Search results for: chemical fertilizers
1241 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel
Authors: Aptullah Karakas, Murat Baydogan
Abstract:
Hot-dip aluminizing (HDA) is one of the several aluminizing methods to form a wear-, corrosion- and oxidation-resistant aluminide layers on the surface. In this method, the substrate is dipped into a molten aluminum bath, hold in the bath for several minutes, and cooled down to the room temperature in air. A subsequent annealing after the HDA process is generally performed. The main advantage of HDA is its very low investment cost in comparison with other aluminizing methods such as chemical vapor deposition (CVD), pack aluminizing and metalizing. In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology, such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 HV and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is, therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.Keywords: hot-dip aluminizing, microstructure, hardness measurement, diffusion annealing
Procedia PDF Downloads 761240 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications
Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra
Abstract:
Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.Keywords: granular beds, numerical models, rotary kilns, solar thermal applications
Procedia PDF Downloads 331239 Improvement of Artemisinin Production by P. indica in Hairy Root Cultures of A. annua L.
Authors: Seema Ahlawat, Parul Saxena, Malik Zainul Abdin
Abstract:
Malaria is a major health problem in many developing countries. The parasite responsible for the vast majority of fatal malaria infections is Plasmodium falciparum. Unfortunately, most Plasmodium strains including P. falciparum have become resistant to most of the antimalarials including chloroquine, mefloquine, etc. To combat this problem, WHO has recommended the use of artemisinin and its derivatives in artemisinin based combination therapy (ACT). Due to its current use in artemisinin based-combination therapy (ACT), its global demand is increasing continuously. But, the relatively low yield of artemisinin in A. annua L. plants and unavailability of economically viable synthetic protocols are the major bottlenecks for its commercial production and clinical use. Chemical synthesis of artemisinin is also very complex and uneconomical. The hairy root system, using the Agrobacterium rhizogenes LBA 9402 strain to enhance the production of artemisinin in A. annua L., is developed in our laboratory. The transgenic nature of hairy root lines and the copy number of trans gene (rol B) were confirmed using PCR and Southern Blot analyses, respectively. The effect of different concentrations of Piriformospora indica on artemisinin production in hairy root cultures were evaluated. 3% P. indica has resulted 1.97 times increase in artemisinin production in comparison to control cultures. The effects of P. indica on artemisinin production was positively correlated with regulatory genes of MVA, MEP and artemisinin biosynthetic pathways, viz. hmgr, ads, cyp71av1, aldh1, dxs, dxr and dbr2 in hairy root cultures of A. annua L. Mass scale cultivation of A. annua L. hairy roots by plant tissue culture technology may be an alternative route for production of artemisinin. A comprehensive investigation of the hairy root system of A. annua L. would help in developing a viable process for the production of artemisinin. The efficiency of the scaling up systems still needs optimization before industrial exploitation becomes viable.Keywords: A. annua L., artemisinin, hairy root cultures, malaria
Procedia PDF Downloads 4151238 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process
Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani
Abstract:
Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture
Procedia PDF Downloads 651237 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials
Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié
Abstract:
Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.Keywords: bio-based materials, mould growth, numerical prediction, reliability approach
Procedia PDF Downloads 461236 The Application of Enzymes on Pharmaceutical Products and Process Development
Authors: Reginald Anyanwu
Abstract:
Enzymes are biological molecules that significantly regulate the rate of almost all of the chemical reactions that take place within cells, and have been widely used for products’ innovations. They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism. The present study was aimed at finding out the extent to which biological molecules have been utilized by pharmaceutical, food and beverage, and biofuel industries in commercial and scale up applications. Taking into account the escalating business opportunities in this vertical, biotech firms have also been penetrating enzymes industry especially that of food. The aim of the study therefore was to find out how biocatalysis can be successfully deployed; how enzyme application can improve industrial processes. To achieve the purpose of the study, the researcher focused on the analytical tools that are critical for the scale up implementation of enzyme immobilization to ascertain the extent of increased product yield at minimum logistical burden and maximum market profitability on the environment and user. The researcher collected data from four pharmaceutical companies located at Anambra state and Imo state of Nigeria. Questionnaire items were distributed to these companies. The researcher equally made a personal observation on the applicability of these biological molecules on innovative Products since there is now shifting trends toward the consumption of healthy and quality food. In conclusion, it was discovered that enzymes have been widely used for products’ innovations but there are however variations on their applications. It was also found out that pivotal contenders of enzymes market have lately been making heavy investments in the development of innovative product solutions. It was recommended that the applications of enzymes on innovative products should be widely practiced.Keywords: enzymes, pharmaceuticals, process development, quality food consumption, scale-up applications
