Search results for: nickel powders
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 691

Search results for: nickel powders

361 Effect of Thermal Annealing Used in the Hydrothermal Synthesis of Titanium Dioxide on Its Electrochemical Properties As Li-Ion Electrode

Authors: Gabouze Nourredine, Saloua Merazga

Abstract:

Due to their exceptional durability, low-cost, high-power density, and reliability, cathodes based on titanium dioxide, and more specifically spinel LTO (Li4Ti5O12), present an attractive alternative to conventional lithium cathode materials for multiple applications. The aim of this work is to synthesize and characterize the nanopowders of titanium dioxide (TiO₂) and lithium titanate (Li₄Ti5O₁₂) by the hydrothermal method and to use them as a cathode in a lithium-ion battery. The structural and morphological characterizations of the synthesized powders were performed by XRD, SEM, EDS, and FTIR-ATR. Nevertheless, the study of the electrochemical performances of the elaborated electrode materials was carried out by: cyclic voltametry (CV) and galvanostatic charge/discharge (CDG). The prepared electrode by the powder annealed at 800 °C has a good specific capacity of about 173 mAh/g and a good cyclic stability

Keywords: lithuim-ion, battery, LTO, tio2, capacity

Procedia PDF Downloads 58
360 Investigation Studies of WNbMoVTa and WNbMoVTaCr₀.₅Al Refractory High Entropy Alloys as Plasma-Facing Materials

Authors: Burçak Boztemur, Yue Xu, Laima Luo, M. Lütfi Öveçoğlu, Duygu Ağaoğulları

Abstract:

Tungsten (W) is used chiefly as plasma-facing material. However, it has some problems, such as brittleness after plasma exposure. High-entropy alloys (RHEAs) are a new opportunity for this deficiency. So, the neutron shielding behavior of WNbMoVTa and WNbMoVTaCr₀.₅Al compositions were examined against He⁺ irradiation in this study. The mechanical and irradiation properties of the WNbMoVTa base composition were investigated by adding the Al and Cr elements. The mechanical alloying (MA) for 6 hours was applied to obtain RHEA powders. According to the X-ray diffraction (XRD) method, the body-centered cubic (BCC) phase and NbTa phase with a small amount of WC impurity that comes from vials and balls were determined after 6 h MA. Also, RHEA powders were consolidated with the spark plasma sintering (SPS) method (1500 ºC, 30 MPa, and 10 min). After the SPS method, (Nb,Ta)C and W₂C₀.₈₅ phases were obtained with the decomposition of WC and stearic acid that is added during MA based on XRD results. Also, the BCC phase was obtained for both samples. While the Al₂O₃ phase with a small intensity was seen for the WNbMoVTaCr₀.₅Al sample, the Ta₂VO₆ phase was determined for the base sample. These phases were observed as three different regions according to scanning electron microscopy (SEM). All elements were distributed homogeneously on the white region by measuring an electron probe micro-analyzer (EPMA) coupled with a wavelength dispersive spectroscope (WDS). Also, the grey region of the WNbMoVTa sample was rich in Ta, V, and O elements. However, the amount of Al and O elements was higher for the grey region of the WNbMoVTaCr₀.₅Al sample. The high amount of Nb, Ta, and C elements were determined for both samples. Archimedes’ densities that were measured with alcohol media were closer to the theoretical densities of RHEAs. These values were important for the microhardness and irradiation resistance of compositions. While the Vickers microhardness value of the WNbMoVTa sample was measured as ~11 GPa, this value increased to nearly 13 GPa with the WNbMoVTaCr₀.₅Al sample. These values were compatible with the wear behavior. The wear volume loss was decreased to 0.16×10⁻⁴ from 1.25×10⁻⁴ mm³ by the addition of Al and Cr elements to the WNbMoVTa. The He⁺ irradiation was conducted on the samples to observe surface damage. After irradiation, the XRD patterns were shifted to the left because of defects and dislocations. He⁺ ions were infused under the surface, so they created the lattice expansion. The peak shifting of the WNbMoVTaCr₀.₅Al sample was less than the WNbMoVTa base sample, thanks to less impact. A small amount of fuzz was observed for the base sample. This structure was removed and transformed into a wavy structure with the addition of Cr and Al elements. Also, the deformation hardening was actualized after irradiation. A lower amount of hardening was obtained with the WNbMoVTaCr₀.₅Al sample based on the changing microhardness values. The surface deformation was decreased in the WNbMoVTaCr₀.₅Al sample.

