Search results for: convolutional long short-term memory
6973 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 656972 Intelligent Materials and Functional Aspects of Shape Memory Alloys
Authors: Osman Adiguzel
Abstract:
Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures
Procedia PDF Downloads 4266971 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1316970 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product
Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth
Abstract:
Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations
Procedia PDF Downloads 866969 Working Memory and Audio-Motor Synchronization in Children with Different Degrees of Central Nervous System's Lesions
Authors: Anastasia V. Kovaleva, Alena A. Ryabova, Vladimir N. Kasatkin
Abstract:
Background: The most simple form of entrainment to a sensory (typically auditory) rhythmic stimulus involves perceiving and synchronizing movements with an isochronous beat with one level of periodicity, such as that produced by a metronome. Children with pediatric cancer usually treated with chemo- and radiotherapy. Because of such treatment, psychologists and health professionals declare cognitive and motor abilities decline in cancer patients. The purpose of our study was to measure working memory characteristics with association with audio-motor synchronization tasks, also involved some memory resources, in children with different degrees of central nervous system lesions: posterior fossa tumors, acute lymphoblastic leukemia, and healthy controls. Methods: Our sample consisted of three groups of children: children treated for posterior fossa tumors (PFT-group, n=42, mean age 12.23), children treated for acute lymphoblastic leukemia (ALL-group, n=11, mean age 11.57) and neurologically healthy children (control group, n=36, mean age 11.67). Participants were tested for working memory characteristics with Cambridge Neuropsychological Test Automated Battery (CANTAB). Pattern recognition memory (PRM) and spatial working memory (SWM) tests were applied. Outcome measures of PRM test include the number and percentage of correct trials and latency (speed of participant’s response), and measures of SWM include errors, strategy, and latency. In the synchronization tests, the instruction was to tap out a regular beat (40, 60, 90 and 120 beats per minute) in synchrony with the rhythmic sequences that were played. This meant that for the sequences with an isochronous beat, participants were required to tap into every auditory event. Variations of inter-tap-intervals and deviations of children’s taps from the metronome were assessed. Results: Analysis of variance revealed the significant effect of group (ALL, PFT and control) on such parameters as short-term PRM, SWM strategy and errors. Healthy controls demonstrated more correctly retained elements, better working memory strategy, compared to cancer patients. Interestingly that ALL patients chose the bad strategy, but committed significantly less errors in SWM test then PFT and controls did. As to rhythmic ability, significant associations of working memory were found out only with 40 bpm rhythm: the less variable were inter-tap-intervals of the child, the more elements in memory he/she could retain. The ability to audio-motor synchronization may be related to working memory processes mediated by the prefrontal cortex whereby each sensory event is actively retrieved and monitored during rhythmic sequencing. Conclusion: Our results suggest that working memory, tested with appropriate cognitive methods, is associated with the ability to synchronize movements with rhythmic sounds, especially in sub-second intervals (40 per minute).Keywords: acute lymphoblastic leukemia (ALL), audio-motor synchronization, posterior fossa tumor, working memory
Procedia PDF Downloads 3006968 A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases.Keywords: packet loss probability estimation, finite memory filter, infinite memory filter, Kalman filter
Procedia PDF Downloads 6726967 Examining How the Institutional Policies Affect LGBT Residents Living in Long-Term Care
Authors: Peter Brink
Abstract:
Much of the research examining sexuality in long-term care focus on individual experiences, specifically their past, present, and future lived experiences. We know little about long-term care home policies, how they relate to the LGBT community, or how accommodating long-term care homes are to the LGBT+ community. In many ways, residents who identify as LGBT+ have been invisible in long-term care homes. Up until the not-to-distant past, homosexuality was illegal, and discrimination was acceptable. Canada’s LGBT population has also suffered because of the HIV/AIDS epidemic. For these and other reasons, members of the LGBT community might resist entering long-term care or attempt to keep their sexuality secret. The goal of any long-term care home is to be a welcoming place, to display signs of inclusion, and to help residents and staff feel that they are embraced. From the perspective of the long-term care home, it is possible that many of these facilities do not necessarily see the need to mention gender identity or sexual orientation in their welcoming materials. However, from the perspective of the invisible minority, it may be important that these homes be more than just welcoming. This study examined the role of institutional policies in long-term care for residents who identify as LGBT.Keywords: long-term care, LGBT, HIV/AIDS, policy
