Search results for: Jonathan Rodriguez
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 431

Search results for: Jonathan Rodriguez

101 The Relationship between Proximity to Sources of Industrial-Related Outdoor Air Pollution and Children Emergency Department Visits for Asthma in the Census Metropolitan Area of Edmonton, Canada, 2004/2005 to 2009/2010

Authors: Laura A. Rodriguez-Villamizar, Alvaro Osornio-Vargas, Brian H. Rowe, Rhonda J. Rosychuk

Abstract:

Introduction/Objectives: The Census Metropolitan Area of Edmonton (CMAE) has important industrial emissions to the air from the Industrial Heartland Alberta (IHA) at the Northeast and the coal-fired power plants (CFPP) at the West. The objective of the study was to explore the presence of clusters of children asthma ED visits in the areas around the IHA and the CFPP. Methods: Retrospective data on children asthma ED visits was collected at the dissemination area (DA) level for children between 2 and 14 years of age, living in the CMAE between April 1, 2004, and March 31, 2010. We conducted a spatial analysis of disease clusters around putative sources with count (ecological) data using descriptive, hypothesis testing, and multivariable modeling analysis. Results: The mean crude rate of asthma ED visits was 9.3/1,000 children population per year during the study period. Circular spatial scan test for cases and events identified a cluster of children asthma ED visits in the DA where the CFPP are located in the Wabamum area. No clusters were identified around the IHA area. The multivariable models suggest that there is a significant decline in risk for children asthma ED visits as distance increases around the CFPP area this effect is modified at the SE direction with mean angle 125.58 degrees, where the risk increases with distance. In contrast, the regression models for IHA suggest that there is a significant increase in risk for children asthma ED visits as distance increases around the IHA area and this effect is modified at SW direction with mean angle 216.52 degrees, where the risk increases at shorter distances. Conclusions: Different methods for detecting clusters of disease consistently suggested the existence of a cluster of children asthma ED visits around the CFPP but not around the IHA within the CMAE. These results are probably explained by the direction of the air pollutants dispersion caused by the predominant and subdominant wind direction at each point. The use of different approaches to detect clusters of disease is valuable to have a better understanding of the presence, shape, direction and size of clusters of disease around pollution sources.

Keywords: air pollution, asthma, disease cluster, industry

Procedia PDF Downloads 282
100 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments

Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez

Abstract:

Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.

Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production

Procedia PDF Downloads 116
99 Preliminary Studies of Antibiofouling Properties in Wrinkled Hydrogel Surfaces

Authors: Mauricio A. Sarabia-Vallejos, Carmen M. Gonzalez-Henriquez, Adolfo Del Campo-Garcia, Aitzibier L. Cortajarena, Juan Rodriguez-Hernandez

Abstract:

In this study, it was explored the formation and the morphological differences between wrinkled hydrogel patterns obtained via generation of surface instabilities. The slight variations in the polymerization conditions produce important changes in the material composition and pattern structuration. The compounds were synthesized using three main components, i.e. an amphiphilic monomer, hydroxyethyl methacrylate (HEMA), a hydrophobic monomer, trifluoroethyl methacrylate (TFMA), and a hydrophilic crosslinking agent, poly(ethylene glycol) diacrylate (PEGDA). The first part of this study was related to the formation of wrinkled surfaces using only HEMA and PEGDA and varying the amount of water added in the reaction. The second part of this study involves the gradual insertion of TFMA into the hydrophilic reaction mixture. Interestingly, the manipulation of the chemical composition of this hydrogel affects both surface morphology and physicochemical characteristics of the patterns, inducing transitions from one particular type of structure (wrinkles or ripples) to different ones (creases, folds, and crumples). Contact angle measurements show that the insertion of TFMA produces a slight decrease in surface wettability of the samples, remaining however highly hydrophilic (contact angle below 45°). More interestingly, by using confocal Raman spectroscopy, important information about the wrinkle formation mechanism is obtained. The procedure involving two consecutive thermal and photopolymerization steps lead to a “pseudo” two-layer system. Thus, upon photopolymerization, the surface is crosslinked to a higher extent than the bulk and water evaporation drives the formation of wrinkled surfaces. Finally, cellular, and bacterial proliferation studies were performed to the samples, showing that the amount of TFMA included in each sample slightly affects the proliferation of both (bacteria and cells), but in the case of bacteria, the morphology of the sample also plays an important role, importantly reducing the bacterial proliferation.

