Search results for: Vapor Corrosion Inhibitor
1093 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization
Procedia PDF Downloads 3031092 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions
Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz
Abstract:
High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving
Procedia PDF Downloads 851091 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials
Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics
Abstract:
Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool
Procedia PDF Downloads 2241090 The Evaporation Study of 1-ethyl-3-methylimidazolium chloride
Authors: Kirill D. Semavin, Norbert S. Chilingarov, Eugene.V. Skokan
Abstract:
The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained.Keywords: ionic liquids, Knudsen effusion mass spectrometry, thermal stability, vapor pressure
Procedia PDF Downloads 1891089 Investigation of Additives' Corrosion Inhibition Effects on Dye
Authors: Abdullah Bilal Ozturk, Nil Acarali, Hediye Irem Ozgunduz, Hava Gizem Kandilci, Hanifi Sarac
Abstract:
In this study, zeolite, shellac and different boron chemicals were used as additive to dye and effects were comprehensively investigated. Considering previous studies additive materials that had not used before were determined for produce dye with physical properties. Literature research about the materials provides determining easily sufficient amount of additive materials. Accessible of additives or yearly production amounts are become important issue at selection of materials. Zeolite and boron chemicals are suitable selection in that easy access and has large amount of production in our country. Previous research about boron chemicals shows they have flame retardant effect on textile materials besides numerous usage areas. Also, from previous research, shellac was used widely for protection and insulation of metallic materials. Zeolite added to dye to increase adhesive effect of dye. In this study, corrosion tests were applied to find out if there are positive effects of zeolite, shellac, and boron chemicals to dye’s physical properties.Keywords: dye, corrosion, zeolite, shellac, boron
Procedia PDF Downloads 3381088 Cholinesterase Inhibitory Indole Alkaloids from the Bark of Rauvolfia reflexa
Authors: Mehran Fadaeinasab, Alireza Basiri, Yalda Kia, Hamed Karimian, Hapipah Mohd Ali, Vikneswaran Murugaiyah
Abstract:
Two new, rauvolfine C and 3- methyl-10,11-dimethoxyl-6- methoxycarbonyl- β- carboline, along with five known indole alkaloids, macusine B, vinorine, undulifoline, isoresrpiline and rescinnamine were isolated from the bark of Rauvolfia reflexa. All the compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 πM, except rauvolfine C that was inactive against acetylcholinesterase (AChE). Rescinnamine, a dual inhibitor was found to be the most potent inhibitor among the isolated alkaloids against both AChE and butyrylcholinesterase (BChE). Molecular docking revealed that rescinnamine interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding.Keywords: Rauvolfia reflexa, indole alkaloids, acetylcholinesterase, butyrylcholinesterase, molecular docking
Procedia PDF Downloads 5941087 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel
Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti
Abstract:
With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra
Procedia PDF Downloads 4291086 Critical Study on the Sensitivity of Corrosion Fatigue Crack Growth Rate to Cyclic Waveform and Microstructure in Marine Steel
Authors: V. C. Igwemezie, A. N. Mehmanparast
Abstract:
The primary focus of this work is to understand how variations in the microstructure and cyclic waveform affect the corrosion fatigue crack growth (CFCG) in steel, especially in the Paris region of the da/dN vs. ΔK curve. This work is important because it provides fundamental information on the modelling, design, selection, and use of steels for various engineering applications in the marine environment. The corrosion fatigue tests data on normalized and thermomechanical control process (TMCP) ferritic-pearlitic steels by the authors were compared with several studies on different microstructures in the literature. The microstructures of these steels are radically different and general comparative fatigue crack growth resistance performance study on the effect of microstructure in these materials are very scarce and where available are limited to few studies. The results, for purposes of engineering application, in this study show less dependency of fatigue crack growth rate (FCGR) on yield strength, tensile strength, ductility, frequency and stress ratio in the range 0.1 – 0.7. The nature of the steel microstructure appears to be a major factor in determining the rate at which fatigue cracks propagate in the entire da/dN vs. ΔK sigmoidal curve. The study also shows that the sine wave shape is the most damaging fatigue waveform for ferritic-pearlitic steels. This tends to suggest that the test under sine waveform would be a conservative approach, regardless of the waveform for design of engineering structures.Keywords: BS7910, corrosion-fatigue crack growth rate, cyclic waveform, microstructure, steel
