Search results for: liquid metal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4207

Search results for: liquid metal

787 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 234
786 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 78
785 Risk Assessment of Heavy Metals in Soils at Electronic Waste Activity Sites within the Vicinity of Alaba International Market, Nigeria

Authors: A. A. Adebayo, A. O. Ogunkeyede, A. O. Adeigbe

Abstract:

Digital globalisation and yarn of Nigeria society to overcome the digital divide have resulted in contamination of soil by heavy metals (HMs) from e-waste activities at Alaba international market, Lagos, Nigeria. The aim of this research was to determine the concentration of various metals {Cadmium (Cd), Chromium (Cr), Copper (Cu), and Lead (Pb)} and identify their ecological and health risks for the people within the study area. A total of 60 soil samples were collected at Alaba market study area. Two types of samples were collected from each sampling points: topsoil (0-15 cm), subsoil (15 -30 cm). The metal concentration results showed that the soils were heavily contaminated by HMs at topsoil and subsoil. The geoaccummulation and ecological risk indices revealed high pollution level from all studied site. The health risk assessment results suggested that there is high possibility of carcinogenic risk to humans because the carcinogenic risk via corresponding exposure pathways exceeded the safety limit of 10-6 (the acceptable level of carcinogenic risk for human). Furthermore, inhalation of soil particles is the main exposure pathway for Cr to enter the human body for all ages. Children in the vicinity are exposed more to ingestion of Pb since they tend to eat earth (pica) and repeatedly suck their fingers. This study provides basic information to create awareness for a need to introduce pollution control measures and the need to protect the ecosystem and human health within the study area at Alaba international market.

Keywords: contaminated soil, ecological risk, hazard index, risk factor, exposure pathways, heavy metals

Procedia PDF Downloads 251
784 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection

Authors: Bienvenu Gael Fouda Mbanga

Abstract:

This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.

Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection

Procedia PDF Downloads 119
783 Recycling, Reuse and Reintegration of Steel Plant Fines

Authors: R. K. Agrawal, Shiv Agrawal

Abstract:

Fines and micro create fundamental problems of respiration. From mines to mills steel plants generate lot of pollutants. Legislation & Government laws are stricter day by day & each plant has to think of recycling, reuse &reintegration of pollutants generated during the process of steel making. This paper deals with experiments conducted in Bhilai Steel Plant and Real Ispat and Power Limited for reuse, recycle & reintegrate some of the steel making process fines. Iron ore fines with binders have been agglomerated to be used as a part of the charge for small furnaces. This will improve yield at nominal cost. Rolling mill fines have been recycled to increase the yield of sinter making. This will solve the problems of fine disposal. Huge saving on account of recycling will be achieved. Lime fines after briquetting is used along with prime lime. Lime fines have also been used as a binding material during production of fly ash bricks. These fines serve as low-cost binder. Experiments have been conducted along with coke breeze & gas cleaning plant sludge. As a result, the anti-sloping compound has been developed for converter vessels. Dolo char and Char during Sponge Iron production have been successfully used in power generation and brick making. Pellets have been made with ventilation dust & flue dust. These samples have been tried as a coolant in the converter. Pellets have been made with Sinter Plant electrostatic precipitator micro fines with liquid binder. Trials have been conducted to reuse these pellets in sinter making. Coke breeze from coke-ovens fines and mill scale along with binders were agglomerated. This was used in furnace after attaining required screening and reactivity index. These actions will definitely bring social, economic and environment-friendly universe.

