Search results for: array electronic scanning
949 Exploration of the Psychological Aspect of Empowerment of Marginalized Women Working in the Unorganized Sector of Metropolis City
Authors: Sharmistha Chanda, Anindita Chaudhuri
Abstract:
This exploratory study highlights the psychological aspects of women's empowerment to find the importance of the psychological dimension of empowerment, such as; meaning, competence, self-determination, impact, and assumption, especially in the weaker marginalized section of women. A large proportion of rural, suburban, and urban poor survive by working in unorganized sectors of metropolitan cities. Relative Poverty and lack of employment in rural areas and small towns drive many people to the metropolitan city for work and livelihood. Women working in that field remain unrecognized as people of low socio-economic status. They are usually willing to do domestic work as daily wage workers, single wage earners, street vendors, family businesses like agricultural activities, domestic workers, and self-employed. Usually, these women accept such jobs because they do not have such an opportunity as they lack the basic level of education that is required for better-paid jobs. The unorganized sector, on the other hand, has no such clear-cut employer-employee relationships and lacks most forms of social protection. Having no fixed employer, these workers are casual, contractual, migrant, home-based, own-account workers who attempt to earn a living from whatever meager assets and skills they possess. Women have become more empowered both financially and individually through small-scale business ownership or entrepreneurship development and in household-based work. In-depth interviews have been done with 10 participants in order to understand their living styles, habits, self-identity, and empowerment in their society in order to evaluate the key challenges that they may face following by qualitative research approach. Transcription has been done from the collected data. The three-layer coding technique guides the data analysis process, encompassing – open coding, axial coding, and selective coding. Women’s Entrepreneurship is one of the foremost concerns as the Government, and non-government institutions are readily serving this domain with the primary objectives of promoting self-employment opportunities in general and empowering women in specific. Thus, despite hardship and unrecognition unorganized sector provides a huge array of opportunities for rural and sub-urban poor to earn. Also, the upper section of society tends to depend on this working force. This study gave an idea about the well-being, and meaning in life, life satisfaction on the basis of their lived experience.Keywords: marginalized women, psychological empowerment, relative poverty, and unorganized sector.
Procedia PDF Downloads 59948 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation
Authors: Alaa Hamed Salama, Rehab Nabil Shamma
Abstract:
Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization
Procedia PDF Downloads 449947 Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor
Authors: Santimoy Khilari, Debabrata Pradhan
Abstract:
Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole
Procedia PDF Downloads 340946 Analysis the Impacts of WeChat Mobile Payment in China Teens' Online Purchasing Behaviors
Authors: Lok Yi Joyce Poon
Abstract:
China's mobile payment market has boomed in the past few years. WeChat (Chinese name as Weixin) owned by Tencent is known as the fastest growing all-in-one social messaging platforms. The company has launched the WeChat Pay in 2013, in which users can link their credit card to their user account and make payments within the app’s built in digital wallet. WeChat Payment is a one-stop payment tool that can provide a seamless online experience for the shoppers to transfer money between WeChat users (peer-to-peer) and make payments online by scanning a QR code, a prominent facilitator for transactions in WeChat, to complete the payment with the app without directing the users to the external websites. The aims of this study are to examine the effectiveness of WeChat mobile payment in China as well as the impacts of the China teen’s online purchasing behavior since the establishment of WeChat Payment. The research method of this study is conducted by both online survey on Sojump, a popular online survey platform in China. A total of 120 respondents among 18 to 25 teens in China completed the survey. Data sources included participants’ response to an end-of-session questionnaire, encompassing with the types of multiple choice, open-ended questions. To have an in-depth analysis, a face-to-face interview with a Chinese teen who is a frequent user of the WeChat Pay. The main finding of the study shows that the majority of the teenagers frequently use the WeChat payment tool because of its convenience, user-friendliness and the scenarios offered within the WeChat Wallet. The respondents claimed that they will settle the bills in their daily lives via WeChat Pay. However, the respondents in the age group of 40 or above will not use the WeChat Pay due to the security concern and they do not see the app as a platform for commercial activities like online shopping. Throughout the study, it is recommended WeChat should put more efforts on the security issue and improve the payment technology by adopting the near-field communication terminals instead of requiring users to scan QR codes before they complete the transaction.Keywords: digital wallet, mobile payment, online purchasing behavior, WeChat Pay