Keywords: antibiofouling properties, hydrophobic/hydrophilic balance, morphologic characterization, wrinkled hydrogel patterns

Procedia PDF Downloads 162
98 Development of Intellectual Property Information Services in Zimbabwe’s University Libraries: Assessing the Current Status and Mapping the Future Direction

Authors: Jonathan Munyoro, Takawira Machimbidza, Stephen Mutula

Abstract:

The study investigates the current status of Intellectual Property (IP) information services in Zimbabwe's university libraries. Specifically, the study assesses the current IP information services offered in Zimbabwe’s university libraries, identifies challenges to the development of comprehensive IP information services in Zimbabwe’s university libraries, and suggests solutions for the development of IP information services in Zimbabwe’s university libraries. The study is born out of a realisation that research on IP information services in university libraries has received little attention, especially in developing country contexts, despite the fact that there are calls for heightened participation of university libraries in IP information services. In Zimbabwe, the launch of the National Intellectual Property Policy and Implementation Strategy 2018-2022 and the introduction of the Education 5.0 concept are set to significantly change the IP landscape in the country. Education 5.0 places more emphasis on innovation and industrialisation (in addition to teaching, community service, and research), and has the potential to shift the focus and level of IP output produced in higher and tertiary education institutions beyond copyrights and more towards commercially exploited patents, utility models, and industrial designs. The growing importance of IP commercialisation in universities creates a need for appropriate IP information services to assist students, academics, researchers, administrators, start-ups, entrepreneurs, and inventors. The critical challenge for university libraries is to reposition themselves and remain relevant in the new trajectory. Designing specialised information services to support increased IP generation and commercialisation appears to be an opportunity for university libraries to stay relevant in the knowledge economy. However, IP information services in Zimbabwe’s universities appear to be incomplete and focused mostly on assisting with research publications and copyright-related activities. Research on the existing status of IP services in university libraries in Zimbabwe is therefore necessary to help identify gaps and provide solutions in order to stimulate the growth of new forms of such services. The study employed a quantitative approach. An online questionnaire was administered to 57 academic librarians from 15 university libraries. Findings show that the current focus of the surveyed institutions is on providing scientific research support services (15); disseminating/sharing university research output (14); and copyright activities (12). More specialised IP information services such as IP education and training, patent information services, IP consulting services, IP online service platforms, and web-based IP information services are largely unavailable in Zimbabwean university libraries. Results reveal that the underlying challenge in the development of IP information services in Zimbabwe's university libraries is insufficient IP knowledge among academic librarians, which is exacerbated by inadequate IP management frameworks in university institutions. The study proposes a framework for the entrenchment of IP information services in Zimbabwe's university libraries.

Keywords: academic libraries, information services, intellectual property, IP knowledge, university libraries, Zimbabwe

Procedia PDF Downloads 156
97 Mediterranean Diet-Driven Changes in Gut Microbiota Decrease the Infiltration of Inflammatory Myeloid Cells into the Intestinal Tissue

Authors: Gema Gómez-Casado, Alba Rodríguez-Muñoz, Virginia Mela-Rivas, Pallavi Kompella, Francisco José Tinahones-Madueña, Isabel Moreno-Indias, Almudena Ortega-Gómez

Abstract:

Obesity is a high-priority health problem worldwide due to its high prevalence. The proportion of obese and overweight subjects in industrialized countries exceeds half of the population in most cases. Beyond the metabolic problem, obesity boosts inflammation levels in the organism. The gut microbiota, considered an organ by itself, controls a high variety of processes at a systemic level. In fact, the microbiota interacts closely with the immune system, being crucial in determining the maturation state of neutrophils, key effectors of the innate immune response. It is known that changes in the diet exert strong effects on the variety and activity of the gut microbiota. The effect that those changes have on the axis microbiota-immune response is an unexplored field. In this study, 10 patients with obesity (weight 114,3 ± 14,5Kg, BMI 40,47±3,66) followed a Mediterranean-hypocaloric diet for 3 months, reducing their initial weight by 12,71 ± 3%. A transplant of microbiota from these patients before and after the diet was performed into wild type “germ-free” mice (n=10/group), treated with antibiotics. Six weeks after the transplant, mice were euthanized, and the presence of cells from the innate immune system were analysed in different organs (bone marrow, blood, spleen, visceral adipose tissue, and intestine) by flow cytometry. No differences were observed in the number of myeloid cells in bone marrow, blood, spleen, or visceral adipose tissue of mice transplanted with patient’s microbiota before and after following the Mediterranean diet. However, the intestine of mice that received post-diet microbiota presented a marked decrease in the number of neutrophils (whose presence is associated with tissue inflammation), as well as macrophages. In line with these findings, intestine monocytes from mice with post-diet microbiota showed a less inflammatory profile (lower Ly6Gˡᵒʷ proportion of cells). These results point toward a decrease in the inflammatory state of the intestinal tissue, derived from changes in the gut microbiota, which occurred after a 3-month Mediterranean diet.