Keywords: briquette, dolo char, electrostatic precipitator, pellet, sinter

Procedia PDF Downloads 389
782 Development of New Localized Surface Plasmon Resonance Interfaces Based on ITO Au NPs/ Polymer for Nickel Detection

Authors: F. Z. Tighilt, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, K. Lasmi, N. Gabouze

Abstract:

Recently, the gold nanoparticles (Au NPs) became an active multidisciplinary research topic. First, Au thin films fabricated by alkylthiol-functionalized Au NPs were found to have vapor sensitive conductivities, they were hence widely investigated as electrical chemiresistors for sensing different vapor analytes and even organic molecules in aqueous solutions. Second, Au thin films were demonstrated to have speciallocalized surface plasmon resonances (LSPR), so that highly ordered 2D Au superlattices showed strong collective LSPR bands due to the near-field coupling of adjacent nanoparticles and were employed to detect biomolecular binding. Particularly when alkylthiol ligands were replaced by thiol-terminated polymers, the resulting polymer-modified Au NPs could be readily assembled into 2D nanostructures on solid substrates. Monolayers of polystyrene-coated Au NPs showed typical dipolar near-field interparticle plasmon coupling of LSPR. Such polymer-modified Au nanoparticle films have an advantage that the polymer thickness can be feasibly controlled by changing the polymer molecular weight. In this article, the effect of tin-doped indium oxide (ITO) coatings on the plasmonic properties of ITO interfaces modified with gold nanostructures (Au NSs) is investigated. The interest in developing ITO overlayers is multiple. The presence of a con-ducting ITO overlayer creates a LSPR-active interface, which can serve simultaneously as a working electrode in an electro-chemical setup. The surface of ITO/ Au NPs contains hydroxyl groups that can be used to link functional groups to the interface. Here the covalent linking of nickel /Au NSs/ITO hybrid LSPR platforms will be presented.

Keywords: conducting polymer, metal nanoparticles (NPs), LSPR, poly (3-(pyrrolyl)–carboxylic acid), polypyrrole

Procedia PDF Downloads 266
781 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel

Authors: Sellidj Abdelaziz, Lebaili Soltane

Abstract:

A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).

Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment

Procedia PDF Downloads 115
780 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite

Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak

Abstract:

Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite

Procedia PDF Downloads 187
779 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 121
778 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 134
777 Reducing Antimicrobial Resistance Using Biodegradable Polymer Composites of Mof-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmound, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs, and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 83
776 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)

Authors: Abdullah Ay, Şehnaz Şener

Abstract:

It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.

Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli

Procedia PDF Downloads 21
775 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process

Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.

Keywords: nanoparticle, particle emission, 3D printing, number concentration

Procedia PDF Downloads 181
774 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits

Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar

Abstract:

Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.

Keywords: anxiety, depression, CART, ethanol, immunocytochemistry

Procedia PDF Downloads 393
773 Ultrasound-Assisted Sol – Gel Synthesis of Nano-Boehmite for Biomedical Purposes

Authors: Olga Shapovalova, Vladimir Vinogradov

Abstract:

Among many different sol – gel matrices only alumina can be successfully parenteral injected in the human body. And this is not surprising, because boehmite (aluminium oxyhydroxide) is the metal oxide approved by FDA and EMA for intravenous and intramuscular administrations, and also has been using for a longtime as adjuvant for producing of many modern vaccines. In our earlier study, it has been shown, that denaturation temperature of enzymes entrapped in sol-gel boehmite matrix increases for 30 – 60 °С with preserving of initial activity. It makes such matrices more attractive for long-term storage of non-stable drugs. In current work we present ultrasound-assisted sol-gel synthesis of nano-boehmite. This method provides bio-friendly, very stable, highly homogeneous alumina sol with using only water and aluminium isopropoxide as a precursor. Many parameters of the synthesis were studied in details: time of ultrasound treatment, US frequency, surface area, pore and nanoparticle size, zeta potential and others. Here we investigated the dependence of stability of colloidal sols and textural properties of the final composites as a function of the time of ultrasonic treatment. Chosen ultrasonic treatment time was between 30 and 180 minutes. Surface area, average pore diameter and total pore volume of the final composites were measured by surface and pore size analyzer Nova 1200 Quntachrome. It was shown that the matrices with ultrasonic treatment time equal to 90 minutes have the biggest surface area 431 ± 24 m2/g. On the other had such matrices have a smaller stability in comparison with the samples with ultrasonic treatment time equal to 120 minutes that have the surface area 390 ± 21 m2/g. It was shown that the stable sols could be formed only after 120 minutes of ultrasonic treatment, otherwise the white precipitate of boehmite is formed. We conclude that the optimal ultrasonic treatment time is 120 minutes.