Procedia PDF Downloads 393945 Save Lives: The Application of Geolocation-Awareness Service in Iranian Pre-hospital EMS Information Management System
Authors: Somayeh Abedian, Pirhossein Kolivand, Hamid Reza Lornejad, Amin Karampour, Ebrahim Keshavarz Safari
Abstract:
For emergency and relief service providers such as pre-hospital emergencies, quick arrival at the scene of an accident or any EMS mission is one of the most important requirements of effective service delivery. Response time (the interval between the time of the call and the time of arrival on scene) is a critical factor in determining the quality of pre-hospital Emergency Medical Services (EMS). This is especially important for heart attack, stroke, or accident patients. Location-based e-services can be broadly defined as any service that provides information pertinent to the current location of an active mobile handset or precise address of landline phone call at a specific time window, regardless of the underlying delivery technology used to convey the information. According to research, one of the effective methods of meeting this goal is determining the location of the caller via the cooperation of landline and mobile phone operators in the country. The follow-up of the Communications Regulatory Authority (CRA) organization has resulted in the receipt of two separate secured electronic web services. Thus, to ensure human privacy, a secure technical architecture was required for launching the services in the pre-hospital EMS information management system. In addition, to quicken medics’ arrival at the patient's bedside, rescue vehicles should make use of an intelligent transportation system to estimate road traffic using a GPS-based mobile navigation system independent of the Internet. This paper seeks to illustrate the architecture of the practical national model used by the Iranian EMS organization.Keywords: response time, geographic location inquiry service (GLIS), location-based service (LBS), emergency medical services information system (EMSIS)
Procedia PDF Downloads 171944 Factors Influencing Respectful Perinatal Care Among Healthcare Professionals In Low-and Middle-resource Countries: A Systematic Review
Authors: Petronella Lunda, Catharina Susanna Minnie, Welma Lubbe
Abstract:
Background This review aimed to provide healthcare professionals with a scientific summary of the best available research evidence on factors influencing respectful perinatal care. The review question was ‘What were the perceptions of midwives and doctors on factors that influence respectful perinatal care?’ Methods A detailed search was done on electronic databases: EBSCOhost: Medline, OAlster, Scopus, SciELO, Science Direct, PubMed, Psych INFO, and SocINDEX. The databases were searched for available literature using a predetermined search strategy. Reference lists of included studies were analysed to identify studies missing from databases. The phenomenon of interest was factors influencing maternity care practices according to midwives and doctors. Pre-determined inclusion and exclusion criteria were used during the selection of potential studies. In total, 13 studies were included in the data analysis and synthesis. Three themes were identified and a total of nine sub-themes. Results Studies conducted in various settings were included in the study. Multiple factors influencing respectful perinatal care were identified. During data synthesis, three themes emerged: healthcare institution, healthcare professionals, and women-related factors. Alongside the themes were sub-themes human resources, medical supplies, norms and practices, physical infrastructure, healthcare professional competencies and attributes, women’s knowledge, and preferences. The three factors influence the provision of respectful perinatal care; addressing them might improve the provision of the care. Conclusion Addressing factors that influence respectful perinatal care is vital towards the prevention of compromised patient care during the perinatal period as these factors have the potential to accelerate or hinder provision of respectful care.Keywords: doctors, maternity care, midwives, obstetrician, perceptions, perinatal care, respectful care
Procedia PDF Downloads 26943 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks
Authors: Bukunola K. Oguntade, Gareth M. Watkins
Abstract:
The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc
Procedia PDF Downloads 136942 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites
Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi
Abstract:
Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging
Procedia PDF Downloads 356941 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+
Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa
Abstract:
Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.Keywords: adsorption, acidity, ion exchange, zeolite
Procedia PDF Downloads 198940 Thorium-Doped PbS Thin Films for Radiation Damage Studies
Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel
Abstract:
We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.Keywords: thin films, doping, radiation damage, chemical bath deposition
