when oxidative reactions affect the early state of glycation products. Low density lipoprotein (LDL) is prone to glycoxidative attack by sugars and methylglyoxal (MGO) being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. Pro-inflammatory cytokines like IL1β and TNFα produced by the action of gram negative bacteria in periodontits (PD) can in turn lead to insulin resistance. This work discusses modifications to LDL as a result of glycoxidation. The changes in the protein molecule have been characterized by various physicochemical techniques and the immunogenicity of the modified molecules was also evaluated as they presented neo-epitopes. Binding of antibodies present in diabetes patients to the native and glycated LDL has been evaluated. Role of modified epitopes in the generation of antibodies in diabetes and periodontitis has been discussed. The structural perturbations induced in LDL were analyzed by UV–Vis, fluorescence, circular dichroism and FTIR spectroscopy, molecular docking studies, thermal denaturation studies, Thioflavin T assay, isothermal titration calorimetry, comet assay. MALDI-TOF, ketoamine moieties, carbonyl content and HMF content were also quantitated in native and glycated LDL. IL1β and TNFα levels were also measured in the type 2 DM and PD patients. We report increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analogue. The results substantiate that in hyperglycemic state MGO modification of LDL causes structural perturbations making the protein antigenic which could obstruct normal physiological functions and might contribute in the development of secondary complications in diabetic patients like periodontitis.

Keywords: advanced glycation end products, diabetes mellitus, glycation, glycoxidation, low density lipoprotein, periodontitis

Procedia PDF Downloads 174
988 Canine Visceral Leishmaniasis In Brazil

Authors: Elisangela Sobreira, Denise Teixeira

Abstract:

Visceral leishmaniasis is a public health problem in Brazil, it is the main reservoir dog. In the period 2012-2016 78 diagnoses were performed in dogs suspected. Blood samples were collected from the cephalic vein obtaining serum used for the indirect immunofluorescence test and enzyme-linked immunosorbent assay, while it collected a drop of blood for the rapid chromatographic immunoassay. Obtained in 32 dogs positive. The test is important for the control of this disease and is used routinely in the Zoonoses Control Center.

Keywords: Brazil, dogs, Leismaniasis, Zoonoses center

Procedia PDF Downloads 233
987 Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings

Authors: Chetna Dhand, Venkatesh Mayandi, Silvia Marrero Diaz, Roger W. Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan

Abstract:

Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness.

Keywords: catecholamine chemistry, electrospinning technique, antifungals, wound dressings, collagen

Procedia PDF Downloads 357