Search results for: bacterial inactivation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1193

Search results for: bacterial inactivation

863 Clinical, Bacteriological and Histopathological Aspects of First-Time Pyoderma in a Population of Iranian Domestic Dogs: A Retrospective Study (2012-2017)

Authors: Shaghayegh Rafatpanah, Mehrnaz Rad, Ahmad Reza Movassaghi, Javad Khoshnegah

Abstract:

The purpose of the present study was to investigate the prevalence of isolation, antimicrobial susceptibility and ERIC-PCR typing of staphylococci species from dogs with pyoderma. The study animals were 61 clinical cases of Iranian domestic dogs with the first-time pyoderma. The prevalence of pyoderma was significantly higher amongst adult (odds Ratio: 0.21; p=0.001) large breed (odds Ratio: 2.42; p=0.002)dogs. There was no difference in prevalence of pyoderma in male and females (odds Ratio: 1.27; p= 0.337). The 'head, face and pinna' and 'trunk' were the most affected lesion regions, each with 19 cases (26.76%). An identifiable underlying disease was present in 52 (85.24%) of the dogs. Bacterial species were recovered from 43 of the 61 (70.49%) studied animals. No isolates were recovered from 18 studied dogs. The most frequently recovered bacterial genus was Staphylococcus (32/43 isolates, 74.41%) including S. epidermidis (22/43 isolates, 51.16%), S. aureus (7/43 isolates, 16.27%) and S. pseudintermedius (3/43 isolates, 6.97%). Staphylococci species resistance was most commonly seen against amoxicillin (94.11%), penicillin (83.35%), and ampicillin (76.47%). Resistant to cephalexin and cefoxitin was 5.88% and 2.94%, respectively. A total of 27 of the staphylococci isolated (84.37 %) were resistant to at least one antimicrobial agent, and 19 isolates (59.37%) were resistant to three or more antimicrobial drugs. There were no significant differences in the prevalence of resistance between the staphylococci isolated from cases of superficial and deep pyoderma. ERIC-PCR results revealed 19 different patterns among 22 isolates of S. epidermidis and 7 isolates of S. aureus.

Keywords: dog, pyoderma, Staphylococcus, Staphylococcus epidermidis, Iran

Procedia PDF Downloads 180
862 Evaluation of Risk and the Beneficial Effects of Synthesized Nano Silver-Based Disinfectant on Poultry Mortality and Health

Authors: Indrajeet Kumar, Jayanta Bhattacharya

Abstract:

This study was evaluated for the potential use of nanosilver (nAg) as a disinfectant and antimicrobial growth promoter supplement for the poultry. The experiments were conducted in the Kangsabati river basin region, in West Medinipur district, West Bengal, India for six months. Two poultry farms were adopted for the experiment. The rural economy of this region from Jhargram to Barkola is heavily dependent on contract poultry farming. The water samples were collected from the water source of poultry farm which has been used for poultry drinking purpose. The bacteriological analysis of water sample revealed that the total bacterial count (total coliform and E. coli) were higher than the acceptable standards. The bacterial loads badly affected the growth performance and health of the poultry. For disinfection, a number of chemical compounds (like formaldehyde, calcium hypochloride, sodium hypochloride, and sodium bicarbonate) have been used in typical commercial formulations. However, the effects of all these chemical compounds have not been significant over time. As a part of our research-to-market initiative, we used nanosilver (nAg) formulation as a disinfectant. The nAg formulation was synthesized by hydrothermal technique and characterized by UV-visible, TEM, SEM, and EDX. The obtained results revealed that the mortality rate of poultry was reduced due to nAg formulation compared to the mortality rate of the negative control. Moreover, the income of the farmer family was increased by 10-20% due to less mortality and better health of the poultry.

Keywords: farm water, nanosilver, field application, and poultry performance

Procedia PDF Downloads 162
861 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage

Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem

Abstract:

Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.