Procedia PDF Downloads 393939 Two-Way Reminder Systems to Support Activities of Daily Living for Adults with Cognitive Impairments: A Scoping Review
Authors: Julia Brudzinski, Ashley Croswell, Jade Mardin, Hannah Shilling, Jennifer Berg-Carnegie
Abstract:
Adults with brain injuries and mental illnesses commonly experience cognitive impairments that interfere with their participation in activities of daily living (ADLs). Prior research states that electronic reminder systems can support adults with cognitive impairments; however, previous studies focus primarily on one-way reminder systems. Research on adults with chronic diseases reported that two-way reminder systems yield better health outcomes and disease self-management compared to one-way reminder systems. Literature was identified through systematically searching 7 databases and hand-searching relevant reference lists. Retrieved studies were independently screened and reviewed by at least two members of the research team. Data was extracted on study design, participant characteristics, intervention details, study objectives, outcome measures, and important results. 574 articles were screened and reviewed. Nine articles met all inclusion criteria and were included. The literature focused on three main areas: system feasibility (n=8), stakeholder satisfaction (n=6), and efficacy of the two-way reminder systems (n=6). Participants in eight of the studies had brain injuries, with participants in only one study having a mental illness (i.e., schizophrenia). Two-way reminder systems were used to support participation in a wide range of ADLs. The current literature on two-way reminder systems to support ADLs for adults with cognitive impairments focuses on feasibility, stakeholder satisfaction, and system efficacy. Future research should focus on addressing the barriers to accessing and implementing two-way reminder systems and identifying specific client characteristics that would benefit most from using these systems.Keywords: brain injury, digital health, occupational therapy, activities of daily living, two-way reminder systems
Procedia PDF Downloads 75938 A Hard Day's Night: Persistent Within-Individual Effects of Job Demands and the Role of Recovery Processes
Authors: Helen Pluut, Remus Ilies, Nikos Dimotakis, Maral Darouei
Abstract:
This study aims to examine recovery from work as an important daily activity with implications for workplace behavior. Building on affective events theory and the stressor-detachment model as frameworks, this paper proposes and tests a comprehensive within-individual model that uncovers the role of recovery processes at home in linking workplace demands (e.g., workload) and stressors (e.g., workplace incivility) to next-day organizational citizenship behaviors (OCBs). Our sample consisted of 126 full-time employees in a large Midwestern University. For a period of 16 working days, these employees were asked to fill out 3 electronic surveys while at work. The first survey (sent out in the morning) measured self-reported sleep quality, recovery experiences the previous day at home, and momentary effect. The second survey (sent out close to the end of the workday) measured job demands and stressors as well as OCBs, while the third survey in the evening assessed job strain. Data were analyzed using Hierarchical Linear Modeling (HLM). Results indicated that job demands and stressors at work made it difficult to unwind properly at home and have a good night’s sleep, which had repercussions for next day’s morning effect, which, in turn, influenced OCBs. It can be concluded that processes of recovery are vital to an individual’s daily effective functioning and behavior at work, but recovery may become impaired after a hard day’s work. Thus, our study sheds light on the potentially persistent nature of strain experienced as a result of work and points to the importance of recovery processes to enable individuals to avoid such cross-day spillover. Our paper will discuss this implication for theory and practice as well as potential directions for future research.Keywords: affect, job demands, organizational citizenship behavior, recovery, strain
Procedia PDF Downloads 141937 Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women
Authors: Carmela Nardelli, Laura Iaffaldano, Valentina Capobianco, Antonietta Tafuto, Maddalena Ferrigno, Angela Capone, Giuseppe Maria Maruotti, Maddalena Raia, Rosa Di Noto, Luigi Del Vecchio, Pasquale Martinelli, Lucio Pastore, Lucia Sacchetti
Abstract:
Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life.Keywords: hA-MSCs, obesity, miRNA, biosystem
Procedia PDF Downloads 528936 Influence of UV Aging on the Mechanical Properties of Polycarbonate
Authors: S. Redjala, N. Ait Hocine, M. Gratton, N. Poirot, R. Ferhoum, S. Azem
Abstract:
Polycarbonate (PC) is a promising polymer with high transparency in the range of the visible spectrum and is used in various fields, for example medical, electronic, automotive. Its low weight, chemical inertia, high impact resistance and relatively low cost are of major importance. In recent decades, some materials such as metals and ceramics have been replaced by polymers because of their superior advantages. However, some characteristics of the polymers are highly modified under the effect of ultraviolet (UV) radiation and temperature. The changes induced in the material by such aging depend on the exposure time, the wavelength of the UV radiation and the temperature level. The UV energy is sufficient to break the chemical bonds leading to a cleavage of the molecular chains. This causes changes in the mechanical, thermal, optical and morphological properties of the material. The present work is focused on the study of the effects of aging under ultraviolet (UV) radiation and under different temperature values on the physical-chemical and mechanical properties of a PC. Thus, various investigations, such as FTIR and XRD analyses, SEM and optical microscopy observations, micro-hardness measurements and monotonic and cyclic tensile tests, were carried out on the PC in the initial state and after aging. Results have shown the impact of aging on the properties of the PC studied. In fact, the MEB highlighted changes in the superficial morphology of the material by the presence of cracks and material de-bonding in the form of debris. The FTIR spectra reveal an attenuation of the peaks like the hydroxyl (OH) groups located at 3520 cm-1. The XRD lines shift towards a larger angle, reaching a maximum of 3°. In addition, Vickers micro-hardness measurements show that aging affects the surface and the core of the material, which results in different mechanical behaviours under monotonic and cyclic tensile tests. This study pointed out effects of aging on the macroscopic properties of the PC studied, in relationship with its microstructural changes.Keywords: mechanical properties, physical-chemical properties, polycarbonate, UV aging, temperature aging
Procedia PDF Downloads 142935 “Student Veterans’ Transition to Nursing Education: Barriers and Facilitators
Authors: Bruce Hunter
Abstract:
Background: The transition for student veterans from military service to higher education can be a challenging endeavor, especially for those pursuing an education in nursing. While the experiences and perspectives of each student veteran is unique, their successful integration into an academic environment can be influenced by a complex array of barriers and facilitators. This mixed-methods study aims to explore the themes and concepts that can be found in the transition experiences of student veterans in nursing education, with a focus on identifying the barriers they face and the facilitators that support their success. Methods: This study utilizes an explanatory mixed-methods approach. The research participants include student veterans enrolled in nursing programs across three academic institutions in the Southeastern United States. Quantitative Phase: A Likert scale instrument is distributed to a sample of student veterans in nursing programs. The survey assesses demographic information, academic experiences, social experiences, and perceptions of institutional support. Quantitative data is analyzed using descriptive statistics to assess demographics and to identify barriers and facilitators to the transition. Qualitative Phase: Two open-ended questions were posed to student veterans to explore their lived experiences, barriers, and facilitators during the transition to nursing education and to further explain the quantitative findings. Thematic analysis with line-by-line coding is employed to identify recurring themes and narratives that may shed light on the barriers and facilitators encountered. Results: This study found that the successful academic integration of student veterans lies in recognizing the diversity of values and attitudes among student veterans, understanding the potential challenges they face, and engaging in initiative-taking steps to create an inclusive and supportive academic environment that accommodates the unique experiences of this demographic. Addressing these academic and social integration concerns can contribute to a more understanding environment for student veterans in the BSN program. Conclusion: Providing support during this transitional period is crucial not only for retaining veterans, but also for bolstering their success in achieving the status of registered nurses. Acquiring an understanding of military culture emerges as an essential initial step for nursing faculty in student veteran retention and for successful completion of their programs. Participants found that their transition experience lacked meaningful social interactions, which could foster a positive learning environment, enhance their emotional well-being, and could contribute significantly to their overall success and satisfaction in their nursing education journey. Recognizing and promoting academic and social integration is important in helping veterans experience a smooth transition into and through the unfamiliar academic environment of nursing education.Keywords: nursing, education, student veterans, barriers, facilitators
Procedia PDF Downloads 49934 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine
Authors: Sahar Heidary
Abstract:
Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.Keywords: radiology, radiotherapy, medical imaging, cancer treatment
Procedia PDF Downloads 70933 The Uses of Photodynamic Therapy versus Anti-vascular Endothelial Growth Factor in the Management of Acute Central Serous Chorioretinopathy: Systematic Review and Meta-Analysis
Authors: Hadeel Seraj, Mohammed Khoshhal, Mustafa Alhamoud, Hassan Alhashim, Anas Alsaif, Amro Abukhashabah