Keywords: obesity, nutrition, Mediterranean diet, gut microbiota, immune system

Procedia PDF Downloads 127
96 Use of Activated Carbon from Olive Stone for CO₂ Capture in Porous Mortars

Authors: A. González-Caro, A. M. Merino-Lechuga, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodríguez

Abstract:

Climate change is one of the most significant issues today. Since the 19th century, the rise in temperature has not only been due to natural change, but also to human activities, which have been the main cause of climate change, mainly due to the burning of fossil fuels such as coal, oil and gas. The boom in the construction sector in recent years is also one of the main contributors to CO₂ emissions into the atmosphere; for example, for every tonne of cement produced, 1 tonne of CO₂ is emitted into the atmosphere. Most of the research being carried out in this sector is focused on reducing the large environmental impact generated during the manufacturing process of building materials. In detail, this research focuses on the recovery of waste from olive oil mills. Spain is the world's largest producer of olive oil, and this sector generates a large amount of waste and by-products such as olive pits, “alpechín” or “alpeorujo”. This olive stone by means of a pyrosilisis process gives rise to the production of active carbon. The process causes the carbon to develop many internal spaces. This study is based on the manufacture of porous mortars with Portland cement and natural limestone sand, with an addition of 5% and 10% of activated carbon. Two curing environments were used: i) dry chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration (approximately 0.04%); ii) accelerated carbonation chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration of 5%. In addition to eliminating waste from an industry, the aim of this study is to reduce atmospheric CO₂. For this purpose, first, a physicochemical and mineralogical characterisation of all raw materials was carried out, using techniques such as fluorescence and X-ray diffraction. The particle size and specific surface area of the activated carbon were determined. Subsequently, tests were carried out on the hardened mortar, such as thermogravimetric analysis (to determine the percentage of CO₂ capture), as well as mechanical properties, density, porosity, and water absorption. It was concluded that the activated carbon acts as a sink for CO₂, causing it to be trapped inside the voids. This increases CO₂ capture by 300% with the addition of 10% activated carbon at 7 days of curing. There was an increase in compressive strength of 17.5% with the CO₂ chamber after 7 days of curing using 10% activated carbon compared to the dry chamber.

Keywords: olive stone, activated carbon, porous mortar, CO₂ capture, economy circular

Procedia PDF Downloads 63
95 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 83
94 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology

Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo

Abstract:

Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.

Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services

Procedia PDF Downloads 123
93 Proposals to Increase the Durability of Concrete Affected by Acid Mine Waters

Authors: Cristian Rodriguez, Jose M. Davila, Aguasanta M. Sarmiento, María L. de la Torre

Abstract:

There are many acidic environments that degrade structural concrete, such as those found in water treatment plants, sports facilities, and more, but one of the most aggressive is undoubtedly the water from acid mine drainage. This phenomenon occurs in all pyrite mining facilities and, to a lesser extent, in coal mines and is characterised by very low pH values and high sulphate, metal, and metalloid contents. This phenomenon causes significant damage to the concrete, mainly attacking the binder. In addition, the process is accentuated by the action of acidophilic bacteria, which accelerate the cracking of the concrete. Due to the damage that concrete experiences in acidic environments, the authors of this study aimed to enhance its performance in various aspects. Thus, two solutions have been proposed to improve the concrete durability, acting both on the mass of the material itself with the incorporation of fibres, and on its surface, proposing treatments with two different paints. The incorporation of polypropylene fibres in the concrete mass aims to improve the tensile strength of concrete, being this parameter the most affected in this type of degradation. The protection of the concrete with surface paint is intended to improve the performance against abrasion while reducing the access of water to the interior of the mass of the material. Sulpho-resistant cement has been used in all the mass concrete mixtures that have been prepared, in addition to complying with the requirements of the current Spanish standard, equivalent to the Eurocodes. For the polypropylene fibres, two alternatives have been used, with 1.7 and 3.4 kg/m³, while as surface treatment, the use of two paints has been analysed, one based on polyurethane and the other on asphalt-type paint. The proposed treatments have been analysed by means of indirect tensile tests and pressure sandblasting, thus analysing the effects of abrasion. The results obtained have confirmed a slight increase in the tensile strength of mass concrete by incorporating polypropylene fibres, being slightly higher for a ratio of 3.4 kg/m³, with an improvement of slightly more than 5% in the tensile strength of concrete. However, the use of fibres in concrete greatly reduces the loss of concrete mass due to abrasion. This improvement against abrasion is even more significant when paint is used as an external protection measure, with a much lower loss of mass with both paints. Acknowledgments: This work has been supported by MICIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.

Keywords: degradation, concrete, tensile strength, abrasion

Procedia PDF Downloads 15
92 Techno-Economic Analysis of 1,3-Butadiene and ε-Caprolactam Production from C6 Sugars

Authors: Iris Vural Gursel, Jonathan Moncada, Ernst Worrell, Andrea Ramirez

Abstract:

In order to achieve the transition from a fossil to bio-based economy, biomass needs to replace fossil resources in meeting the world’s energy and chemical needs. This calls for development of biorefinery systems allowing cost-efficient conversion of biomass to chemicals. In biorefinery systems, feedstock is converted to key intermediates called platforms which are converted to wide range of marketable products. The C6 sugars platform stands out due to its unique versatility as precursor for multiple valuable products. Among the different potential routes from C6 sugars to bio-based chemicals, 1,3-butadiene and ε-caprolactam appear to be of great interest. Butadiene is an important chemical for the production of synthetic rubbers, while caprolactam is used in production of nylon-6. In this study, ex-ante techno-economic performance of 1,3-butadiene and ε-caprolactam routes from C6 sugars were assessed. The aim is to provide insight from an early stage of development into the potential of these new technologies, and the bottlenecks and key cost-drivers. Two cases for each product line were analyzed to take into consideration the effect of possible changes on the overall performance of both butadiene and caprolactam production. Conceptual process design for the processes was developed using Aspen Plus based on currently available data from laboratory experiments. Then, operating and capital costs were estimated and an economic assessment was carried out using Net Present Value (NPV) as indicator. Finally, sensitivity analyses on processing capacity and prices was done to take into account possible variations. Results indicate that both processes perform similarly from an energy intensity point of view ranging between 34-50 MJ per kg of main product. However, in terms of processing yield (kg of product per kg of C6 sugar), caprolactam shows higher yield by a factor 1.6-3.6 compared to butadiene. For butadiene production, with the economic parameters used in this study, for both cases studied, a negative NPV (-642 and -647 M€) was attained indicating economic infeasibility. For the caprolactam production, one of the cases also showed economic infeasibility (-229 M€), but the case with the higher caprolactam yield resulted in a positive NPV (67 M€). Sensitivity analysis indicated that the economic performance of caprolactam production can be improved with the increase in capacity (higher C6 sugars intake) reflecting benefits of the economies of scale. Furthermore, humins valorization for heat and power production was considered and found to have a positive effect. Butadiene production was found sensitive to the price of feedstock C6 sugars and product butadiene. However, even at 100% variation of the two parameters, butadiene production remained economically infeasible. Overall, the caprolactam production line shows higher economic potential in comparison to that of butadiene. The results are useful in guiding experimental research and providing direction for further development of bio-based chemicals.

Keywords: bio-based chemicals, biorefinery, C6 sugars, economic analysis, process modelling

Procedia PDF Downloads 152
91 Origins: An Interpretive History of MMA Design Studio’s Exhibition for the 2023 Venice Biennale

Authors: Jonathan A. Noble

Abstract:

‘Origins’ is an exhibition designed and installed by MMA Design Studio, at the 2023 Venice Biennale. The instillation formed part of the ‘Dangerous Liaisons’ group exhibition at the Arsenale building. An immersive experience was created for those who visited, where video projection and the bodies of visitors interacted with the scene. Designed by South African architect, Mphethi Morojele – founder and owner of MMA – the primary inspiration for ‘Origins’ was the recent discovery by Professor Karim Sadr in 2019, of a substantial Tswana settlement. Situated in present day Suikerbosrand Nature Reserve, some 45km south of Johannesburg, this precolonial city named Kweneng, has been dated back to the fifteenth century. This remarkable discovery was achieved thanks to advanced aerial, LiDAR scanning technology, which was used to capture the traces of Kweneng, spanning a terrain of some 10km long and 2km wide. Discovered by light (LiDAR) and exhibited through light, Origins presents a simulated experience of Kweneng. The presentation of Kweneng was achieved primarily though video, with a circular projection onto the floor of an animated LiDAR data sequence, and onto the walls a filmed dance sequence choreographed to embody the architectural, spatial and symbolic significance of Kweneng. This paper documents the design process that was involved in the conceptualization, development and final realization of this noteworthy exhibition, with an elucidation upon key social and cultural questions pertaining to precolonial heritage, reimagined histories and postcolonial identity. Periods of change and of social awakening sometimes spark an interest in questions of origin, of cultural lineage and belonging – and which certainly is the case for contemporary, post-Apartheid South Africa. Researching this paper has required primary study of MMA Design Studio’s project archive, including various proposals and other design related documents, conceptual design sketches, architectural drawings and photographs. This material is supported by the authors first-hand interviews with Morejele and others who were involved, especially with respect to the choreography of the interpretive dance, LiDAR visualization techniques and video production that informed the simulated, immersive experience at the exhibition. Presenting a ‘dangerous liaison’ between architecture and dance, Origins looks into the distant past to frame contemporary questions pertaining to intangible heritage, animism and embodiment through architecture and dance – considerations which are required “to survive the future”, says Morojele.

Keywords: architecture and dance, Kweneng, MMA design studio, origins, Venice Biennale

Procedia PDF Downloads 88
90 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria

Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola

Abstract:

Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.

Keywords: mitigating, antibiotics, phytobiotics, poultry farming

Procedia PDF Downloads 171
89 Bioremediation of Phenol in Wastewater Using Polymer-Supported Bacteria

Authors: Areej K. Al-Jwaid, Dmitiry Berllio, Andrew Cundy, Irina Savina, Jonathan L. Caplin

Abstract:

Phenol is a toxic compound that is widely distributed in the environment including the atmosphere, water and soil, due to the release of effluents from the petrochemical and pharmaceutical industries, coking plants and oil refineries. Moreover, a range of daily products, using phenol as a raw material, may find their way into the environment without prior treatment. The toxicity of phenol effects both human and environment health, and various physio-chemical methods to remediate phenol contamination have been used. While these techniques are effective, their complexity and high cost had led to search for alternative strategies to reduce and eliminate high concentrations of phenolic compounds in the environment. Biological treatments are preferable because they are environmentally friendly and cheaper than physico-chemical approaches. Some microorganisms such as Pseudomonas sp., Rhodococus sp., Acinetobacter sp. and Bacillus sp. have shown a high ability to degrade phenolic compounds to provide a sole source of energy. Immobilisation process utilising various materials have been used to protect and enhance the viability of cells, and to provide structural support for the bacterial cells. The aim of this study is to develop a new approach to the bioremediation of phenol based on an immobilisation strategy that can be used in wastewater. In this study, two bacterial species known to be phenol degrading bacteria (Pseudomonas mendocina and Rhodococus koreensis) were purchased from National Collection of Industrial, Food and Marine Bacteria (NCIMB). The two species and mixture of them were immobilised to produce macro porous crosslinked cell cryogels samples by using four types of cross-linker polymer solutions in a cryogelation process. The samples were used in a batch culture to degrade phenol at an initial concentration of 50mg/L at pH 7.5±0.3 and a temperature of 30°C. The four types of polymer solution - i. glutaraldehyde (GA), ii. Polyvinyl alcohol with glutaraldehyde (PVA+GA), iii. Polyvinyl alcohol–aldehyde (PVA-al) and iv. Polyetheleneimine–aldehyde (PEI-al), were used at different concentrations, ranging from 0.5 to 1.5% to crosslink the cells. The results of SEM and rheology analysis indicated that cell-cryogel samples crosslinked with the four cross-linker polymers formed monolithic macro porous cryogels. The samples were evaluated for their ability to degrade phenol. Macro porous cell–cryogels crosslinked with GA and PVA+GA showed an ability to degrade phenol for only one week, while the other samples crosslinked with a combination of PVA-al + PEI-al at two different concentrations have shown higher stability and viability to reuse to degrade phenol at concentration (50 mg/L) for five weeks. The initial results of using crosslinked cell cryogel samples to degrade phenol indicate that is a promising tool for bioremediation strategies especially to eliminate and remove the high concentration of phenol in wastewater.

Keywords: bioremediation, crosslinked cells, immobilisation, phenol degradation

Procedia PDF Downloads 234
88 Effects of Soaking of Maize on the Viscosity of Masa and Tortilla Physical Properties at Different Nixtamalization Times

Authors: Jorge Martínez-Rodríguez, Esther Pérez-Carrillo, Diana Laura Anchondo Álvarez, Julia Lucía Leal Villarreal, Mariana Juárez Dominguez, Luisa Fernanda Torres Hernández, Daniela Salinas Morales, Erick Heredia-Olea

Abstract:

Maize tortillas are a staple food in Mexico which are mostly made by nixtamalization, which includes the cooking and steeping of maize kernels in alkaline conditions. The cooking step in nixtamalization demands a lot of energy and also generates nejayote, a water pollutant, at the end of the process. The aim of this study was to reduce the cooking time by adding a maize soaking step before nixtamalization while maintaining the quality properties of masa and tortillas. Maize kernels were soaked for 36 h to increase moisture up to 36%. Then, the effect of different cooking times (0, 5, 10, 15, 20, 20, 25, 30, 35, 45-control and 50 minutes) was evaluated on viscosity profile (RVA) of masa to select the treatments with a profile similar or equal to control. All treatments were left steeping overnight and had the same milling conditions. Treatments selected were 20- and 25-min cooking times which had similar values for pasting temperature (79.23°C and 80.23°C), Maximum Viscosity (105.88 Cp and 96.25 Cp) and Final Viscosity (188.5 Cp and 174 Cp) to those of 45 min-control (77.65 °C, 110.08 Cp, and 186.70 Cp, respectively). Afterward, tortillas were produced with the chosen treatments (20 and 25 min) and for control, then were analyzed for texture, damage starch, colorimetry, thickness, and average diameter. Colorimetric analysis of tortillas only showed significant differences for yellow/blue coordinates (b* parameter) at 20 min (0.885), unlike the 25-minute treatment (1.122). Luminosity (L*) and red/green coordinates (a*) showed no significant differences from treatments with respect control (69.912 and 1.072, respectively); however, 25 minutes was closer in both parameters (73.390 and 1.122) than 20 minutes (74.08 and 0.884). For the color difference, (E), the 25 min value (3.84) was the most similar to the control. However, for tortilla thickness and diameter, the 20-minute with 1.57 mm and 13.12 cm respectively was closer to those of the control (1.69 mm and 13.86 cm) although smaller to it. On the other hand, the 25 min treatment tortilla was smaller than both 20 min and control with 1.51 mm thickness and 13.590 cm diameter. According to texture analyses, there was no difference in terms of stretchability (8.803-10.308 gf) and distance for the break (95.70-126.46 mm) among all treatments. However, for the breaking point, all treatments (317.1 gf and 276.5 gf for 25 and 20- min treatment, respectively) were significantly different from the control tortilla (392.2 gf). Results suggest that by adding a soaking step and reducing cooking time by 25 minutes, masa and tortillas obtained had similar functional and textural properties to the traditional nixtamalization process.

