Search results for: composite overwrapped pressure vessels
2714 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles
Authors: N. Soli, B. Chaouachi, M. Bourouis
Abstract:
We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.Keywords: absorption, DAR cycle, diffusion, propyléne
Procedia PDF Downloads 2762713 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction
Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang
Abstract:
In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories
Procedia PDF Downloads 1612712 Performance Analysis of Solar Air Heater with Fins and Perforated Twisted Tape Insert
Authors: Rajesh Kumar, Prabha Chand
Abstract:
The present paper deals with the analytical investigation on the thermal and thermo-hydraulic performance of the solar air collector fitted with fins and perforated twisted tapes (PTT) of twist ratio 2 with different axial pitch ratio. The mathematical models are presented, and the effect of mass flow rate and axial pitch ratios on the thermal and effective efficiency has been discussed. The results obtained are compared with the results of the solar air heater without fins and twisted tapes. Results conveyed that the collectors with fins and perforated twisted tape perform better but at the expense of increased pressure drop. Also, twisted tape with minimum axial pitch ratio is found to be more efficient than others.Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio
Procedia PDF Downloads 2692711 Effect of Interference and Form Defect on the Cohesion of the Shrink-Fit Assembly
Authors: Allal Bedlaoui, Hamid Boutoutaou
Abstract:
Due to its superior economics, shrink-fit assembly is one of the best mechanical assembly methods. There are simply two components, the axis and hub. It is used in many different industries, including the production of trains, cars, and airplanes. The outer radius of the inner cylinder must be greater than the inner radius of the outer cylinder for this operation; this difference is referred to as the "interference" between the two cylinders. There are three ways to accomplish this: heating the outer cylinder to cause it to expand; cooling the cylinder's inside to cause it to contract; and third, finishing the fitting under a press. At the intersection of the two matched parts, a contact pressure and friction force are generated. We consider interference and form defects in this article because they prevent the connection between the axis and the hub from having a perfect form surface and because we will be looking at how they affect the assembly. Numerical simulation is used to ascertain if interference and form defects have a beneficial or negative influence in the distribution of stresses, assembly resistance, and plasticity.Keywords: shrink-fit, interference, form defect, plasticity, extraction force
Procedia PDF Downloads 802710 Formulation and Technology of the Composition of Essential Oils as a Feed Additive in Poultry with Antibacterial Action
Authors: S. Barbaqadze, M. Goderdzishvili, E. Mosidze, L. Lomtadze, V. Mshvildadze, L. Bakuridze, D. Berashvili, A. Bakuridze
Abstract:
This paper focuses on the formulation of phytobiotic designated for further implantation in poultry farming. Composition was meant to be water-soluble powder containing antibacterial essential oils. The development process involved Thyme, Monarda and Clary sage essential oils. The antimicrobial activity of essential oils composite was meant to be tested against gram-negative and gram-positive bacterial strains. The results are processed using the statistical program Sigma STAT. To make essential oils composition water soluble surfactants were added to them. At the first stage of the study, nine options for the optimal composition of essential oils and surfactants were developed. The effect of the amount of surfactants on the essential oils composition solubility in water has been investigated. On the basis of biopharmaceutical studies, the formulation of phytobiotic has been determined: Thyme, monarda and clary sage essential oils 2:1:1 - 100 parts; Licorice extract 5.25 parts and inhalation lactose 300 parts. A technology for the preparation of phytobiotic has been developed and a technological scheme for the preparation of phytobiotic has been made up. The research was performed within the framework of the grant project CARYS-19-363 funded be the Shota Rustaveli National Science Foundation of Georgia.Keywords: clary, essential oils, monarda, phytobiotics, poultry, thyme
Procedia PDF Downloads 1632709 Consolidation of Carbonyl Nickel Powders by Hot Pressing
Authors: Ridvan Yamanoglu, Ismail Daoud
Abstract:
In the current study, carbonyl nickel powders were sintered by uniaxial hot pressing technique. Loose starting powders were poured directly into a graphite die with a 15.4 mm inner diameter. Two graphite punches with an outer diameter of 15 mm were inserted into the die; then the powders were sintered at different sintering temperatures, holding times and pressure conditions. The sintered samples were polished and examined by optical microscopy. Hardness and bending behavior of the sintered samples were investigated in order to determine the mechanical properties of the sintered nickel samples. To carried out the friction properties of the produced samples wear tests were studied using a pin on disc tribometer. Load and distance were selected as wear test parameters. The fracture surface of the samples after bending test was also carried out by using scanning electron microscopy.Keywords: nickel powder, sintering, hot press, mechanical properties
Procedia PDF Downloads 1702708 Implementation of Clinical Monitoring System of Physiological Parameters
Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi
Abstract:
Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health
Procedia PDF Downloads 4772707 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants
Authors: Punit Kumar, Niraj Kumar
Abstract:
The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.Keywords: EHL, Carreau, shear-thinning, surface roughness, amplitude, wavelength
Procedia PDF Downloads 7332706 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier
Authors: M. V. Rane, Tareke Tekia
Abstract:
Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration
Procedia PDF Downloads 3482705 Practical Limitations of the Fraud Triangle Framework in Fraud Prevention
Authors: Alexander Glebovskiy
Abstract:
Practitioners charged with fraud prevention and investigation strongly rely on the Fraud Triangle framework developed by Joseph T. Wells in 1997 while analyzing the causes of fraud at business organizations. The Fraud Triangle model explains fraud by elements such as pressure, opportunity, and rationalization. This view is not fully suitable for effective fraud prevention as the Fraud Triangle model provides limited insight into the causation of fraud. Fraud is a multifaceted phenomenon, the contextual factors of which may not fit into any framework. Employee criminal behavior in business organizations is influenced by environmental, individual, and organizational aspects. Therefore, further criminogenic factors and processes facilitating fraud in organizational settings need to be considered in the root-cause analysis: organizational culture, leadership style, groupthink effect, isomorphic behavior, crime of obedience, displacement of responsibility, lack of critical thinking and unquestioning conformity and loyalty.Keywords: criminogenesis, fraud triangle, fraud prevention, organizational culture
Procedia PDF Downloads 3022704 Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite
Authors: Osama M. Darwesh, Sahar H. Hassan, Abd El-Raheem R. El-Shanshoury, Shawky Z. Sabae
Abstract:
Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. Twenty morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater.Keywords: bioremediation, AgNPs, AgNPs-SA nanocomposite, Bacillus tequilensis, nanobiotechnology
Procedia PDF Downloads 712703 The Incidence of Metabolic Syndrome in Women with Impaired Reproductive Function According to Astana, Kazakhstan
Authors: A. T. Nakysh, A. S. Idrisov, S. A. Baidurin
Abstract:
This work presents the results of a study the incidence of metabolic syndrome (MetS) in women with impaired reproductive function (IRF) according to the data of Astana, Kazakhstan. The anthropometric, biochemical and instrumental studies were conducted among 515 women, of which 53 patients with MetS according to IDF criteria, 2006, were selected. The frequency of occurrence of the IRF, due to MetS – 10.3% of cases according to the data of Astana. In women of childbearing age with IRF and the MetS, blood pressure (BP), indicators of carbohydrate and lipid metabolism were significantly higher and the level of high density lipoprotein (HDL) significantly lower compared to the same in women with the IRF without MetS. The hyperandrogenism, the hyperestrogenemia, the hyperprolactinemia and the hypoprogesteronemia were found in the patients with MetS and IRF, indicating the impact of MetS on the development of the polycystic ovary syndrome in 28% of cases and hyperplastic processes of the myometrium in 20% of cases.Keywords: dyslipidemia, insulin resistance, metabolic syndrome, reproductive disorders, obesity
Procedia PDF Downloads 3252702 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys
Authors: Surjit Angra, Pooja Rani, Vinod Kumar
Abstract:
In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.Keywords: hydro-turbine, spiral casing, stay ring, structural analysis
Procedia PDF Downloads 5222701 Cheese Production at Low Temperatures Using Probiotic L. casei ATCC 393 and Rennin Enzyme Entrapped in Tubular Cellulose