Keywords: refractory high entropy alloy, microhardness, wear resistance, He⁺ irradiation

Procedia PDF Downloads 53
359 Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst

Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan, Mina Roshani

Abstract:

We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity.

Keywords: nano-graphene oxide, oxidation, aldehyde, ketone, catalyst

Procedia PDF Downloads 397
358 Assessment of the Quality of a Mixture of Vegetable Oils from Kazakhstan Origin

Authors: Almas Mukhametov, Dina Dautkanova, Moldir Yerbulekova, Gulim Tuyakova, Raziya Zhakudaeva, Makpal Seisenaly, Asemay Kazhymurat

Abstract:

The composition of samples of mixtures of vegetable oils of Kazakhstan origin, consisting of sunflower, safflower and linseed oils, has been experimentally substantiated. With an approximate optimal ratio of w-6:w-3 fatty acids in 80:15:05 triacylglycerols, providing its therapeutic and prophylactic properties. The resulting mixture can be used in the development of functional products. The result was also identified and evaluated by physical and chemical quality indicators, the content of vitamin E, and the concentration of ions of copper (Cu), iron (Fe), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), as well as mercury (Hg).

Keywords: vegetable oil, sunflower, safflower, linseed, mixture, fatty acid composition, heavy metals

Procedia PDF Downloads 163
357 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles

Authors: I. Graur, V. Bria, C. Muntenita

Abstract:

Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.

Keywords: epoxy, friction coefficient, organic powder, pine needles

Procedia PDF Downloads 150
356 The Effect of SIO2 Addition on the Formation and Superconducting Properties of BI2SR2CACU2O8+D System

Authors: N. Boussouf, M. F. Mosbah, M.Hamel, S. Menassel

Abstract:

SiO2 particles were inserted (added) into Bi2Sr2CaCu2O8+d precursor powders in various weight fractions. The influence of Si addition to the Bi2212 system on its phase formation, microstructure and transport properties is investigated. Samples are characterized by means of X ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDX), magnetic AC susceptibility and resistivity measurements. For 1% of added Si, the results showed an increase of the apparent superconducting volume fraction. All the samples doped with Si contained a majority fraction of the high TC superconducting Bi2212 phase. SEM observation showed that the average grain size of the Si added samples increased more than that of the sample without Si. From resistivity measurement the Tconset was found to be increased by 7 K for 1% and 5% of added Si compared to the pure sample.

Keywords: superconductors, Bi2212, doping, SiO2 particles

Procedia PDF Downloads 216
355 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 438
354 An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent

Authors: Aylin Sahin, Recep Artir, Mustafa Kara

Abstract:

Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures.

Keywords: foam glass, foaming, waste glass, silicon carbide

Procedia PDF Downloads 352
353 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: nanoparticles, thermite reaction, combustion wave, numerical modeling

Procedia PDF Downloads 366
352 Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C.

Keywords: ceramic-metal, composites, powder metallurgy, sintering

Procedia PDF Downloads 444
351 Improved Dielectric Properties of CaCu₃Ti₄O₁₂ by Calcination at Different Temperatures

Authors: Lovepreet Kaur Dhugga, Dwijendra P. Singh

Abstract:

Calcium copper titanate (CCTO) was synthesized via the sol-gel auto-combustion method. The precursor was calcined at 800°C and 1000°C for 6 hours providing brown-coloured powders, which were pelletized and sintered at 1000°C for 12 hrs to determine their dielectric behaviour in the frequency range (100Hz-10MHz) at room temperature. The dielectric constant(εr) and loss tangent (tanδ) has been found to be ~ 6153 and 0.5 for 800°C and ~ 5504 and 0.2 for 1000°C respectively, at frequency 1kHz. Microstructure study revealed maximum grain growth occurs in sample calcined at 800°C, responsible for its high dielectric constant. Phase identification of CaCu₃Ti₄O₁₂ has been carried out through X-ray diffraction. It can be used in various electronic applications as it shows large εᵣ and low tanδ values over a wide frequency spectrum, including energy storage devices, microwave shielding, and sensors.