Procedia PDF Downloads 1156966 Nutrient Foramina in the Shaft of Long Bones of Upper Limb
Authors: Madala Venkateswara Rao
Abstract:
The major blood supply to the long bones occurs through the nutrient arteries, which enters through the nutrient foramina. This is the study of nutrient Foramina in the shaft of upper limb long bones taken from the department of Anatomy at Narayana medical college nellore. Nutrient foramina play an important role in nutrition and growth of the bones. Most of the nutrient arteries follow the rule, 'to the elbow I go, from the knee I flee' but they are very variable in position. Their number, location, direction & its importance in the growing end of long bones were studied in the long bones of upper limb. The present study has variations in the position & direction of long bones especially in the radius & ulna, as most of the nutrient foramina are found in anterior surface of upper 1/3rd and middle 1/3rd of these bones. The study of nutrient foramina is not only of academic interest but also in medico-legal practice in relation to their position. Careful observation has also been made on the position of nutrient foramina in relation to upper end of long bones. This study also gives importance of length long bones to know the height of an individual. With the knowledge of variations in the nutrient foramen, placement of internal fixation devices can be appropriately done.Keywords: nutrient artery, nutrient foramina, shaft of long bones, upper limb bones
Procedia PDF Downloads 5026965 The Digital Living Archive and the Construction of a Participatory Cultural Memory in the DARE-UIA Project: Digital Environment for Collaborative Alliances to Regenerate Urban Ecosystems in Middle-Sized Cities
Authors: Giulia Cardoni, Francesca Fabbrii
Abstract:
Living archives perform a function of social memory sharing, which contributes to building social bonds, communities, and identities. This potential lies in the ability to live archives to put together an archival function, which allows the conservation and transmission of memory with an artistic, performative and creative function linked to the present. As part of the DARE-UIA (Digital environment for collaborative alliances to regenerate urban ecosystems in middle-sized cities) project the creation of a living digital archive made it possible to create a narrative that would consolidate the cultural memory of the Darsena district of the city of Ravenna. The aim of the project is to stimulate the urban regeneration of a suburban area of a city, enhancing its cultural memory and identity heritage through digital heritage tools. The methodology used involves various digital storytelling actions necessary for the overall narrative using georeferencing systems (GIS), storymaps and 3D reconstructions for a transversal narration of historical content such as personal and institutional historical photos and to enhance the industrial archeology heritage of the neighborhood. The aim is the creation of an interactive and replicable narrative in similar contexts to the Darsena district in Ravenna. The living archive, in which all the digital contents are inserted, finds its manifestation towards the outside in the form of a museum spread throughout the neighborhood, making the contents usable on smartphones via QR codes and totems inserted on-site, creating thematic itineraries spread around the neighborhood. The construction of an interactive and engaging digital narrative has made it possible to enhance the material and immaterial heritage of the neighborhood by recreating the community that has historically always distinguished it.Keywords: digital living archive, digital storytelling, GIS, 3D, open-air museum, urban regeneration, cultural memory
Procedia PDF Downloads 1066964 Translation And Cultural Adaptation Of The Rivermead Behavioural Memory Test–3rd Edition Into the Arabic Language
Authors: Mai Alharthy, Agnes Shiel, Hynes Sinead
Abstract:
Objectives: The objectives of the study are to translate and culturally adapt the RBMT-3 to be appropriate for use within an Arabic-speaking population and to achieve maximum equivalency between the translated and original versions and to evaluate the psychometric properties of the Arabic version of the RBMT-3. Participants' numbers are 16 (10 females and 6 males). All participants are bilingual speakers of Arabic and English, above 18 years old and with no current nor past memory impairment. Methods: The study was conducted in two stages: Translation and cultural adaptation stage: Forward and backward translations were completed by professional translators. Five out of the 14 RBMT-3 subtests required cultural adaptations. Half of the faces in the face recognition subtests were replaced with Arabic faces by a professional photographer. Pictures that are irrelevant to the Arabic culture in the picture recognition subtests were replaced. Names, story and orientations subtests were also adapted to suit the Arabic culture. An expert committee was