Procedia PDF Downloads 1551085 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance
Procedia PDF Downloads 3931084 A New Alpha-Amylase Inhibitor Isolated from the Stem Bark of Anthocleista Djalonensis
Authors: Oseyemi O. Olubomehin, Edith O. Ajaiyeoba, Kio A. Abo, Eleonora D. Goosen
Abstract:
Diabetes is a major degenerative disease of global concern and it is the third most lethal disease of mankind, accounting for about 3.2 million deaths annually. Lowering postprandial hyperglycemia by inhibition of carbohydrate hydrolyzing enzyme such as alpha-amylase is one of the therapeutic approaches to treat Type 2 Diabetes. Alpha-amylase inhibitors from plants have been found to be effective in managing postprandial hyperglycemia. In continuation of our anti-diabetic activities of this plant, bioassay-guided fractionation and isolation using 0.1-1.0 mg/mL furnished djalonenol, a monoterpene diol with a significant 53.7% α-amylase inhibition (p<0.001) from the stem bark which was comparable to acarbose which gave a 54.9% inhibition. Spectral characterization using Infra-red, Gas Chromatogrphy-Mass spectrometry, 1D and 2D NMR of the isolated compound was done to elucidate the structure of the compound.Keywords: alpha-amylase inhibitor, hyperglycemia, postprandial, diabetes
Procedia PDF Downloads 4601083 Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants
Authors: Gulshan Sachdeva, Vaibhav Jain
Abstract:
In present paper, the performance of various alternative refrigerants is compared to find the substitute of R22, the widely used hydrochlorofluorocarbon refrigerant in developing countries. These include the environmentally friendly hydrofluorocarbon (HFC) refrigerants such as R134A, R410A, R407C and M20. In the present study, a steady state thermodynamic model (includes both first and second law analysis) which simulates the working of an actual vapor-compression system is developed. The model predicts the performance of system with alternative refrigerants. Considering the recent trends of replacement of ozone depleting refrigerants and improvement in system efficiency, R407C is found to be potential candidate to replace R22 refrigerant in the present study.Keywords: refrigeration, compression system, performance study, modeling, R407C
Procedia PDF Downloads 3161082 Fabric-Reinforced Cementitious Matrix (FRCM)-Repaired Corroded Reinforced Concrete (RC) Beams under Monotonic and Fatigue Loads
Authors: Mohammed Elghazy, Ahmed El Refai, Usama Ebead, Antonio Nanni
Abstract:
Rehabilitating corrosion-damaged reinforced concrete (RC) structures has been accomplished using various techniques such as steel plating, external post-tensioning, and external bonding of fiber reinforced polymer (FRP) composites. This paper reports on the use of an innovative technique to strengthen corrosion-damaged RC structures using fabric-reinforced cementitious matrix (FRCM) composites. FRCM consists of dry-fiber fabric embedded in cement-based matrix. Twelve large-scale RC beams were constructed and tested in flexural monotonic and fatigue loads. Prior to testing, ten specimens were subjected to accelerated corrosion process for 140 days leading to an average mass loss in the tensile steel bars of 18.8 %. Corrosion was restricted to the main reinforcement located in the middle third of the beam span. Eight corroded specimens were repaired and strengthened while two virgin and two corroded-unrepaired/unstrengthened beams were used as benchmarks for comparison purpose. The test parameters included the FRCM materials (Carbon-FRCM, PBO-FRCM), the number of FRCM plies, the strengthening scheme, and the type of loading (monotonic and fatigue). The effects of the pervious parameters on the flexural response, the mode of failure, and the fatigue life were reported. Test results showed that corrosion reduced the yield and ultimate strength of the beams. The corroded-unrepaired specimen failed to meet the provisions of the ACI-318 code for crack width criteria. The use of FRCM significantly increased the ultimate strength of the corroded specimen by 21% and 65% more than that of