Keywords: calcium copper titanate, dielectric behaviour, microstructure, X-ray diffraction

Procedia PDF Downloads 48
350 Economic and Ecological Implications in Agricultural Production Within the Strong and Weak Sustainability Framework

Authors: Mauricio Quintero Angel, Andrés A. Duque Nivia, Carlos H. Fajardo Toro

Abstract:

This paper analyzes two approaches of sustainability, the weak and strong, considering a case of study of oil palm production for an industry of biodegradable detergent. In this case, a company demand the oil palm as the active element for washing and through its trademark aims to supply 10% of the Colombian market of washing powders. Under each approach the economic and ecological implications of the palm oil production and especially the implications for crop management are described. The crop production under the weak sustainability implies plantations, intensive use of agrochemicals and the inclusion of new areas of cultivation as the market grows. Under the strong sustainability the production system is limited by the productive vocation of the ecosystem, so that new approaches and creativity for making viable the nature conservancy and the business development are require.

Keywords: agriculture, environmental impacts, oil palm, strong sustainability, weak sustainability

Procedia PDF Downloads 402
349 Effect of Cr2O3 on Mechanical Properties of Aluminum Produced Powder Metallurgy

Authors: Yasin Akgul, Fazil Husem, Memis Isik

Abstract:

In this study, effect of content of chromium (III) oxide on production of Al/Cr203 alloys were investigated. Experimental procedure was started with mixturing of powders in the presence of absolute ethanol, vacuum distillation technique was used for evaporation, by ultrasonic bath and mechanic stirrer. Pressing procedure was achieved by hydrolic press that has 100 tons forcing for production of 25 mm diameter compact green billets. Green bodies were sintered at 600 °C in argon atmosphere. Scanning electron microscope (SEM) analysis for characterization of microstructure, compression test for determination of strength and Vickers test for measuring of hardness of sintered billets were done. End of the study is concluded that, enhancement of physical and mechanical properties is observed by increasing content of chromium (III) oxide.

Keywords: aluminium, chromium (III) oxide, powder metallurgy, sintering

Procedia PDF Downloads 212
348 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System

Authors: Abbas Hani, Maryam Jassasizadeh

Abstract:

The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.

Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark

Procedia PDF Downloads 143
347 Development of Long and Short Range Ordered Domains in a High Specific Strength Steel

Authors: Nikhil Kumar, Aparna Singh

Abstract:

Microstructural development when annealed at different temperatures in a high aluminum and manganese light weight steel has been examined. The FCC matrix of the manganese (Mn)-rich and nickel (Ni)-rich areas in the studied Fe-Mn-Al-Ni-C-light weight steel have been found to contain anti phase domains. In the Mn-rich region short order range of domains manifested by the diffuse scattering in the electron diffraction patterns was observed. Domains in the Ni-rich region were found to be arranged periodically validated through lattice imaging. The nature of these domains can be tuned with annealing temperature resulting in profound influence in the mechanical properties.

Keywords: Anti-phase domain boundaries, BCC, FCC, Light Weight Steel

Procedia PDF Downloads 117
346 Recrystallization Behavior and Microstructural Evolution of Nickel Base Superalloy AD730 Billet during Hot Forging at Subsolvus Temperatures

Authors: Marcos Perez, Christian Dumont, Olivier Nodin, Sebastien Nouveau

Abstract:

Nickel superalloys are used to manufacture high-temperature rotary engine parts such as high-pressure disks in gas turbine engines. High strength at high operating temperatures is required due to the levels of stress and heat the disk must withstand. Therefore it is necessary parts made from materials that can maintain mechanical strength at high temperatures whilst remain comparatively low in cost. A manufacturing process referred to as the triple melt process has made the production of cast and wrought (C&W) nickel superalloys possible. This means that the balance of cost and performance at high temperature may be optimized. AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with reported superior service properties around 700°C when compared to Inconel 718 and several other alloys. The cast ingot is converted into billet during either cogging process or open die forging. The semi-finished billet is then further processed into its final geometry by forging, heat treating, and machining. Conventional ingot-to-billet conversion is an expensive and complex operation, requiring a significant amount of steps to break up the coarse as-cast structure and interdendritic regions. Due to the size of conventional ingots, it is difficult to achieve a uniformly high level of strain for recrystallization, resulting in non-recrystallized regions that retain large unrecrystallized grains. Non-uniform grain distributions will also affect the ultrasonic inspectability response, which is used to find defects in the final component. The main aim is to analyze the recrystallization behavior and microstructural evolution of AD730 at subsolvus temperatures from a semi-finished product (billet) under conditions representative of both cogging and hot forging operations. Special attention to the presence of large unrecrystallized grains was paid. Double truncated cones (DTCs) were hot forged at subsolvus temperatures in hydraulic press, followed by air cooling. SEM and EBSD analysis were conducted in the as-received (billet) and the as-forged conditions. AD730 from billet alloy presents a complex microstructure characterized by a mixture of several constituents. Large unrecrystallized grains present a substructure characterized by large misorientation gradients with the formation of medium to high angle boundaries in their interior, especially close to the grain boundaries, denoting inhomogeneous strain distribution. A fine distribution of intragranular precipitates was found in their interior, playing a key role on strain distribution and subsequent recrystallization behaviour during hot forging. Continuous dynamic recrystallization (CDRX) mechanism was found to be operating in the large unrecrystallized grains, promoting the formation intragranular DRX grains and the gradual recrystallization of these grains. Evidences that hetero-epitaxial recrystallization mechanism is operating in AD730 billet material were found. Coherent γ-shells around primary γ’ precipitates were found. However, no significant contribution to the overall recrystallization during hot forging was found. By contrast, strain presents the strongest effect on the microstructural evolution of AD730, increasing the recrystallization fraction and refining the structure. Regions with low level of deformation (ε ≤ 0.6) were translated into large fractions of unrecrystallized structures (strain accumulation). The presence of undissolved secondary γ’ precipitates (pinning effect), prior to hot forging operations, could explain these results.

Keywords: AD730 alloy, continuous dynamic recrystallization, hot forging, γ’ precipitates

Procedia PDF Downloads 180
345 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition

Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova

Abstract:

This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.

Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy

Procedia PDF Downloads 25
344 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics

Authors: Geraldine Giraldo

Abstract:

In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.

Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic

Procedia PDF Downloads 46
343 Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Authors: Kanchan Maji, Debasmita Pani, Sudip Dasgupta

Abstract:

Calcium phosphate cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve its mechanical strength. Here we study the setting behaviour of Si-doped and un-doped alpha tri-calcium phosphate (α-TCP) based CPC and its reinforcement with the addition of E-glass fibre. Alpha tri-calcium phosphate powders were prepared by solid state sintering of CaCO3, CaHPO4 and tetra ethyl ortho silicate (TEOS) was used as silicon source to synthesise Si doped α-TCP powders. Alpha tri-calcium phosphate based CPC hydrolyzes to form hydroxyapatite (HA) crystals having excellent osteoconductivity and bone-replacement capability thus self-hardens through the entanglement of HA crystals. Setting time, phase composition, hydrolysis conversion rate, microstructure, and diametral tensile strength (DTS) of un-doped CPC and Si-doped CPC were studied and compared. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9-432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. The intensities of the α-TCP peaks of (201) and (161) at 2θ of 22.2°and 24.1° decreased when the time of immersion of CPC in SBF increased from 0 hours to 10 days, due to its transformation into HA. As Si incorporation in the crystal lattice stabilised the TCP phase, Si doped CPC showed a little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. This lower porosity and greater compactness in the microstructure attributes to greater DTS values observed in Si-doped CPC. E-glass fibres of the average diameter of 12 μm were cut into approximately 1 mm in length and immersed in SBF to deposit carbonated apatite on its surface. This was performed to promote HA crystal growth and entanglement along the fibre surface to promote stronger interface between dispersed E-glass fibre and CPC matrix. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resist the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its bioactivity.