Authors: Eleftheria Barouni, Antonia Terpou, Maria Kanellaki, Argyro Bekatorou, Athanasios A.Koutinas
Abstract:
The aim of the present work was to evaluate the production of cheese using a composite filter of tubular cellulose (TC) with [a] entrapped rennin enzyme and [b] immobilized L.casei and entrapped enzyme. Tubular cellulose from sawdust was prepared after lignin removal with 1% NaOH. The biocatalysts were thermally dried at 38oC and used for milk coagulation. The effect of temperature (5,20,37 oC) of the first dried biocatalyst on the pH kinetics of milk coagulation was examined. The optimum temperature (37oC) of the first biocatalyst was used for milk coagulation with the second biocatalyst prepared by entrapment of both rennin enzyme and probiotic lactic acid bacteria in order to introduce a sour taste in cheeses. This co-biocatalyst was used for milk coagulation. Samples were studied as regards its effect on lactic acid formation and its correlation with taste test results in cheeses. For both biocatalysts samples were analyzed for total acidity and lactic acid formation by HPLC. The quality of the produced cheeses was examined through the determination of volatile compounds by SPME GC/MS analysis. Preliminary taste tests and microbiological analysis were performed and encourage us for further research regarding scale up.Keywords: tubular cellulose, Lactobacillus casei, rennin enzyme, cheese production
Procedia PDF Downloads 3592700 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance
Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi
Abstract:
This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.Keywords: VPI, resin rich, insulation, stator bar, dissipation factor, voltage endurance
Procedia PDF Downloads 2032699 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD
Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen
Abstract:
The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser
Procedia PDF Downloads 4082698 Local Food Movements and Community Building in Turkey
Authors: Derya Nizam
Abstract:
An alternative understanding of "localization" has gained significance as the ecological and social issues associated with the growing pressure of agricultural homogeneity and standardization become more apparent. Through an analysis of a case study on an alternative food networks in Turkey, this research seeks to critically examine the localization movement. The results indicate that the idea of localization helps to create new niche markets by creating place-based labels, but it also strengthens local identities through social networks that connect rural and urban areas. In that context, localization manifests as a commodification movement that appropriates local and cultural values to generate capitalist profit, as well as a grassroots movement that strengthens the resilience of local communities. This research addresses the potential of community development approaches in the democratization of global agro-food networks.Keywords: community building, local food, alternative food movements, localization
Procedia PDF Downloads 822697 Polymerspolyaniline/CMK-3/Hydroquinone Composite Electrode for Supercapacitor Application
Authors: Hu-Cheng Weng, Jhen-Ting Huang, Chia-Chia Chang, An-Ya Lo
Abstract:
In this study, carbon mesoporous material, CMK-3, was adopted as supporting material for electroactive polymerspolyaniline (PANI), polyaniline, for supercapacitor application, where hydroquinone (HQ) was integrated to enhance the redox reaction of PANI. The results show that the addition of PANI improves the capacitance of electrode from 89 F/g (CMK-3) to 337 F/g (PANI/CMK-3), the addition of HQ furtherly improves the capacitance to 463 F/g (PANI/CMK-3/HQ). The PANI provides higher energy density and also acts as binder of the electrode; the CMK-3 provides higher electron double layer capacitance EDLC and stabilize the polyaniline by its highly porosity. With the addition of HQ, the capacitance of PANI/CMK-3 was further enhanced. In-situ analyses including cyclic voltammetry (CV), chronopotentiometry (CP), electron impedance spectrum (EIS) analyses were applied for electrode performance examination. For materials characterization, the crystal structure, morphology, microstructure, and porosity were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), and 77K N2 adsorption/desorption analyses, respectively. The effects of electrolyte pH value, PANI polymerization time, HQ concentration, and PANI/CMK-3 ratio on capacitance were discussed. The durability was also studied by long-term operation test. The results show that PANI/CMK-3/HQ with great potential for supercapacitor application. Finally, the potential of all-solid PANI/CMK-3/HQ based supercapacitor was successfully demonstrated.Keywords: CMK3, PANI, redox electrolyte, solid supercapacitor