Abstract:
Central serous chorioretinopathy (CSCR) is an idiopathic retinal disease characterized by localized serous detachment of the neurosensory retina at the macula. To date, there is no high-quality evidence of recent updates on treating acute CSCR, focusing on photodynamic therapy (PDT) and anti-vascular endothelial growth factor (anti-VEGF). Hence, this review aims to systematically review the latest treatment strategies for acute CSCR. Methodology: The following electronic databases were used for a comprehensive and systematic literature review: MEDLINE, EMBASE, and Cochrane. In addition, we analyzed studies comparing PDT with placebo, anti-VEGF with placebo, or PDT with anti-VEGF in treating acute CSC eyes with no previous intervention. Results: Seven studies were included, with a total of 292 eyes. The overall positive results were significantly higher among patients who received PDT compared to control groups (OR = 7.96, 95% CI, 3.02 to 20.95, p < 0.001). The proportions of positive results were 81.0% and 97.1% among patients who received anti-VEGF and PDT, respectively, with no statistically significant differences between the groups. In addition, there were no significant differences between anti-VEGF and control groups. In contrast, PDT was significantly associated with lower recurrence odds than the control groups (OR = 0.12, 95% CI, 0.04 to 0.39, p = 0.042). Conclusion: According to our findings, PDT showed higher positive results than Anti-VEGF in acute CSCR. In addition, PDT was significantly associated with a lower recurrence rate than the control group. However, the analysis needs to be confirmed and updated by large-scale, well-designed RCTs.Keywords: central serous chorioretinopathy, Acute CSCR, photodynamic therapy, anti-vascular endothelial growth factor
Procedia PDF Downloads 79932 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection
Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour
Abstract:
Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid
Procedia PDF Downloads 147931 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application
Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham
Abstract:
E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management
Procedia PDF Downloads 103930 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites
Authors: Engang Wang
Abstract:
The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.Keywords: Cu-Ag composite, magnetic field, microstructure, solidification
Procedia PDF Downloads 214929 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules
Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.Keywords: solar cell, aging, spectral response measurement
Procedia PDF Downloads 103928 The Effect of Satisfaction with the Internet on Online Shopping Attitude With TAM Approach Controlled By Gender
Authors: Velly Anatasia
Abstract:
In the last few decades extensive research has been conducted into information technology (IT) adoption, testing a series of factors considered to be essential for improved diffusion. Some studies analyze IT characteristics such as usefulness, ease of use and/or security, others focus on the emotions and experiences of users and a third group attempts to determine the importance of socioeconomic user characteristics such as gender, educational level and income. The situation is similar regarding e-commerce, where the majority of studies have taken for granted the importance of including these variables when studying e-commerce adoption, as these were believed to explain or forecast who buys or who will buy on the internet. Nowadays, the internet has become a marketplace suitable for all ages and incomes and both genders and thus the prejudices linked to the advisability of selling certain products should be revised. The objective of this study is to test whether the socioeconomic characteristics of experienced e-shoppers such as gender rally moderate the effect of their perceptions of online shopping behavior. Current development of the online environment and the experience acquired by individuals from previous e-purchases can attenuate or even nullify the effect of these characteristics. The individuals analyzed are experienced e-shoppers i.e. individuals who often make purchases on the internet. The Technology Acceptance Model (TAM) was broadened to include previous use of the internet and perceived self-efficacy. The perceptions and behavior of e-shoppers are based on their own experiences. The information obtained will be tested using questionnaires which were distributed and self-administered to respondent accustomed using internet. The causal model is estimated using structural equation modeling techniques (SEM), followed by tests of the moderating effect of socioeconomic variables on perceptions and online shopping behavior. The expected findings of this study indicated that gender moderate neither the influence of previous use of the internet nor the perceptions of e-commerce. In short, they do not condition the behavior of the experienced e-shopper.Keywords: Internet shopping, age groups, gender, income, electronic commerce
Procedia PDF Downloads 338927 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater
Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif
Abstract:
Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.