Keywords: tortilla, nixtamalization, corn, lime cooking, RVA, colorimetry, texture, masa rheology

Procedia PDF Downloads 176
87 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility

Procedia PDF Downloads 265
86 Scaling out Sustainable Land Use Systems in Colombia: Some Insights and Implications from Two Regional Case Studies

Authors: Martha Lilia Del Rio Duque, Michelle Bonatti, Katharina Loehr, Marcos Lana, Tatiana Rodriguez, Stefan Sieber

Abstract:

Nowadays, most agricultural practices can reduce the ability of ecosystems to provide goods and services. To enhance environmentally friendly food production and to maximize social and economic benefits, sustainable land use systems (SLUS) are one of the most critical strategies increasingly/strongly promoted by donors organizations, international agencies, and policymakers. This process involves the question of how SLUS can be scaled out also large-scale landscapes and not merely isolated experiments. As SLUS are context-specific strategies, diffusion and replication of successful SLUS in Colombia required the identification of main factors that facilitate this scaling out process. We applied a case study approach to investigate the scaling out process of SLUS in cocoa and livestock sector within peacebuilding territories in Colombia, specifically, in Cesar and Caqueta region. These two regions are contrasting, but both have a current trend of increasing land degradation. Presently in Colombia, Caqueta is one of the most deforested departments, and Cesar has some most degraded soils. Following a qualitative research approach, 19 semi-structured interviews and 2 focus groups were conducted with agroforestry experts in both regions to analyze (1) what does it mean a sustainable land use system in Cocoa/Livestock, specifically in Caqueta or Cesar and (2) to identify the key elements at the level of the following dimensions: biophysical, economic and profitability, market, social, policy and institutions that can explain how and why SLUS are replicated and spread among more producers. The Interviews were coded and analyzed using MAXQDA to identify, analyze and report patterns (themes) within data. As the results show, key themes, among which: premium market, solid regional markets and price stability, water availability and management, generational renewal, land use knowledge and diversification, producer organization and certifications are crucial to understand how the SLUS can have an impact across large-scale landscapes and how the scaling out process can be set up best in order to be successful across different contexts. The analysis further reveals which key factors might affect SLUS efficiency.

Keywords: agroforestry, cocoa sector, Colombia, livestock sector, sustainable land use system

Procedia PDF Downloads 160
85 From Research to Practice: Upcycling Cinema Icons

Authors: Mercedes Rodriguez Sanchez, Laura Luceño Casals

Abstract:

With the rise of social media, creative people and brands everywhere are constantly generating content. The students with Bachelor's Degrees in Fashion Design use platforms such as Instagram or TikTok to look for inspiration and entertainment, as well as a way to develop their own ideas and share them with a wide audience. Information and Communications Technologies (ICT) have become a central aspect of higher education, virtually affecting every aspect of the student experience. Following the current trend, during the first semester of the second year, a collaborative project across two subjects –Design Management and History of Fashion Design– was implemented. After an introductory class focused on the relationship between fashion and cinema, as well as a brief history of 20th-century fashion, the students freely chose a work team and an iconic look from a movie costume. They researched the selected movie and its sociocultural context, analyzed the costume and the work of the designer, and studied the style, fashion magazines and most popular films of the time. Students then redesigned and recreated the costume, for which they were compelled to recycle the materials they had available at home as an unavoidable requirement of the activity. Once completed the garment, students delivered in-class, team-based presentations supported by the final design, a project summary poster and a making-of video, which served as a documentation tool of the costume design process. The methodologies used include Challenge-Based Learning (CBL), debates, Internet research, application of Information and Communications Technologies, and viewing clips of classic films, among others. After finishing the projects, students were asked to complete two electronic surveys to measure the acquisition of transversal and specific competencies of each subject. Results reveal that this activity helped the students' knowledge acquisition, a deeper understanding of both subjects and their skills development. The classroom dynamic changed. The multidisciplinary approach encouraged students to collaborate with their peers, while educators were better able to keep students' interest and promote an engaging learning process. As a result, the activity discussed in this paper confirmed the research hypothesis: it is positive to propose innovative teaching projects that combine academic research with playful learning environments.

Keywords: cinema, cooperative learning, fashion design, higher education, upcycling

Procedia PDF Downloads 78
84 Genome-Wide Homozygosity Analysis of the Longevous Phenotype in the Amish Population

Authors: Sandra Smieszek, Jonathan Haines

Abstract:

Introduction: Numerous research efforts have focused on searching for ‘longevity genes’. However, attempting to decipher the genetic component of the longevous phenotype have resulted in limited success and the mechanisms governing longevity remain to be explained. We conducted a genome-wide homozygosity analysis (GWHA) of the founder population of the Amish community in central Ohio. While genome-wide association studies using unrelated individuals have revealed many interesting longevity associated variants, these variants are typically of small effect and cannot explain the observed patterns of heritability for this complex trait. The Amish provide a large cohort of extended kinships allowing for in depth analysis via family-based approach excellent population due to its. Heritability of longevity increases with age with significant genetic contribution being seen in individuals living beyond 60 years of age. In our present analysis we show that the heritability of longevity is estimated to be increasing with age particularly on the paternal side. Methods: The present analysis integrated both phenotypic and genotypic data and led to the discovery of a series of variants, distinct for stratified populations across ages and distinct for paternal and maternal cohorts. Specifically 5437 subjects were analyzed and a subset of 893 successfully genotyped individuals was used to assess CHIP heritability. We have conducted the homozygosity analysis to examine if homozygosity is associated with increased risk of living beyond 90. We analyzed AMISH cohort genotyped for 614,957 SNPs. Results: We delineated 10 significant regions of homozygosity (ROH) specific for the age group of interest (>90). Of particular interest was ROH on chromosome 13, P < 0.0001. The lead SNPs rs7318486 and rs9645914 point to COL4A2 and our lead SNP. COL25A1 encodes one of the six subunits of type IV collagen, the C-terminal portion of the protein, known as canstatin, is an inhibitor of angiogenesis and tumor growth. COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities. The second region of interest points to IRS2. Furthermore we built a classifier using the obtained SNPs from the significant ROH region with 0.945 AUC giving ability to discriminate between those living beyond to 90 years of age and beyond. Conclusion: In conclusion our results suggest that a history of longevity does indeed contribute to increasing the odds of individual longevity. Preliminary results are consistent with conjecture that heritability of longevity is substantial when we start looking at oldest fifth and smaller percentiles of survival specifically in males. We will validate all the candidate variants in independent cohorts of centenarians, to test whether they are robustly associated with human longevity. The identified regions of interest via ROH analysis could be of profound importance for the understanding of genetic underpinnings of longevity.

Keywords: regions of homozygosity, longevity, SNP, Amish

Procedia PDF Downloads 232
83 Development of Technologies for the Treatment of Nutritional Problems in Primary Care

Authors: Marta Fernández Batalla, José María Santamaría García, Maria Lourdes Jiménez Rodríguez, Roberto Barchino Plata, Adriana Cercas Duque, Enrique Monsalvo San Macario

Abstract:

Background: Primary Care Nursing is taking more autonomy in clinical decisions. One of the most frequent therapies to solve is related to the problems of maintaining a sufficient supply of food. Nursing diagnoses related to food are addressed by the nurse-family and community as the first responsible. Objectives and interventions are set according to each patient. To improve the goal setting and the treatment of these care problems, a technological tool is developed to help nurses. Objective: To evaluate the computational tool developed to support the clinical decision in feeding problems. Material and methods: A cross-sectional descriptive study was carried out at the Meco Health Center, Madrid, Spain. The study population consisted of four specialist nurses in primary care. These nurses tested the tool on 30 people with ‘need for nutritional therapy’. Subsequently, the usability of the tool and the satisfaction of the professional were sought. Results: A simple and convenient computational tool is designed for use. It has 3 main entrance fields: age, size, sex. The tool returns the following information: BMI (Body Mass Index) and caloric consumed by the person. The next step is the caloric calculation depending on the activity. It is possible to propose a goal of BMI or weight to achieve. With this, the amount of calories to be consumed is proposed. After using the tool, it was determined that the tool calculated the BMI and calories correctly (in 100% of clinical cases). satisfaction on nutritional assessment was ‘satisfactory’ or ‘very satisfactory’, linked to the speed of operations. As a point of improvement, the options of ‘stress factor’ linked to weekly physical activity. Conclusion: Based on the results, it is clear that the computational tools of decision support are useful in the clinic. Nurses are not only consumers of computational tools, but can develop their own tools. These technological solutions improve the effectiveness of nutrition assessment and intervention. We are currently working on improvements such as the calculation of protein percentages as a function of protein percentages as a function of stress parameters.

Keywords: feeding behavior health, nutrition therapy, primary care nursing, technology assessment

Procedia PDF Downloads 227
82 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob

Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.

Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound

Procedia PDF Downloads 267
81 Studying the Effect of Reducing Thermal Processing over the Bioactive Composition of Non-Centrifugal Cane Sugar: Towards Natural Products with High Therapeutic Value

Authors: Laura Rueda-Gensini, Jader Rodríguez, Juan C. Cruz, Carolina Munoz-Camargo

Abstract:

There is an emerging interest in botanicals and plant extracts for medicinal practices due to their widely reported health benefits. A large variety of phytochemicals found in plants have been correlated with antioxidant, immunomodulatory, and analgesic properties, which makes plant-derived products promising candidates for modulating the progression and treatment of numerous diseases. Non-centrifugal cane sugar (NCS), in particular, has been known for its high antioxidant and nutritional value, but composition-wise variability due to changing environmental and processing conditions have considerably limited its use in the nutraceutical and biomedical fields. This work is therefore aimed at assessing the effect of thermal exposure during NCS production over its bioactive composition and, in turn, its therapeutic value. Accordingly, two modified dehydration methods are proposed that employ: (i) vacuum-aided evaporation, which reduces the necessary temperatures to dehydrate the sample, and (ii) window refractance evaporation, which reduces thermal exposure time. The biochemical composition of NCS produced under these two methods was compared to traditionally-produced NCS by estimating their total polyphenolic and protein content with Folin-Ciocalteu and Bradford assays, as well as identifying the major phenolic compounds in each sample via HPLC-coupled mass spectrometry. Their antioxidant activities were also compared as measured by their scavenging potential of ABTS and DPPH radicals. Results show that the two modified production methods enhance polyphenolic and protein yield in resulting NCS samples when compared to traditional production methods. In particular, reducing employed temperatures with vacuum-aided evaporation demonstrated to be superior at preserving polyphenolic compounds, as evidenced both in the total and individual polyphenol concentrations. However, antioxidant activities were not significantly different between these. Although additional studies should be performed to determine if the observed compositional differences affect other therapeutic activities (e.g., anti-inflammatory, analgesic, and immunoprotective), these results suggest that reducing thermal exposure holds great promise for the production of natural products with enhanced nutritional value.