Keywords: boehmite matrix, stabilisation, ultrasound-assisted sol-gel synthesis

Procedia PDF Downloads 265
772 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components

Authors: Andras Dezső, Peter Baumli, George Kaptay

Abstract:

The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.

Keywords: phosphorous, steel, segregation, thermo-calc software

Procedia PDF Downloads 623
771 Role of Selenium and Vitamin E in Occupational Exposure to Heavy Metals (Mercury, Lead and Cadmium): Impact of Working in Lamp Factory

Authors: Tarek Elnimr, Rabab El-kelany

Abstract:

Heavy metals are environmental contaminants that may pose long-term health risks. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. The objective of this study was to determine whether co-consumption of nutritional supplements as selenium and vitamin E would treat the hazardous effects of exposure to mercury, lead and cadmium. 108 workers (60 males and 48 females) were the subject of this study, their ages ranged from 19-63 years, (M = 29.5±10.12). They were working in lamp factory for an average of 0.5-40 years (M= 5.3±8.8). Twenty control subjects matched for age and gender were used for comparison. All workers were subjected to neuropsychiatric evaluation. General Health Questionnaire (GHQ-28) revealed that 44.4% were complaining of anxiety, 52.7% of depression, 41.6% of social dysfunction and 22.2% of somatic symptoms. Cognitive tests revealed that long-term memory was not affected significantly when compared with controls, while short term memory and perceptual ability were affected significantly. Blood metal levels were measured by Inductively Coupled Plasma – optical emission spectrometry(ICP-OES), and revealed that the mean blood mercury, lead and cadmium concentrations before treatment were 1.6 mg/l, 0.39 mg/l and 1.7 µg/l, while they decreased significantly after treatment to 1.2 mg/l, 0.29 mg/l and 1.3 µg/l respectively. Anti-oxidative enzymes (paraoxonase and catalase) and lipid peroxidation product (malondialdehyde) were measured before and after treatment with selenium and vitamin E, and showed significant improvement. It could be concluded that co-consumption of selenium and vitamin E produces significant decrease in mercury, lead and cadmium levels in blood.

Keywords: mercury, lead, cadmium, neuropsychiatric impairment, selenium, vitamin E

Procedia PDF Downloads 344
770 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar

Abstract:

The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.

Keywords: humic acids, natural organic matter, zeta potential, soil quality

Procedia PDF Downloads 248
769 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan

Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon

Abstract:

In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.

Keywords: edible film, collagen, myofibril, carrageenan

Procedia PDF Downloads 428
768 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling

Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta

Abstract:

In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.

Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity

Procedia PDF Downloads 126
767 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye

Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi

Abstract:

The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.

Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma

Procedia PDF Downloads 191
766 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Lathyrus sativus L, macroelements, microelements, quality

Procedia PDF Downloads 143
765 Microstructure Analysis of TI-6AL-4V Friction Stir Welded Joints

Authors: P. Leo, E. Cerri, L. Fratini, G. Buffa

Abstract:

The Friction Stir Welding process uses an inert rotating mandrel and a force on the mandrel normal to the plane of the sheets to generate the frictional heat. The heat and the stirring action of the mandrel create a bond between the two sheets without melting the base metal. As matter of fact, the use of a solid state welding process limits the insurgence of defects, due to the presence of gas in melting bath, and avoids the negative effects of materials metallurgical transformation strictly connected with the change of phase. The industrial importance of Ti-6Al-4V alloy is well known. It provides an exceptional good balance of strength, ductility, fatigue and fracture properties together with good corrosion resistance and good metallurgical stability. In this paper, the authors analyze the microstructure of friction stir welded joints of Ti-6Al-4V processed at the same travel speed (35 mm/min) but at different rotation speeds (300-500 rpm). The microstructure of base material (BM), as result from both optical microscope and scanning electron microscope analysis is not homogenous. It is characterized by distorted α/β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the-as received state, without any previous heat treatment. Even the microstructure of the transverse and longitudinal sections of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed, while in the center of the joints the microstructure is less refined. Along longitudinal sections, the microstructure is characterized by equiaxed grains and lamellae. Both the length and area fraction of lamellas increases with distance from longitudinal axis. The hardness of joints is higher than that of BM. As the process temperature increases the average microhardness slightly decreases.