formed to compare the translated and original versions and to advise on further changes required for test materials. Validation of the Arabic RBMT-3- pilot: 16 Participants were tested on version 1 of the English version and the two versions of the Arabic RBMT-3 ( counterbalanced ). The assessment period was 6 weeks long, with two weeks gap between tests. All assessments took place in a quiet room in the National University of Ireland Galway. Two qualified occupational therapists completed the assessments. Results: Wilcox signed-rank test was used to compare between subtest scores. Significant differences were found in the story, orientation and names subtests between the English and Arabic versions. No significant differences were found in subtests from both Arabic versions except for the story subtest. Conclusion: The story and orientation subtests should be revised by the expert committee members to make further adaptations. The rest of the Arabic RBMT-3 subtests are equivalent to the subtests of the English version. The psychometric properties of the Arabic RBMT-3 will be investigated in a larger Arabic-speaking sample in Saudi Arabia. The outcome of this research is to provide clinicians and researchers with a reliable tool to assess memory problems in Arabic speaking population.Keywords: memory impairment, neuropsychological assessment, cultural adaptation, cognitive assessment
Procedia PDF Downloads 2566963 Reminiscence Bump in Autobiographical Memory of Freedom Fighters in Bangladesh
Authors: Eamin Zahan Heanoy, Asheek Mohammad Shimul
Abstract:
The purpose of the present study was to address theoretical issues of reminiscence bump in autobiographical memory using the freedom fighters of Bangladesh as participants. It was assumed that they had a lot of negative memories during the liberation war in 1971 and those events would reflect the construction of reminiscence bump. Three hundred and twenty (320) freedom fighters were selected using mixed method (purposive and random) sampling technique. The freedom fighters were taken from 10 randomly chosen districts of 64. The participants recalled and dated autobiographical memories from across the lifespan. The age of the participants was between 50 to 80+ years. Memories were encoded at the time of the age when the events occurred. As expected the reminiscence bump, preferential recall of memories from second and third decade was observed. Results indicate that the bump for the participants was found 16 to 26 years. And most remarkably, they recalled most of the memories from 1971, the liberation war. Different retrieval curve has been found for male and female participants. The results have been discussed in the light of recent developments in reminiscence bump research.Keywords: autobiographical memory, freedom fighters, liberation war, reminiscence bump
Procedia PDF Downloads 2336962 Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking
Authors: Ameni Mahmoudi, Manel Troudi, Paolo Bondavalli, Nabil Sghaier
Abstract:
In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking.Keywords: charge storage, thin-film SWCNT based transistors, C-V hysteresis, memory effect, trapping and detrapping charges, stored charge density, the carrier retention time
Procedia PDF Downloads 806961 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4386960 Monitoring Memories by Using Brain Imaging
Authors: Deniz Erçelen, Özlem Selcuk Bozkurt
Abstract:
The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons
Procedia PDF Downloads 856959 Encounters with the Other Sisters of the Past: the Role of Colonial History and Memory in the Adjustment of the Postcolonial Female Identity
Authors: Fatiha Kaïd Berrahal, Nassima Kaïd, Djihad Affaf Selt
Abstract:
The present paper is a comparative analysis of the Algerian writer Assia Djebar’s women of Algiers in Their Apartment (1982) and the Anglo-Egyptian Ahdaf Soueif’s The Map of Love (1999) foregrounded on the female protagonists’ painfully common colonial and patriarchal experiences, though in different geographical regions of North Africa. This study raises questions pertaining, first, to the emerging contemporary genre “Historiographic meta-fiction” in which the novels examined could be inscribed, then, the interplay of colonial history and personal memory that impinges on the development of the identity of the post-colonial female subject. As the novels alternate between the historical and the autobiographical, we currently seek to understand how it is pertinent and pressing for women to excavate the lost and occluded stories of the past for the adjustment of their present personal identities, which are undoubtedly an important part of the identity of a nation.Keywords: postcolonial feminism, islamic feminism, memory, histoirographic metafiction
Procedia PDF Downloads 6436958 The Emergence of Memory at the Nanoscale
Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann
Abstract:
Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.Keywords: memories, memdevices, memristors, nonequilibrium states
Procedia PDF Downloads 976957 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2616956 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly
Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto
Abstract:
Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau
Procedia PDF Downloads 766955 Memory-Guided Oculomotor Task in High School Football Players with ADHD, Post-Concussive Injuries, and Controls
Authors: B. McGovern, J. F. Luck, A. Gade, I. V. Lake, D. O’Connell, H. C. Cutcliffe, K. P. Shah, E. E. Ginalis, C. M. Lambert, N. Christian, J. R. Kait, A. W. Yu, C. P. Eckersley, C. R. Bass
Abstract:
Mild traumatic brain injury (mTBI) in the form of post-concussive injuries and attention deficit / hyperactivity disorder (ADHD) share similar cognitive impairments, including impaired working memory and executive function. The memory-guided oculomotor task separates working memory and inhibitory components to provide further information on the nature of these deficits in each pathology. Eleven subjects with ADHD, fifteen control subjects, and ten subjects with recent concussive injury were matched on age, gender, and education (all high school-age males). Eye movements were recorded during memory-guided oculomotor tasks with varying delays using EyeLink 1000 (SR Research). The percentage of premature saccades and the latency of correct response are the analyzed measures for response inhibition and working memory, respectively. No significant differences were found in latencies between controls subjects and subjects with ADHD or post-concussive injuries, in accordance with previous studies. Subjects with ADHD and post-concussive injuries both demonstrated a trend of increased percentages of premature saccades compared to control subjects in the same oculomotor task. This trend reached statistical significance between the post-concussive and control groups (p < 0.05). These findings support the primary nature of the executive function deficits in response inhibition in ADHD and mTBI. The interpretation of results is limited by the small sample size and the exploratory nature of the study. Further investigation into oculomotor performance differences in mTBI and ADHD may help in differentiating these pathologies in consequent diagnoses and provide insight into the interaction of these deficits in mTBI.Keywords: attention deficit / hyperactivity disorder (ADHD), concussion, diagnosis, oculomotor, pediatrics
Procedia PDF Downloads 2996954 A Review of Attractor Neural Networks and Their Use in Cognitive Science
Authors: Makenzy Lee Gilbert
Abstract:
This literature review explores the role of attractor neural networks (ANNs) in modeling psychological processes in artificial and biological systems. By synthesizing research from dynamical systems theory, psychology, and computational neuroscience, the review provides an overview of the current understanding of ANN function in memory formation, reinforcement, retrieval, and forgetting. Key mathematical foundations, including dynamical systems theory and energy functions, are discussed to explain the behavior and stability of these networks. The review also examines empirical applications of ANNs in cognitive processes such as semantic memory and episodic recall, as well as highlighting the hippocampus's role in pattern separation and completion. The review addresses challenges like catastrophic forgetting and noise effects on memory retrieval. By identifying gaps between theoretical models and empirical findings, it highlights the interdisciplinary nature of ANN research and suggests future exploration areas.Keywords: attractor neural networks, connectionism, computational modeling, cognitive neuroscience
Procedia PDF Downloads 286953 Application of Shape Memory Alloy as Shear Connector in Composite Bridges: Overview of State-of-the-Art
Authors: Apurwa Rastogi, Anant Parghi
Abstract:
Shape memory alloys (SMAs) are memory metals with a high calibre to outperform as a civil construction material. They showcase novel functionality of undergoing large deformations and self-healing capability (pseudoelasticity) that leads to its emerging applications in a variety of areas. In the existing literature, most of the studies focused on the behaviour of SMA when used in critical regions of the smart buildings/bridges designed to withstand severe earthquakes without collapse and also its various applications in retrofitting works. However, despite having high ductility, their uses as construction joints and shear connectors in composite bridges are still unexplored in the research domain. This article presents to gain a broad outlook on whether SMAs can be partially used as shear connectors in composite bridges. In this regard, existing papers on the characteristics of shear connectors in the composite bridges will be discussed thoroughly and matched with the fundamental characteristics and properties of SMA. Since due to the high strength, stiffness, and ductility phenomena of SMAs, it is expected to be a good material for the shear connectors in composite bridges, and the collected evidence encourages the prior scrutiny of its partial use in the composite constructions. Based on the comprehensive review, important and necessary conclusions will be affirmed, and further emergence of research direction on the use of SMA will be discussed. This opens the window of new possibilities of using smart materials to enhance the performance of bridges even more in the near future.Keywords: composite bridges, ductility, pseudoelasticity, shape memory alloy, shear connectors