Keywords: non-centrifugal cane sugar, polyphenolic compounds, thermal processing, antioxidant activity

Procedia PDF Downloads 91
80 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 65
79 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows

Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman

Abstract:

The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.

Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer

Procedia PDF Downloads 126
78 Healthcare Providers’ Perception Towards Utilization of Health Information Applications and Its Associated Factors in Healthcare Delivery in Health Facilities in Cape Coast Metropolis, Ghana

Authors: Richard Okyere Boadu, Godwin Adzakpah, Nathan Kumasenu Mensah, Kwame Adu Okyere Boadu, Jonathan Kissi, Christiana Dziyaba, Rosemary Bermaa Abrefa

Abstract:

Information and communication technology (ICT) has significantly advanced global healthcare, with electronic health (e-Health) applications improving health records and delivery. These innovations, including electronic health records, strengthen healthcare systems. The study investigates healthcare professionals' perceptions of health information applications and their associated factors in the Cape Coast Metropolis of Ghana's health facilities. Methods: We used a descriptive cross-sectional study design to collect data from 632 healthcare professionals (HCPs), in the three purposively selected health facilities in the Cape Coast municipality of Ghana in July 2022. Shapiro-Wilk test was used to check the normality of dependent variables. Descriptive statistics were used to report means with corresponding standard deviations for continuous variables. Proportions were also reported for categorical variables. Bivariate regression analysis was conducted to determine the factors influencing the Benefits of Information Technology (BoIT); Barriers to Information Technology Use (BITU); and Motives of Information Technology Use (MoITU) in healthcare delivery. Stata SE version 15 was used for the analysis. A p-value of less than 0.05 served as the basis for considering a statistically significant accepting hypothesis. Results: Healthcare professionals (HCPs) generally perceived moderate benefits (Mean score (M)=5.67) from information technology (IT) in healthcare. However, they slightly agreed that barriers like insufficient computers (M=5.11), frequent system downtime (M=5.09), low system performance (M=5.04), and inadequate staff training (M=4.88) hindered IT utilization. Respondents slightly agreed that training (M=5.56), technical support (M=5.46), and changes in work procedures (M=5.10) motivated their IT use. Bivariate regression analysis revealed significant influences of education, working experience, healthcare profession, and IT training on attitudes towards IT utilization in healthcare delivery (BoIT, BITU, and MoITU). Additionally, the age of healthcare providers, education, and working experience significantly influenced BITU. Ultimately, age, education, working experience, healthcare profession, and IT training significantly influenced MoITU in healthcare delivery. Conclusions: Healthcare professionals acknowledge moderate benefits of IT in healthcare but encounter barriers like inadequate resources and training. Motives for IT use include staff training and support. Bivariate regression analysis shows education, working experience, profession, and IT training significantly influence attitudes toward IT adoption. Targeted interventions and policies can enhance IT utilization in the Cape Coast Metropolis, Ghana.

Keywords: health information application, utilization of information application, information technology use, healthcare

Procedia PDF Downloads 65
77 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns

Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido

Abstract:

The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.

Keywords: leaching, organic amendments, phytostabilization, polluted soils

Procedia PDF Downloads 110
76 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636

Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa

Abstract:

Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.

Keywords: bioleaching, metal removal, spent catalysts, Acidithiobacillus thiooxidans

Procedia PDF Downloads 140
75 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications

Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque

Abstract:

Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.

Keywords: energetic certification, virtual reality, augmented reality, sustainability

Procedia PDF Downloads 186
74 Contribution of the Corn Milling Industry to a Global and Circular Economy

Authors: A. B. Moldes, X. Vecino, L. Rodriguez-López, J. M. Dominguez, J. M. Cruz

Abstract:

The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly.

Keywords: biosurfactantes, circular economy, corn, sustainability

Procedia PDF Downloads 261
73 Sustainable Living Where the Immaterial Matters

Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou

Abstract:

This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?

Keywords: blurring zones, porous borders, spaces of flow, urban recipe

Procedia PDF Downloads 420
72 Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals

Authors: Jonathan Sahu, Jill Aylott

Abstract:

Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.

Keywords: advocacy, autism, health inequalities, intellectual developmental disabilities, quality of care

Procedia PDF Downloads 217