the corroded-unrepaired specimen. Corrosion significantly decreased the fatigue life of the corroded-unrepaired beam by 77% of that of the virgin beam. The fatigue life of the FRCM repaired-corroded beams increased to 1.5 to 3.8 times that of the corroded-unrepaired beam but was lower than that of the virgin specimen. The specimens repaired with U-wrapped PBO-FRCM strips showed higher fatigue life than those repaired with the end-anchored bottom strips having similar number of PBO-FRCM-layers. PBO-FRCM was more effective than Carbon-FRCM in restoring the fatigue life of the corroded specimens.Keywords: corrosion, concrete, fabric-reinforced cementitious matrix (FRCM), fatigue, flexure, repair
Procedia PDF Downloads 2961081 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers
Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong
Abstract:
Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.Keywords: clad pipe, lamination layer parameters, monel, overlay welding
Procedia PDF Downloads 2731080 Self-Assembly of TaC@Ta Core-Shell-Like Nanocomposite Film via Solid-State Dewetting: Toward Superior Wear and Corrosion Resistance
Authors: Ping Ren, Mao Wen, Kan Zhang, Weitao Zheng
Abstract:
The improvement of comprehensive properties including hardness, toughness, wear, and corrosion resistance in the transition metal carbides/nitrides TMCN films, especially avoiding the trade-off between hardness and toughness, is strongly required to adapt to various applications. Although incorporating ductile metal DM phase into the TMCN via thermally-induced phase separation has been emerged as an effective approach to toughen TMCN-based films, the DM is just limited to some soft ductile metal (i.e. Cu, Ag, Au immiscibility with the TMCN. Moreover, hardness is highly sensitive to soft DM content and can be significantly worsened. Hence, a novel preparation method should be attempted to broaden the DM selection and assemble much more ordered nanocomposite structure for improving the comprehensive properties. Here, we provide a new strategy, by activating solid-state dewetting during layered deposition, to accomplish the self-assembly of ordered TaC@Ta core-shell-like nanocomposite film consisting of TaC nanocrystalline encapsulated with thin pseudocrystal Ta tissue. That results in the superhard (~45.1 GPa) dominated by Orowan strengthening mechanism and high toughness attributed to indenter-induced phase transformation from the pseudocrystal to body-centered cubic Ta, together with the drastically enhanced wear and corrosion resistance. Furthermore, very thin pseudocrystal Ta encapsulated layer (~1.5 nm) in the TaC@Ta core-shell-like structure helps for promoting the formation of lubricious TaOₓ Magnéli phase during sliding, thereby further dropping the coefficient of friction. Apparently, solid-state dewetting may provide a new route to construct ordered TMC(N)@TM core-shell-like nanocomposite capable of combining superhard, high toughness, low friction, superior wear with corrosion resistance.Keywords: corrosion, nanocomposite film, solid-state dewetting, tribology
Procedia PDF Downloads 1361079 Working Fluids in Absorption Chillers: Investigation of the Use of Deep Eutectic Solvents
Authors: L. Cesari, D. Alonso, F. Mutelet
Abstract:
The interest in cold production has been on the increase in absorption chillers for many years. In fact, the absorption cycles replace the compressor and thus reduce electrical consumption. The devices also allow waste heat generated through industrial activities to be recovered and cooled to a moderate temperature in accordance with regulatory guidelines. Many working fluids were investigated but could not compete with the commonly used {H2O + LiBr} and {H2O + NH3} to author’s best knowledge. Yet, the corrosion, toxicity and crystallization phenomena of these mixtures prevent the development of the absorption technology. This work investigates the possible use of a glyceline deep eutectic solvent (DES) and CO2 as working fluid in an absorption chiller. To do so, good knowledge of the mixtures is required. Experimental measurements (vapor-liquid equilibria, density, and heat capacity) were performed to complete the data lacking in the literature. The performance of the mixtures was quantified by the calculation of the coefficient of performance (COP). The results show that working fluids containing DES + CO2 are an interesting alternative and lead to different trails of working mixtures for absorption and chiller.Keywords: absorption devices, deep eutectic solvent, energy valorization, experimental data, simulation
Procedia PDF Downloads 1101078 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids
Authors: Sameh Frikha, Mohamed Salah Abid
Abstract:
We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles
Procedia PDF Downloads 2631077 Characterization of Bovine SERPIN- Alpha-1 Antitrypsin (AAT)
Authors: Sharique Ahmed, Khushtar Anwar Salman
Abstract:
Alpha-1-antitrypsin (AAT) is a major plasma serine protease inhibitor (SERPIN). Hereditary AAT deficiency is one of the common diseases in some part of the world. AAT is mainly produced in the liver and functions to protect the lung against proteolytic damage (e.g., from neutrophil elastase) acting as the major inhibitor for neutrophil elastase. α (1)-Antitrypsin (AAT) deficiency is an under recognized genetic condition that affects approximately 1 in 2,000 to 1 in 5,000 individuals and predisposes to liver disease and early-onset emphysema. Not only does α-1-antitrypsin deficiency lead to disabling syndrome of pulmonary emphysema, there are other disorders too which include ANCA (antineutrophilic cytoplasmic antibody) positive Wegener's granulomatosis, diffuse bronchiectasis, necrotizing panniculitis in α-1-antitrypsin phenotype (S), idiopathic pulmonary fibrosis and steroid dependent asthma. Augmentation therapy with alpha-1 antitrypsin (AAT) from human plasma has been available for specific treatment of emphysema due to AAT deficiency. Apart from this several observations have also suggested a role for endogenous suppressors of HIV-1, alpha-1 antitrypsin (AAT) has been identified to be one of those. In view of its varied important role in humans, serum from a mammalian source was chosen for the isolation and purification. Studies were performed on the homogeneous fraction. This study suggests that the buffalo serum α-1-antritrypsin has characteristics close to ovine, dog, horse and more importantly to human α-1-antritrypsin in terms of its hydrodynamic properties such as molecular weight, carbohydrate content, etc. The similarities in the hydrodynamic properties of buffalo serum α-1-antitrypsin with other sources of mammalian α-1-antitrypsin mean that it can be further studied and be a potential source for "augmentation therapy", as well as a source of AAT replacement therapy to raise serum levels above the protective threshold. Other parameters like the amino acid sequence, the effect of denaturants, and the thermolability or thermostability of the inhibitor will be the interesting basis of future studies on buffalo serum alpha-1 antitrypsin (AAT).Keywords: α-1-antitrypsin, augmentation therapy , hydrodynamic properties, serine protease inhibitor
Procedia PDF Downloads 4901076 Experimental Studies on the Corrosion Effects of the Concrete Made with Tannery Effluent
Authors: K. Nirmalkumar
Abstract:
An acute water scarcity is prevailing in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the effluent from the tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength and the special properties such as chloride attack, sulphate attack and chemical attack were studied by casting various concrete specimens in form of cube, cylinders and beams, etc. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory. In this research study the corrosion results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that by the addition of admixtures, the adverse effects due to the usage of the treated and untreated tannery effluent are counteracted.Keywords: corrosion, calcium nitrite, concrete, fly ash
Procedia PDF Downloads 2701075 Development of Vacuum Planar Membrane Dehumidifier for Air-Conditioning
Authors: Chun-Han Li, Tien-Fu Yang, Chen-Yu Chen, Wei-Mon Yan
Abstract:
The conventional dehumidification method in air-conditioning system mostly utilizes a cooling coil to remove the moisture in the air via cooling the supply air down below its dew point temperature. During the process, it needs to reheat the supply air to meet the set indoor condition that consumes a considerable amount of energy and affect the coefficient of performance of the system. If the processes of dehumidification and cooling are separated and operated respectively, the indoor conditions will be more efficiently controlled. Therefore, decoupling the dehumidification and cooling processes in heating, ventilation and air conditioning system is one of the key technologies as membrane dehumidification processes for the next generation. The membrane dehumidification method has the advantages of low cost, low energy consumption, etc. It utilizes the pore size and hydrophilicity of the membrane to transfer water vapor by mass transfer effect. The moisture in the supply air is removed by the potential energy and driving force across the membrane. The