Procedia PDF Downloads 1402696 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel
Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino
Abstract:
Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation
Procedia PDF Downloads 4752695 Characterization and Analysis of Airless Tire in Mountain Cycle
Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy
Abstract:
Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.Keywords: airless tire, diamond structure, honeycomb structure, deformation
Procedia PDF Downloads 842694 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies
Authors: Dmitry V. Fomichev, Vladimir V. Solonin
Abstract:
This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics
Procedia PDF Downloads 3862693 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil
Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap
Abstract:
Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite
Procedia PDF Downloads 2012692 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)
Authors: Adisak Guntida
Abstract:
Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450 °C and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.Keywords: extra support, nanomaterial, propylene self-metathesis, tungsten oxide
Procedia PDF Downloads 2462691 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge
Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq
Abstract:
Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.Keywords: crystallinity, glow discharge, nitriding, sputtering
Procedia PDF Downloads 4242690 Comparison of Various Response Spectrum of Nuclear Power Plant at Chashma Site
Authors: J. Iqbal, A. Shah, M. Zeeshan
Abstract:
UBC-97, USNRC, chines origin code GB50011-2011 and site response spectrum was used to make comparison between them for Chashma site and most conservative one was selected and the USNRC was the most conservative one. The dynamic analysis of CHASNUPP-2 containment building was performed using SAP-2000 for dead load, live load (crane), pre stressed loads, wind load, temperature load, accidental pressure during LOCA, earthquake loads and the conservative response spectrum. After applying selected response spectrum on model, detail comparison was made against area of steal calculated from the analysis and the actually provided. Then prepared curve of area of steal vs. g value which shows that if the particular site was design on that spectrum that much steel needed for structural integrity.Keywords: response spectrum, USNRC, LOCA, area of steel, structure integrity
Procedia PDF Downloads 6822689 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model
Authors: K. Khanafer
Abstract:
The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.Keywords: aortic dissection, fluid-structure interaction, in vitro model, numerical
Procedia PDF Downloads 2742688 Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering
Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang
Abstract:
The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.Keywords: mercaptopropionic acid, chitosan-gold nanoshell, γ-aminobutyric acid, surface-enhanced raman scattering
Procedia PDF Downloads 2772687 Blood Flow in Stenosed Arteries: Analytical and Numerical Study
Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar
Abstract:
Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics
Procedia PDF Downloads 5192686 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test
Authors: S. A. Naeini, M. Ghorbani Tochaee
Abstract:
The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite
Procedia PDF Downloads 1492685 Behaviour of Hollow Tubes Filled with Sand Slag Concrete
Authors: Meriem Senani, Noureedine Ferhoune
Abstract:
This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load, the cross section dimensions were: 100x70x2 mm. A total of 16 stubs have been tested, as follows: 4 filled with ordinary concrete appointed by BO columns, 6 filled with concrete witch natural sand was completely substitute a crystallized sand slag designated in this paper by BSI, and 6 others were tucked in concrete whose natural sand was partially replace by a crystallized sand slag called by BSII. The main objectives of these tests were to clarify the steel specimen's performance filled by concrete sand compared to those filled with ordinary concrete. The main parameters studied are: The height of the specimen (300mm-500mm), eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes, has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex warping of the largest, followed by the smallest due to the outward thrust of the concrete, it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.Keywords: concrete sand, crystallized slag, failure mode, buckling
Procedia PDF Downloads 419