Procedia PDF Downloads 91926 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis
Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy
Abstract:
Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery
Procedia PDF Downloads 393925 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations
Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward
Abstract:
A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team
Procedia PDF Downloads 143924 Minimal Invasive Esophagectomy for Esophageal Cancer: An Institutional Review From a Dedicated Centre of Pakistan
Authors: Nighat Bakhtiar, Ali Raza Khan, Shahid Khan Khattak, Aamir Ali Syed
Abstract:
Introduction: Chemoradiation followed by resection has been the standard therapy for resectable (cT1-4aN0-3M0) esophageal carcinoma. The optimal surgical approach remains a matter of debate. Therefore, the purpose of this study was to share our experiences of minimal invasive esophagectomies concerning morbidity, mortality and oncological quality. This study aims to enlighten the world about the surgical outcomes after minimally invasive esophagectomy at Shaukat Khanum Hospital Lahore. Objective: The purpose of this study is to review an institutional experience of Surgical outcomes of Minimal Invasive esophagectomies for esophageal cancer. Methodology: This retrospective study was performed after ethical approval at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) Pakistan. Patients who underwent Minimal Invasive esophagectomies for esophageal cancer from March 2018 to March 2023 were selected. Data was collected through the human information system (HIS) electronic database of SKMCH&RC. Data was described using mean and median with minimum and maximum values for quantitative variables. For categorical variables, a number of observations and percentages were reported. Results: A total of 621 patients were included in the study, with the mean age of the patient was 39 years, ranging between 18-58 years. Mean Body Mass Index of patients was 21.2.1±4.1. Neo-adjuvant chemoradiotherapy was given to all patients. The mean operative time was 210.36 ± 64.51 minutes, and the mean blood loss was 121 milliliters. There was one mortality in 90 days, while the mean postoperative hospital stay was 6.58 days with a 4.64 standard deviation. The anastomotic leak rate was 4.2%. Chyle leak was observed in 12 patients. Conclusion: The minimal invasive technique is a safe approach for esophageal cancers, with minimal complications and fast recovery.Keywords: minimal invasive, esophagectomy, laparscopic, cancer
Procedia PDF Downloads 78923 Job Stress Among the Nurses of the Emergency Department of Selected Saudi Hospital
Authors: Mahmoud Abdel Hameed Shahin
Abstract:
Job demands that are incompatible with an employee's skills, resources, or needs cause unpleasant emotional and physical reactions known as job stress. Nurses offer care in hospital emergency rooms all around the world, and since they operate in such a dynamic and unpredictable setting, they are constantly under pressure. It has been discovered that job stress has harmful impacts on nurses' health as well as their capacity to handle the demands of their jobs. The purpose of this study was to evaluate the level of job stress experienced by the emergency department nurses at King Fahad Specialist Hospital in Buraidah City, Saudi Arabia. In October 2021, a cross-sectional descriptive study was conducted. 80 nurses were conveniently selected for the study, the bulk of them worked at King Fahad Specialist Hospital's emergency department. An electronic questionnaire with a sociodemographic data sheet and a job stress scale was given to the participating nurses after ethical approval was received from the Ministry of Health's representative bodies. Using SPSS Version 26, both descriptive and inferential statistics were employed to analyze and tabulate the acquired data. According to the findings, the factors that contributed to the most job stress in the clinical setting were having an excessive amount of work to do and working under arbitrary deadlines, whereas the factors that contributed to the least stress were receiving the proper recognition or rewards for good work. In the emergency room of King Fahad Specialist Hospital, nurses had a moderate level of stress (M=3.32 ± 0.567/5). Based on their experience, emergency nurses' levels of job stress varied greatly, with nurses with less than a year of experience notably experiencing the lowest levels of job stress. The amount of job stress did not differ significantly based on the emergency nurses' age, nationality, gender, marital status, position, or level of education. The causes and impact of stress on emergency nurses should be identified and alleviated by hospitals through the implementation of interventional programs.Keywords: emergency nurses, job pressure, Qassim, Saudi Arabia, job stress