process can save the latent load used to condense water, which makes more efficient energy use because it does not involve heat transfer effect. In this work, the performance measurements including the permeability and selectivity of water vapor and air with the composite and commercial membranes were conducted. According to measured data, we can choose the suitable dehumidification membrane for designing the flow channel length and components of the planar dehumidifier. The vacuum membrane dehumidification system was set up to examine the effects of temperature, humidity, vacuum pressure, flow rate, the coefficient of performance and other parameters on the dehumidification efficiency. The results showed that the commercial Nafion membrane has better water vapor permeability and selectivity. They are suitable for filtration with water vapor and air. Meanwhile, Nafion membrane has promising potential in the dehumidification process.Keywords: vacuum membrane dehumidification, planar membrane dehumidifier, water vapour and air permeability, air conditioning
Procedia PDF Downloads 1471074 Advancing Sustainable Seawater Desalination Technologies: Exploring the Sub-Atmospheric Vapor Pipeline (SAVP) and Energy-Efficient Solution for Urban and Industrial Water Management in Smart, Eco-Friendly, and Green Building Infrastructure
Authors: Mona Shojaei
Abstract:
The Sub-Atmospheric Vapor Pipeline (SAVP) introduces a distinct approach to seawater desalination with promising applications in both land and industrial sectors. SAVP systems exploit the temperature difference between a hot source and a cold environment to facilitate efficient vapor transfer, offering substantial benefits in diverse industrial and field applications. This approach incorporates dynamic boundary conditions, where the temperatures of hot and cold sources vary over time, particularly in natural and industrial environments. Such variations critically influence convection and diffusion processes, introducing challenges that require the refinement of the convection-diffusion equation and the derivation of temperature profiles along the pipeline through advanced engineering mathematics. This study formulates vapor temperature as a function of time and length using two mathematical approaches: Eigen functions and Green’s equation. Combining detailed theoretical modeling, mathematical simulations, and extensive field and industrial tests, this research underscores the SAVP system’s scalability for real-world applications. Results reveal a high degree of accuracy, highlighting SAVP’s significant potential for energy conservation and environmental sustainability. Furthermore, the integration of SAVP technology within smart and green building systems creates new opportunities for sustainable urban water management. By capturing and repurposing vapor for non-potable uses such as irrigation, greywater recycling, and ecosystem support in green spaces, SAVP aligns with the principles of smart and green buildings. Smart buildings emphasize efficient resource management, enhanced system control, and automation for optimal energy and water use, while green buildings prioritize environmental impact reduction and resource conservation. SAVP technology bridges both paradigms, enhancing water self-sufficiency and reducing reliance on external water supplies. The sustainable and energy-efficient properties of SAVP make it a vital component in resilient infrastructure development, addressing urban water scarcity while promoting eco-friendly living. This dual alignment with smart and green building goals positions SAVP as a transformative solution in the pursuit of sustainable urban resource management.Keywords: sub-atmospheric vapor pipeline, seawater desalination, energy efficiency, vapor transfer dynamics, mathematical modeling, sustainable water solutions, smart buildings
Procedia PDF Downloads 161073 Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode
Authors: Chinedu F. Anochie
Abstract:
The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established.Keywords: cathodic protection, corrosion, pipe, sacrificial anode
Procedia PDF Downloads 1861072 Failure Analysis of a Hydrocarbon Carrying/Piping System
Authors: Esteban Morales Murillo, Ephraim Mokgothu
Abstract:
This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed.Keywords: corrosion, Couper-Gorman, high-temperature corrosion, sulfidation, wall thinning, piping system
Procedia PDF Downloads 3871071 Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam
Authors: Mohammad Mahdi Kioumarsi
Abstract:
In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp⁄Lr) and the ratio of the localised cross section reduction to the original area of the rebar (Apit⁄A0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure.Keywords: localised corrosion, concrete beam, sensitivity analyses, ultimate capacity
Procedia PDF Downloads 2521070 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement
Authors: Can Otuzbir
Abstract:
It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP
Procedia PDF Downloads 1291069 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation
Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson
Abstract:
Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM
Procedia PDF Downloads 1431068 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water
Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio
Abstract:
New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction
Procedia PDF Downloads 791067 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams
Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi
Abstract:
Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model
Procedia PDF Downloads 2571066 Coating of Cotton with Blend of Natural Rubber and Chloroprene Containing Ammonium Acetate for Producing Moisture Vapour Permeable Waterproof Fabric
Authors: Debasish Das, Mainak Mitra, A.Chaudhuri
Abstract:
For the purpose of producing moisture vapor permeable waterproof cotton fabric to be used for protective apparel against rain, cotton fabric was coated with the blend of natural rubber and chloroprene rubber containing ammonium acetate as the water-soluble salt, employing a calendar coating technique. Rubber formulations also contained filler, homogenizer, and a typical sulphur curing system. Natural rubber and chloroprene blend in the blend ratio of 30: 70, containing 25 parts of sodium acetate per hundred parts of rubber was coated on the fabric. The coated fabric was vulcanized thereafter at 140oC for 3 h. Coated and vulcanized fabric was subsequently dipped in water for 45 min, followed by drying in air. Such set of treatments produced optimum results. Coated, vulcanized, washed and dried cotton fabric showed optimum developments in the property profiles in respect of waterproofness, breathability as revealed by moisture vapor transmission rate, coating adhesion, tensile properties, abrasion resistance, flex endurance and fire retardancy. Incorporation of highly water-soluble ammonium acetate salt in the coating formulation and their subsequent removal from vulcanized coated layer affected by post washing in consequent to dipping in the water-bath produced holes of only a few microns in the coating matrix of the fabric. Such microporous membrane formed on the cotton fabric allowed only transportation of moisture vapor through them, giving a moisture vapor transmission rate of 3734 g/m2/24h, while acting as a barrier for large liquid water droplet resisting 120cm of the water column in the hydrostatic water-head tester, rendering the coated cotton fabric waterproof. Examination of surface morphology of vulcanized coating by scanning electron microscopy supported the mechanism proposed for development of breathable waterproof layer on cotton fabric by the process employed above. Such process provides an easy and cost-effective route for achieving moisture vapor permeable waterproof cotton.Keywords: moisture vapour permeability, waterproofness, chloroprene, calendar coating, coating adhesion, fire retardancy
Procedia PDF Downloads 2551065 Numerical Modeling the Cavitating Flow in Injection Nozzle Holes
Authors: Ridha Zgolli, Hatem Kanfoudi
Abstract:
Cavitating flows inside a diesel injection nozzle hole were simulated using a mixture model. A 2D numerical model is proposed in this paper to simulate steady cavitating flows. The Reynolds-averaged Navier-Stokes equations are solved for the liquid and vapor mixture, which is considered as a single fluid with variable density which is expressed as function of the vapor volume fraction. The closure of this variable is provided by the transport equation with a source term TEM. The processes of evaporation and condensation are governed by changes in pressure within the flow. The source term is implanted in the CFD code ANSYS CFX. The influence of numerical and physical parameters is presented in details. The numerical simulations are in good agreement with the experimental data for steady flow.Keywords: cavitation, injection nozzle, numerical simulation, k–ω
Procedia PDF Downloads 4011064 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns
Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè
Abstract:
Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column
Procedia PDF Downloads 355