Keywords: natural antioxidants, lipid oxidation, quality, camel meat

Procedia PDF Downloads 433
860 Bioinformatic Screening of Metagenomic Fosmid Libraries for Identification of Biosynthetic Pathways Derived from the Colombian Soils

Authors: María Fernanda Quiceno Vallejo, Patricia del Portillo, María Mercedes Zambrano, Jeisson Alejandro Triana, Dayana Calderon, Juan Manuel Anzola

Abstract:

Microorganisms from tropical ecosystems can be novel in terms of adaptations and conservation. Given the macrodiversity of Colombian ecosystems, it is possible that this diversity is also present in Colombian soils. Tropical soil bacteria could offer a potentially novel source of bioactive compounds. In this study we analyzed a metagenomic fosmid library constructed with tropical bacterial DNAs with the aim of understanding its underlying diversity and functional potential. 8640 clones from the fosmid library were sequenced by NANOPORE MiniOn technology, then analyzed with bioinformatic tools such as Prokka, AntiSMASH and Bagel4 in order to identify functional biosynthetic pathways in the sequences. The strains showed ample difference when it comes to biosynthetic pathways. In total we identified 4 pathways related to aryl polyene synthesis, 12 related to terpenes, 22 related to NRPs (Non ribosomal peptides), 11 related PKs (Polyketide synthases) and 7 related to RiPPs (bacteriocins). We designed primers for the metagenomic clones with the most BGCs (sample 6 and sample 2). Results show the biotechnological / pharmacological potential of tropical ecosystems. Overall, this work provides an overview of the genomic and functional potential of Colombian soil and sets the groundwork for additional exploration of tropical metagenomic sequencing.

Keywords: bioactives, biosyntethic pathways, bioinformatic, bacterial gene clusters, secondary metabolites

Procedia PDF Downloads 165
859 An Assessment of Nodulation and Nitrogen Fixation of Lessertia Frutescens Plants Inoculated with Rhizobial Isolates from the Cape Fynbos

Authors: Mokgadi Miranda Hlongwane, Ntebogeng Sharon Mokgalaka, Felix Dapare Dakora

Abstract:

Lessertia (L.) frutescens (syn. Sutherlandia frutescens) is a leguminous medicinal plant indigenous to South Africa. Traditionally, L. frutescens has been used to treat cancer, diabetes, epilepsy, fever, HIV, stomach problems, wounds and other ailments. This legume is endemic to the Cape fynbos, with large populations occurring wild and cultivated in the Cape Florist Region. Its widespread distribution in the Western Cape, Northern Cape, Eastern Cape and Kwazulu-Natal is linked to its increased use as a phytomedicine in the treatment of various diseases by traditional healers. The frequent harvesting of field plants for use as a medicine has made it necessary to undertake studies towards the conservation of Lessertia frutescens. As a legume, this species can form root nodules and fix atmospheric N₂ when in symbiosis with soil bacteria called rhizobia. So far, however, few studies (if any) have been done on the efficacy and diversity of native bacterial symbionts nodulating L. frutescens in South Africa. The aim of this project was to isolate and characterize L. frutescens-nodulating bacteria from five different locations in the Western Cape Province. This was done by trapping soil rhizobia using rhizosphere soil suspension to inoculate L. frutescens seedlings growing in sterilized sand and receiving sterile N-free Hoagland nutrient solution under glasshouse conditions. At 60 days after planting, root nodules were harvested from L. frutescens plants, surface-sterilized, macerated, and streaked on yeast mannitol agar (YMA) plates and incubated at 28 ˚C for observation of bacterial growth. The majority of isolates were slow-growers that took 6-14 days to appear on YMA plates. However, seven isolates were fast-growers, taking 2-4 days to appear on YMA plates. Single-colony cultures of the isolates were assessed for their ability to nodulate L. frutescens as a homologous host under glasshouse conditions. Of the 92 bacterial isolates tested, 63 elicited nodule formation on L. frutescens. Symbiotic effectiveness varied markedly between and among test isolates. There were also significant (p≤0.005) differences in nodulation, shoot biomass, photosynthetic rates, leaf transpiration and stomatal conductance of L. frutescens plants inoculated with the test isolates, which is an indication of their functional diversity.