Keywords: friction stir welding, microhardness, microstructure, Ti-6Al-4V

Procedia PDF Downloads 379
764 Comparison of Mechanical Properties of Three Different Orthodontic Latex Elastic Bands Leached with NaOH Solution

Authors: Thipsupar Pureprasert, Niwat Anuwongnukroh, Surachai Dechkunakorn, Surapich Loykulanant, Chaveewan Kongkaew, Wassana Wichai

Abstract:

Objective: Orthodontic elastic bands made from natural rubber continue to be commonly used due to their favorable characteristics. However, there are concerns associated cytotoxicity due to harmful components released during conventional vulcanization (sulfur-based method). With the co-operation of The National Metal and Materials Technology Center (MTEC) and Faculty of Dentistry Mahidol University, a method was introduced to reduce toxic components by leaching the orthodontic elastic bands with NaOH solution. Objectives: To evaluate the mechanical properties of Thai and commercial orthodontic elastic brands (Ormco and W&H) leached with NaOH solution. Material and methods: Three elastic brands (N =30, size ¼ inch, 4.5 oz.) were tested for mechanical properties in terms of initial extension force, residual force, force loss, breaking strength and maximum displacement using a Universal Testing Machine. Results : Force loss significantly decreased in Thai-LEACH and W&H-LEACH, whereas the values increased in Ormco-LEACH (P < 0.05). The data exhibited a significantly decrease in breaking strength with Thai-LEACH and Ormco-LEACH, whereas all 3 brands revealed a significantly decrease in maximum displacement with the leaching process (P < 0.05). Conclusion: Leaching with NaOH solution is a new method, which can remove toxic components from orthodontic latex elastic bands. However, this process can affect their mechanical properties. Leached elastic bands from Thai had comparable properties with Ormco and have potential to be developed as a promising product.

Keywords: leaching, orthodontic elastics, natural rubber latex, orthodontic

Procedia PDF Downloads 270
763 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 230
762 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 156
761 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 140
760 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization

Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay

Abstract:

In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.

Keywords: WEDM, MRR, optimization, surface roughness

Procedia PDF Downloads 74
759 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging

Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland

Abstract:

A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.

Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography

Procedia PDF Downloads 155
758 From Parchment to Pixels: Digital Preservation for the Future

Authors: Abida Khatoon

Abstract:

This study provides an overview of ancient manuscripts, including their historical significance, current digital preservation methods, and the challenges we face in safeguarding these invaluable resources. India has a long-standing tradition of manuscript preservation, with texts that span a wide range of subjects, from religious scriptures to scientific treatises. These manuscripts were written on various materials, including palm leaves, parchment, metal, bark, wood, animal skin, and paper. These manuscripts offer a deep insight into India's cultural and intellectual history. Ancient manuscripts are crucial historical records, providing valuable insights into past civilizations and knowledge systems. As these physical documents become increasingly fragile, digital preservation methods have become essential to ensure their continued accessibility. Digital preservation involves several key techniques. Scanning and digitization create high-resolution digital images of manuscripts, while reprography produces copies to reduce wear on originals. Digital archiving ensures proper storage and management of these digital files, and preservation of electronic data addresses modern formats like web pages and emails. Despite its benefits, digital preservation faces several challenges. Technological obsolescence, data integrity issues, and the resource-intensive nature of the process are significant hurdles. Securing adequate funding is particularly challenging due to high initial costs and ongoing expenses. Looking ahead, the future of digital preservation is promising. Advancements in technology, increased collaboration among institutions, and the development of sustainable funding models will enhance the preservation and accessibility of these important historical documents.

Keywords: preservation strategies, Indian manuscript, cultural heritage, archiving

Procedia PDF Downloads 17