Procedia PDF Downloads 1906952 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2106951 Cellular Automata Using Fractional Integral Model
Authors: Yasser F. Hassan
Abstract:
In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.Keywords: fractional integral, cellular automata, memory, learning
Procedia PDF Downloads 4126950 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1866949 Constructing Digital Memory for Chinese Ancient Village: A Case on Village of Gaoqian
Authors: Linqing Ma, Huiling Feng, Jihong Liang, Yi Qian
Abstract:
In China, some villages have survived in the long history of changes and remain until today with their unique styles and featured culture developed in the past. Those ancient villages, usually aged for hundreds or thousands of years, are the mirror for traditional Chinese culture, especially the farming-studying culture represented by the Confucianism. Gaoqian, an ancient village with a population of 3,000 in Zhejiang province, is such a case. With a history dating back to Yuan Dynasty, Gaoqian Village has 13 well-preserved traditional Chinese houses with a courtyard, which were built in the Ming and Qing Dynasty. It is a fine specimen to study traditional rural China. In China, some villages have survived in the long history of changes and remain until today with their unique styles and featured culture developed in the past. Those ancient villages, usually aged for hundreds or thousands of years, are the mirror for traditional Chinese culture, especially the farming-studying culture represented by the Confucianism. Gaoqian, an ancient village with a population of 3,000 in Zhejiang province, is such a case. With a history dating back to Yuan Dynasty, Gaoqian Village has 13 well-preserved traditional Chinese houses with a courtyard, which were built in the Ming and Qing Dynasty. It is a fine specimen to study traditional rural China. Then a repository for the memory of the Village will be completed by doing arrangement and description for those multimedia resources such as texts, photos, videos and so on. Production of Creative products with digital technologies is also possible based a thorough understanding of the culture feature of Gaoqian Village using research tools for literature and history studies and a method of comparative study. Finally, the project will construct an exhibition platform for the Village and its culture by telling its stories with completed structures and treads.Keywords: ancient villages, digital exhibition, multimedia, traditional culture
Procedia PDF Downloads 5876948 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis
Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli
Abstract:
Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.Keywords: hippocampal plasticity, learning ability, memory, parental exercise
Procedia PDF Downloads 2096947 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 886946 An Educational Application of Online Games for Learning Difficulties
Authors: Maria Margoudi, Zacharoula Smyraniou
Abstract:
The current paper presents the results of a conducted case study, which was part of the author’s master thesis. During the past few years the number of children diagnosed with Learning Difficulties has drastically augmented and especially the cases of ADHD (Attention Deficit Hyperactivity Disorder). One of the core characteristics of ADHD is a deficit in working memory functions. The review of the literature indicates a plethora of educational software that aim at training and enhancing the working memory. Nevertheless, in the current paper, the possibility of using for the same purpose free, online games will be explored. Another issue of interest is the potential effect of the working memory training to the core symptoms of ADHD. In order to explore the abovementioned research questions, three digital tests are employed, all of which are developed on the E-slate platform by the author, in order to check the level of ADHD’s symptoms and to be used as diagnostic tools, both in the beginning and in the end of the case study. The tools used during the main intervention of the research are free online games for the training of working memory. The research and the data analysis focus on the following axes: a) the presence and the possible change in two of the core symptoms of ADHD, attention and impulsivity and b) a possible change in the general cognitive abilities of the individual. The case study was conducted with the participation of a thirteen year-old, female student, diagnosed with ADHD, during after-school hours. The results of the study indicate positive changes both in the levels of attention and impulsivity. Therefore we conclude that the training of working memory through the use of free, online games has a positive impact on the characteristics of ADHD. Finally, concerning the second research question, the change in general cognitive abilities, no significant changes were noted.Keywords: ADHD, attention, impulsivity, online games
Procedia PDF Downloads 3586945 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1626944 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 42