Keywords: lessertia frutescens, nodulating, rhizobia, symbiotic effectiveness

Procedia PDF Downloads 193
858 The Ability of Organic Acids Production by Lactic Acid Bacteria in M17 Broth and Squid, Shrimp, Octopus, Eel Infusion Broth

Authors: Fatih Özogul, Sezen Özçeli̇k, Yesim Özogul

Abstract:

Lactic, acetic, succinic, propionic, formic and butyric acid production by lactic acid bacteria (LAB) were monitored in M17 broth (the control) and some fish (squid, shrimp, octopus, and eel) infusion broth by using HPLC method. There were significant differences in terms of lactic, acetic, succinic, propionic, formic and butyric acid production (p < 0.005) among bacterial strains. Acetic acid production was the lowest by LAB while succinic acid followed by propionic acid was synthesized at the highest levels. Lactic acid production ranged from 0 to 938 mg/L by all LAB strains in different infusion broth. The highest acetic acid production was found by Lb. acidophilus and Lb. delbrueckii subsp. lactic in octopus and shrimp infusion broth, with values of 872 and 674 mg/L, respectively while formic acid formation ranged from 1747 mg/L by Lb. acidophilus in octopus infusion broth to 69 mg/L by Lb. delbrueckii subsp. lactis in shrimp infusion broth. Propionic acid and butyric acid productions by St. thermophilus were 9852 and 3999 mg/L in shrimp infusion broth while Leu. mes. subsp. cremoris synthesized 312 and 9 mg/L of those organic acid in European squid infusion broth, respectively. Apparently, LAB strains had a great capability to generate succinic acid followed by propionic and butyric acid. In addition, other organic acid production differed significantly depending on bacterial strains and growth medium.

Keywords: Lactic acid bacteria , organic acid, HPLC analysis, growth medium

Procedia PDF Downloads 385
857 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial

Authors: Bhavana V. Mohite, Satish V. Patil

Abstract:

Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.

Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite

Procedia PDF Downloads 301
856 Antibacterial Hydrogels for Wound Care

Authors: Saba Atefyekta

Abstract:

Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound.

Keywords: antibacterial wound dressing, antimicrobial peptides, post-surgical wounds, infection

Procedia PDF Downloads 80
855 Phytochemical Evaluation and In-Vitro Antibacterial Activity of Ethanolic Extracts of Moroccan Lavandula x Intermedia Leaves and Flowers

Authors: Jamila Fliou, Federica Spinola, Ouassima Riffi, Asmaa Zriouel, Ali Amechrouq, Luca Nalbone, Alessandro Giuffrida, Filippo Giarratana

Abstract:

This study performed a preliminary evaluation of the phytochemical composition and in vitro antibacterial activity of ethanolic extracts of Lavandula x intermedia leaves and flowers collected in the Fez-Meknes region of Morocco. Phytochemical analyses comprised qualitative colourimetric determinations of alkaloids, anthraquinones, and terpenes and quantitative analysis of total polyphenols, flavonoids, and condensed tannins by UV spectrophotometer. Antibacterial activity was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against different ATCC bacterial strains. The phytochemical analysis showed a high amount of total polyphenols, flavonoids, and tannins in the leaf extract and a higher amount of terpenes based on colourimetric reaction than the flower extract. A positive colourimetric reaction for alkaloids and anthraquinones was detected for both extracts. The antibacterial activity of leaves and flower extract was not different against Gram-positive and Gram-negative strains (p<0.05). The results of the present study suggest the possible use of ethanolic extracts of L. x intermedia collected in the Fez-Meknes region of Morocco as a natural agent against bacterial pathogens.

Keywords: antimicrobial activity, Lavandula spp., lavender, lavandin, UV spectrophotometric analysis

Procedia PDF Downloads 68
854 Inhibitory Effect of Lactic Acid Bacteria on Uropathogenic Escherichia coli-Induced Urinary Tract Infections

Authors: Cheng-Chih Tsai, Yu-Hsuan Liu, Cheng-Ying Ho, Chun-Chin Huang

Abstract:

The aim of this study evaluated the in vitro and in vivo antimicrobial activity of selected lactic acid bacteria (LAB) against Uropathogenic Escherichia coli (UPEC) for prevention and amelioration of UTIs. We screened LAB strains with antimicrobial effects on UPEC using a well-diffusion assay, bacterial adherence to the uroepithelium cell line SV-HUC-1 (BCRC 60358), and a coculture inhibition assay. The results showed that the 7 LAB strains (Lactobacillus paracasei, L. salivarius, two Pediococcus pentosaceus strains, two L. plantarum strains, and L. crispatus) and the fermented probiotic products produced by these multi-LAB strains exhibited potent zones of inhibition against UPEC. Moreover, the LAB strains and probiotic products adhered strongly to the uroepithelium SV-HUC-1 cell line. The growth of UPEC strains was also markedly inhibited after co-culture with the LAB strains and probiotic products in human urine. In addition, the enhanced levels of IL-6, IL-8 and lactic acid dehydrogenase were significantly decreased by treatments with the LAB strains and probiotic products in UPEC-induced SV-HUC-1 cells. Furthermore, oral administration of probiotic products reduced the number of viable UPEC in the urine of UPEC-challenged BALB/c mice. Taken together, this study demonstrates that probiotic supplementation may be useful as an adjuvant therapy for the treatment of bacterial-induced urinary tract infections.

Keywords: lactic acid bacterium, SV-HUC-1 uroepithelium, urinary tract infection, uropathogenic Escherichia coli, BALB/c mice

Procedia PDF Downloads 384
853 Biodegrading Potentials of Plant Growth - Promoting Bacteria on Insecticides Used in Agricultural Soil

Authors: Chioma Nwakanma, Onyeka Okoh Irene, Emmanuel Eze

Abstract:

Pesticide residues left in agricultural soils after cropping are always accumulative, difficult to degrade and harmful to animals, plants, soil and human health in general. The biodegrading potential of pesticides- resistant PGPB on soil pollution was investigated using in situ remediation technique following recommended standards. In addition, screening for insecticide utilization, maximum insecticide concentration tolerance, insecticide biodegradation and insecticide residues analyses via gas chromatographic/electron column detector were determined. The location of bacterial degradation genes was also determined. Three plant growth-promoting rhizophere (PGPR) were isolated and identified according to 16S rRNA as Paraburkholderia tropica, Burkolderia glumae and Achromobacter insolitus. From the results, all the three isolates showed phosphate solubilizing traits and were able to grow on nitrogen free medium. The isolates were able to utilize the insecticide as sole carbon source and increase in biomass. They were statistically significantly tolerant to all the insecticide concentrations screened. The gas chromatographic profiles of the insecticide residues showed a reduction in the peak areas of the insecticides, indicating degradation. The bacterial consortium had the lowest peak areas, showing the highest degradation efficiency. The genes responsible for degradation were found to be in the plasmids of the isolates. Therefore, the use of PGPR is recommended for bioremediation of agricultural soil insecticide polluted areas and can also enhance soil fertility.

Keywords: biodegradation, rhizosphere, insecticides utilization, agricultural soil

Procedia PDF Downloads 114
852 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry

Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags

Abstract:

Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.

Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol

Procedia PDF Downloads 177
851 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab

Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco

Abstract:

Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.

Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus

Procedia PDF Downloads 66
850 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile

Authors: Meenakshi Srivastava, A. K. Mishra

Abstract:

This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.

Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR

Procedia PDF Downloads 124
849 Elimination of Mixed-Culture Biofilms Using Biological Agents

Authors: Anita Vidacs, Csaba Vagvolgyi, Judit Krisch

Abstract:

The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms.

Keywords: biofilm, essential oils, surfaces, terpinene-4-ol

Procedia PDF Downloads 112
848 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity

Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos

Abstract:

Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.

Keywords: antarctic, bacteria, biosurfactants, hydrocarbons

Procedia PDF Downloads 279
847 Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source

Authors: Priya Tomar, Pallavi Mittal

Abstract:

Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose.

Keywords: bioremediation, decolourization, black liquor, mycoremediation

Procedia PDF Downloads 410
846 Systematic Discovery of Bacterial Toxins Against Plants Pathogens Fungi

Authors: Yaara Oppenheimer-Shaanan, Nimrod Nachmias, Marina Campos Rocha, Neta Schlezinger, Noam Dotan, Asaf Levy

Abstract:

Fusarium oxysporum, a fungus that attacks a broad range of plants and can cause infections in humans, operates across different kingdoms. This pathogen encounters varied conditions, such as temperature, pH, and nutrient availability, in plant and human hosts. The Fusarium oxysporum species complex, pervasive in soils globally, can affect numerous plants, including key crops like tomatoes and bananas. Controlling Fusarium infections can involve biocontrol agents that hinder the growth of harmful strains. Our research developed a computational method to identify toxin domains within a vast number of microbial genomes, leading to the discovery of nine distinct toxins capable of killing bacteria and fungi, including Fusarium. These toxins appear to function as enzymes, causing significant damage to cellular structures, membranes and DNA. We explored biological control using bacteria that produce polymorphic toxins, finding that certain bacteria, non-pathogenic to plants, offer a safe biological alternative for Fusarium management, as they did not harm macrophage cells or C. elegans. Additionally, we elucidated the 3D structures of two toxins with their protective immunity proteins, revealing their function as unique DNases. These potent toxins are likely instrumental in microbial competition within plant ecosystems and could serve as biocontrol agents to mitigate Fusarium wilt and related diseases.

Keywords: microbial toxins, antifungal, Fusarium oxysporum, bacterial-fungal intreactions

Procedia PDF Downloads 55
845 Effects of Probiotic Pseudomonas fluorescens on the Growth Performance, Immune Modulation, and Histopathology of African Catfish (Clarias gariepinus)

Authors: Nelson R. Osungbemiro, O. A. Bello-Olusoji, M. Oladipupo

Abstract:

This study was carried out to determine the effects of probiotics Pseudomonas fluorescens on the growth performance, histology examination and immune modulation of African Catfish, (Clarias gariepinus) challenged with Clostridium botulinum. P. fluorescens, and C. botulinum isolates were removed from the gut, gill and skin organs of procured adult samples of Clarias gariepinus from commercial fish farms in Akure, Ondo State, Nigeria. The physical and biochemical tests were performed on the bacterial isolates using standard microbiological techniques for their identification. Antibacterial activity tests on P. fluorescens showed inhibition zone with mean value of 3.7 mm which indicates high level of antagonism. The experimental diets were prepared at different probiotics bacterial concentration comprises of five treatments of different bacterial suspension, including the control (T1), T2 (10³), T3 (10⁵), T4 (10⁷) and T5 (10⁹). Three replicates for each treatment type were prepared. Growth performance and nutrients utilization indices were calculated. The proximate analysis of fish carcass and experimental diet was carried out using standard methods. After feeding for 70 days, haematological values and histological test were done following standard methods; also a subgroup from each experimental treatment was challenged by inoculating Intraperitonieally (I/P) with different concentration of pathogenic C. botulinum. Statistically, there were significant differences (P < 0.05) in the growth performance and nutrient utilization of C. gariepinus. Best weight gain and feed conversion ratio were recorded in fish fed T4 (10⁷) and poorest value obtained in the control. Haematological analyses of C. gariepinus fed the experimental diets indicated that all the fish fed diets with P. fluorescens had marked significantly (p < 0.05) higher White Blood Cell than the control diet. The results of the challenge test showed that fish fed the control diet had the highest mortality rate. Histological examination of the gill, intestine, and liver of fish in this study showed several histopathological alterations in fish fed the control diets compared with those fed the P. fluorescens diets. The study indicated that the optimum level of P. fluorescens required for C. gariepinus growth and white blood cells formation is 10⁷ CFU g⁻¹, while carcass protein deposition required 10⁵ CFU g⁻¹ of P. fluorescens concentration. The study also confirmed P. fluorescens as efficient probiotics that is capable of improving the immune response of C. gariepinus against the attack of a virulent fish pathogen, C. botulinum.

Keywords: Clarias gariepinus, Clostridium botulinum, probiotics, Pseudomonas fluorescens

Procedia PDF Downloads 162
844 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver

Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou

Abstract:

Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.

Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver

Procedia PDF Downloads 157
843 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj

Abstract:

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% are neutral sugar and the rest 16.25±1.62% are uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructo-oligosaccharide (RP95). The oligosaccharides concentration was 1g/L of man rogosa sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects

Procedia PDF Downloads 410
842 Microbial Reduction of Terpenes from Pine Wood Material

Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Thomas Ters, Ewald Srebotnik, Thomas Kuncinger

Abstract:

Terpenes are natural components in softwoods and rank among the most frequently emitted volatile organic compounds (VOC) in the wood-processing industry. In this study, the main focus was on α- and β-pinene as well as Δ3-carene, which are the major terpenes in softwoods. To lower the total emission level of wood composites, defined terpene degrading microorganisms were applied to basic raw materials (e.g. pine wood particles and strands) in an optimised and industry-compatible testing procedure. In preliminary laboratory tests, bacterial species suitable for the utilisation of α-pinene as single carbon source in liquid culture were selected and then subjected to wood material inoculation. The two species Pseudomonas putida and Pseudomonas fluorescens were inoculated onto wood particles and strands and incubated at room temperature. Applying specific pre-cultivation and daily ventilation of the samples enabled a reduction of incubation time from six days to one day. SPME measurements and subsequent GC-MS analysis indicated a complete absence of α- and β-pinene emissions after 24 hours from pine wood particles. When using pine wood strands rather than particles, bacterial treatment resulted in a reduction of α- and β-pinene by 50%, while Δ3-carene emissions were reduced by 30% in comparison to untreated strands. Other terpenes were also reduced in the course of the microbial treatment. The method developed here appears to be feasible for industrial application. However, growth parameters such as time and temperature as well as the technical implementation of the inoculation step will have to be adapted for the production process.

Keywords: GC-MS, pseudomonas, SPME, terpenes

Procedia PDF Downloads 347
841 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract

Authors: Navodit Goel, Prabir K. Paul

Abstract:

Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.

Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum

Procedia PDF Downloads 288
840 Encapsulation of Probiotic Bacteria in Complex Coacervates

Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis

Abstract:

Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.

Keywords: probiotic, complex coacervation, whey, encapsulation

Procedia PDF Downloads 297
839 Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering

Authors: Daniel Canales, Fabián Alvarez, Pablo Varela, Marcela Saavedra, Claudio García, Paula Zapata

Abstract:

Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process.

Keywords: electrospun scaffolds, PLA based nanocomposites, calcium oxide nanoparticles, bioactive materials, tissue engineering

Procedia PDF Downloads 94
838 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 189
837 Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate

Authors: Natcha Ruamyat, Nichakorn Khondee

Abstract:

The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production.

Keywords: alkaliphilic bacteria, agricultural/agro-industrial wastes, biosurfactant, combined alkaline-hydrothermal pretreatment

Procedia PDF Downloads 256
836 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 195
835 Illumina MiSeq Sequencing for Bacteria Identification on Audio-Visual Materials

Authors: Tereza Branyšová, Martina Kračmarová, Kateřina Demnerová, Michal Ďurovič, Hana Stiborová

Abstract:

Microbial deterioration threatens all objects of cultural heritage, including audio-visual materials. Fungi are commonly known to be the main factor in audio-visual material deterioration. However, although being neglected, bacteria also play a significant role. In addition to microbial contamination of materials, it is also essential to analyse air as a possible contamination source. This work aims to identify bacterial species in the archives of the Czech Republic that occur on audio-visual materials as well as in the air in the archives. For sampling purposes, the smears from the materials were taken by sterile polyurethane sponges, and the air was collected using a MAS-100 aeroscope. Metagenomic DNA from all collected samples was immediately isolated and stored at -20 °C. DNA library for the 16S rRNA gene was prepared using two-step PCR and specific primers and the concentration step was included due to meagre yields of the DNA. After that, the samples were sent to the University of Fairbanks, Alaska, for Illumina MiSeq sequencing. Subsequently, the analysis of the sequences was conducted in R software. The obtained sequences were assigned to the corresponding bacterial species using the DADA2 package. The impact of air contamination and the impact of different photosensitive layers that audio-visual materials were made of, such as gelatine, albumen, and collodion, were evaluated. As a next step, we will take a deeper focus on air contamination. We will select an appropriate culture-dependent approach along with a culture-independent approach to observe a metabolically active species in the air. Acknowledgment: This project is supported by grant no. DG18P02OVV062 of the Ministry of Culture of the Czech Republic.

Keywords: cultural heritage, Illumina MiSeq, metagenomics, microbial identification

Procedia PDF Downloads 156
834 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study

Authors: Kulvinder Bajwa, Narsi R. Bishnoi

Abstract:

Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.

Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids

Procedia PDF Downloads 136