Procedia PDF Downloads 192922 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects
Authors: Rafay Ahmed, Condon Lau
Abstract:
Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization
Procedia PDF Downloads 223921 Challenges in Implementing the Inculcation of Noble Values During Teaching by Primary Schools Teachers in Peninsular Malaysia
Authors: Mohamad Khairi Haji Othman, Mohd Zailani Mohd Yusoff, Rozalina Khalid
Abstract:
The inculcation of noble values in teaching and learning is very important, especially to build students with good characters and values. Therefore, the purpose of this research is to identify the challenges of implementing the inculcation of noble values in teaching in primary schools. This study was conducted at four North Zone Peninsular Malaysia schools. This study was used a qualitative approach in the form of case studies. The qualitative approach aims at gaining meaning and a deep understanding of the phenomenon studied from the perspectives of the study participants and not intended to make the generalization. The sample in this study consists of eight teachers who teach in four types of schools that have been chosen purposively. The method of data collection is through semi-structured interviews used in this study. The comparative method is continuously used in this study to analyze the primary data collected. The study found that the main challenges faced by teachers were students' problems and class control so that teachers felt difficult to the inculcation of noble values in teaching. In addition, the language challenge is difficult for students to understand. Similarly, peers are also challenging because students are more easily influenced by friends rather than listening to teachers' instructions. The last challenge was the influence of technology and mass media electronic more widespread. The findings suggest that teachers need to innovate in order to assist the school in inculcating religious and moral education towards the students. The school through guidance and counseling teachers can also plan some activities that are appropriate to the student's present condition. Through this study, teachers and the school should work together to develop the values of students in line with the needs of the National Education Philosophy that wishes to produce intelligent, emotional, spiritual, intellectual and social human capital.Keywords: challenges, implementation, inculcation, noble values
Procedia PDF Downloads 186920 Extent of Knowledge, Preparedness and Perception on Telemedicine among Family Medicine Resident Physicians in Different Training Institutions in Cebu City, PH during COVID-19 Pandemic
Authors: Kristine Joy Y. Sumanga, Clarissa Mae D. Derecho
Abstract:
Telemedicine is providing health care services using electronic means at a distance, including the diagnosis, treatment, and prevention of diseases as well as the research and evaluation and education of health care providers. The role of telemedicine in this time of the COVID-19 pandemic is vital, especially in the practice of medicine. General Objective: To determine the extent of knowledge, preparedness and perception of telemedicine among Family Medicine Resident Physicians in different training institutions in Cebu City during the Coronavirus Disease 19 pandemic. Methods: A descriptive, cross-sectional survey research study was conducted in four hospital training institutions in Cebu City. A total of 41 respondents gave their consent and were given the online survey questionnaire pertaining to the extent of knowledge, preparedness and perceptions on telemedicine, including respondents’ demographic data and problems encountered in Telemedicine. Results: Out of the 41 respondents, 56.10% were young adults (26 to 30 years old), mostly females (70.73%), single (68.29%), first-year residents (43.90%), employed at a government hospital (70.73%) and are in the traditional residency pathway (82.93%). On relevant experience, 82.93% experienced telemedicine during residency, with 100% on follow-up consultations, and 95% were consulted due to infections. Respondents’ extent of knowledge was average, while the extent of preparedness and perception were great. Problems with low connectivity (80.48%) were noted by most of the respondents. Conclusion: Resident physicians moderately understood the information about telemedicine but with a great extent of preparedness and perception. They are always prepared for telemedicine modality because they are fully aware of its existence and need in the delivery of health care services among their patients at the time of the pandemic. Challenges to low connectivity and handling patients’ data privacy were the major concerns met by the resident physicians in the use of telemedicine.Keywords: telemedicine, knowledge, preparedness, perception, family medicine, residents, COVID 19
Procedia PDF Downloads 79