Keywords: Calcium phosphate cement, biocompatibility, e-glass fibre, diametral tensile strength

Procedia PDF Downloads 326
342 Some Investigations of Primary Slurry Used for Production of Ceramic Shells

Authors: Balwinder Singh

Abstract:

In the current competitive environment, casting industry has several challenges such as production of intricate castings, near net shape castings, decrease lead-time from product design to production, improved casting quality and to control costs. The raw materials used to make ceramic shell play an important role in determining the overall final ceramic shell characteristics. In this work, primary slurries were formulated using various combinations of zircon flour, fused silica and aluminosilicate powders as filler, colloidal silica as binder along with wetting and antifoaming agents (Catalyst). Taguchi’s parameter design strategy has been applied to investigate the effect of primary slurry parameters on the viscosity of the slurry and primary coating of shell. The result reveals that primary coating with low viscosity slurry has produced a rough surface of the shell due to stucco penetration.

Keywords: ceramic shell, primary slurry, filler, slurry viscosity, surface roughness

Procedia PDF Downloads 456
341 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 222
340 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces

Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala

Abstract:

It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.

Keywords: particle dispersion, capillary force, viscous drag, oscillations

Procedia PDF Downloads 348
339 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 423
338 CuFeOx-Based Nano-Rose Electrocatalysts for Oxygen Evolution Reaction

Authors: Hamad Almohamadi, Nabeel H. Alharthi, Abdulrahman Aljabri

Abstract:

In this study, two-dimensional CuFeOx is deposited on nickel foam for the fabrication of electrocatalyst for oxygen evolution reaction (OER). The in-situ hydrothermal synthesis of CuFeOx in presence of aloe vera extract was found to yield unique nano-rose-like morphology which aided to improve the electrochemical surface area of the electrode. The phytochemical assisted synthesis of CuFeOx using 75% aloe vera extract resulted in improved OER electrocatalytic performance by attaining the overpotential of 310 mV for 50 mA cm−2 and 410 mV for 100 mA cm−2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, thus proving to be prospective electrode material for efficient OER in electrochemical water splitting.

Keywords: water splitting, phytochemicals, oxygen evaluation reaction, Tafel's slope, stability

Procedia PDF Downloads 94
337 Selective Conversion of Biodiesel Derived Glycerol to 1,2-Propanediol over Highly Efficient γ-Al2O3 Supported Bimetallic Cu-Ni Catalyst

Authors: Smita Mondal, Dinesh Kumar Pandey, Prakash Biswas

Abstract:

During past two decades, considerable attention has been given to the value addition of biodiesel derived glycerol (~10wt.%) to make the biodiesel industry economically viable. Among the various glycerol value-addition methods, hydrogenolysis of glycerol to 1,2-propanediol is one of the attractive and promising routes. In this study, highly active and selective γ-Al₂O₃ supported bimetallic Cu-Ni catalyst was developed for selective hydrogenolysis of glycerol to 1,2-propanediol in the liquid phase. The catalytic performance was evaluated in a high-pressure autoclave reactor. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. Experimental results demonstrated that bimetallic copper-nickel catalyst was more active and selective to 1,2-PDO as compared to monometallic catalysts due to bifunctional behavior. To verify the effect of calcination temperature on the formation of Cu-Ni mixed oxide phase, the calcination temperature of 20wt.% Cu:Ni(1:1)/Al₂O₃ catalyst was varied from 300°C-550°C. The physicochemical properties of the catalysts were characterized by various techniques such as specific surface area (BET), X-ray diffraction study (XRD), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The BET surface area and pore volume of the catalysts were in the range of 71-78 m²g⁻¹, and 0.12-0.15 cm³g⁻¹, respectively. The peaks at the 2θ range of 43.3°-45.5° and 50.4°-52°, was corresponded to the copper-nickel mixed oxidephase [JCPDS: 78-1602]. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. The crystallite size decreased with increasing the calcination temperature up to 450°C. Further, the crystallite size was increased due to agglomeration. Smaller crystallite size of 16.5 nm was obtained for the catalyst calcined at 400°C. Total acidic sites of the catalysts were determined by NH₃-TPD, and the maximum total acidic of 0.609 mmol NH₃ gcat⁻¹ was obtained over the catalyst calcined at 400°C. TPR data suggested the maximum of 75% degree of reduction of catalyst calcined at 400°C among all others. Further, 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst calcined at 400°C exhibited highest catalytic activity ( > 70%) and 1,2-PDO selectivity ( > 85%) at mild reaction condition due to highest acidity, highest degree of reduction, smallest crystallite size. Further, the modified Power law kinetic model was developed to understand the true kinetic behaviour of hydrogenolysis of glycerol over 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst. Rate equations obtained from the model was solved by ode23 using MATLAB coupled with Genetic Algorithm. Results demonstrated that the model predicted data were very well fitted with the experimental data. The activation energy of the formation of 1,2-PDO was found to be 45 kJ mol⁻¹.

Keywords: glycerol, 1, 2-PDO, calcination, kinetic

Procedia PDF Downloads 125
336 Antibacterial Activity of Nickel Oxide Composite Films with Chitosan/Polyvinyl Chloride/Polyethylene Glycol

Authors: Ali Garba Danjani, Abdulrasheed Halliru Usman

Abstract:

Due to the rapidly increasing biological applications and antibacterial properties of versatile chitosan composites, the effects of chitosan/polyvinyl chloride composites film were investigated. Chitosan/polyvinyl chloride films were prepared by a casting method. Polyethylene glycol (PEG) was used as a plasticizer in the blending stage of film preparation. Characterizations of films were done by Scanning Electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA). Chitosan composites incorporation enhanced the antibacterial activity of chitosan films against Escherichia coli and Staphylococcus aureus. The composite film produced is proposed as packaging or coating material because of its flexibility, antibacterial efficacy, and good mechanical strength.

Keywords: chitosan, polymeric nanocomposites, antibacterial activity, polymer blend

Procedia PDF Downloads 75
335 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model

Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji

Abstract:

An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.

Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models

Procedia PDF Downloads 85
334 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia

Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan

Abstract:

The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).

Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)

Procedia PDF Downloads 286
333 Corrosion Investigation of Superalloys, Molybdenum and TZM in Chloride Molten Salts

Authors: Craig Jantzen, Tim Abram, Dirk Engelberg, Hugues Lambert, Daniel Cooper

Abstract:

Molten salts are of high interest for use as coolants in nuclear reactors due to favourable high temperature and thermodynamic properties. The corrosive behaviour of molten salts however pose a materials integrity challenge. Three Ni / Ni-Fe based and two Mo based alloys have been exposed to molten eutectics (LiCl-KCl at 59.5:40.5 mol% and KCl-MgCl2 at 68:32 mol%) at 600°C and 800°C for durations up to 500hrs. Corrosion was observed to preferentially attack alloy constituents in order of their reactivity, with chromium the most vulnerable and depleted element. Alloy weight-loss per unit area was calculated to give linear corrosion rates, discounting any initial rapid corrosion of impurities. Further analysis was carried out using ICP-MS, SEM and EDX techniques to give a more detailed view of the corrosion mechanisms.

Keywords: molten salt, salt, corrosion, high temperature, licl, KCL, MgCl, molybdenum, nickel, superalloys

Procedia PDF Downloads 419
332 Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures

Authors: Naresh Radaliyagoda, Nigel M. Jennett, Rong Lan, David Parfitt

Abstract:

A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures.

Keywords: nano-indentation, size effect, multilayers, electrodeposition

Procedia PDF Downloads 135