Procedia PDF Downloads 1391235 Development of New Localized Surface Plasmon Resonance Interfaces Based on ITO Au NPs/ Polymer for Nickel Detection
Authors: F. Z. Tighilt, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, K. Lasmi, N. Gabouze
Abstract:
Recently, the gold nanoparticles (Au NPs) became an active multidisciplinary research topic. First, Au thin films fabricated by alkylthiol-functionalized Au NPs were found to have vapor sensitive conductivities, they were hence widely investigated as electrical chemiresistors for sensing different vapor analytes and even organic molecules in aqueous solutions. Second, Au thin films were demonstrated to have speciallocalized surface plasmon resonances (LSPR), so that highly ordered 2D Au superlattices showed strong collective LSPR bands due to the near-field coupling of adjacent nanoparticles and were employed to detect biomolecular binding. Particularly when alkylthiol ligands were replaced by thiol-terminated polymers, the resulting polymer-modified Au NPs could be readily assembled into 2D nanostructures on solid substrates. Monolayers of polystyrene-coated Au NPs showed typical dipolar near-field interparticle plasmon coupling of LSPR. Such polymer-modified Au nanoparticle films have an advantage that the polymer thickness can be feasibly controlled by changing the polymer molecular weight. In this article, the effect of tin-doped indium oxide (ITO) coatings on the plasmonic properties of ITO interfaces modified with gold nanostructures (Au NSs) is investigated. The interest in developing ITO overlayers is multiple. The presence of a con-ducting ITO overlayer creates a LSPR-active interface, which can serve simultaneously as a working electrode in an electro-chemical setup. The surface of ITO/ Au NPs contains hydroxyl groups that can be used to link functional groups to the interface. Here the covalent linking of nickel /Au NSs/ITO hybrid LSPR platforms will be presented.Keywords: conducting polymer, metal nanoparticles (NPs), LSPR, poly (3-(pyrrolyl)–carboxylic acid), polypyrrole
Procedia PDF Downloads 2681234 A Review on Potential Utilization of Water Hyacinth (Eichhornia crassipes) as Livestock Feed with Particular Emphasis to Developing Countries in Africa
Authors: Shigdaf Mekuriaw, Firew Tegegne, A. Tsunekawa, Dereje Tewabe
Abstract:
The purpose of this paper is to make a comprehensive review on the use of water hyacinth (Eichhornia crassipes) as a potential livestock feed and argue its utilization as complementary strategy to other control methods. Water Hyacinth is one of the most noxious plant invaders of rivers and lakes. Such weeds cause environmental disaster and interfere with economic and recreational activities such as water transportation and fishing. Economic impacts of the weed in seven African countries have been estimated at between 20-50 million US$ every year. It would, therefore, be prudent to suggest utilization as a complementary control method. The majority of people in developing countries are dependent on traditional and inefficient crop-livestock production system that constrains their ability to enhance economic productivity and quality of life. Livestock in developing countries faces shortage of feed, especially during the long dry seasons. Existing literature shows the use of water hyacinth as livestock and fish feed. The chemical composition of water hyacinth varies considerably. Due to its relatively high crude protein (CP) content (5.8-20.0%), water hyacinth can be considered as a potential protein supplement for livestock which commonly feed cereal crop residues whose contribution as source of feed is increasing in Africa. Though the effects of anti-nutritional factors (ANFs) present in water hyacinth is not investigated, their concentrations are not above threshold hinder its utilization as livestock feed. In conclusion, water hyacinth could provide large quantities of nutritious feed for animals. Like other feeds, water hyacinth may not be offered as a sole feed and based on existing literature its optimum inclusion level reaches 50%.Keywords: Africa, livestock feed, water bodies, water hyacinth and weed control method
Procedia PDF Downloads 3861233 Enhancement of Interface Properties of Thermoplastic Composite Materials
Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu
Abstract:
There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite
Procedia PDF Downloads 2251232 The Endocrinology of Obesity and Dejenerative Joint Disease
Authors: Kebret Kebede, Anthony Scinta
Abstract:
Obesity is the most prevalent global problem that continues to rise at alarming rates both in the industrialized and developing countries. Adipose tissue is an endocrine tissue that secretes numerous chemical signals, hormones, lipids, cytokines and coagulation factors as well as prompting insulin resistance which is a primary contributor to Type II Diabetes- one of its most common adverse effects on health. Other hormones whose levels are linked to obesity and nutritional state are leptin, IGF-1, and adiponectin. Several studies indicate that obesity is the leading cause of high levels of cholesterol that leads to fatty liver disease, gallstones, hypertension, increased risk for cancer and degenerative joint disease that primarily affects the weight bearing joints of the lower extremities. The activation of inflammatory pathways promotes synovial pathology that results in accelerated degeneration of the joints. The study examines the prevalence of obesity in the US female population in comparison to that of the developing world and its emergence as a significant and potentially modifiable risk factor in degenerative disease of the hip and knee joints that has resulted in staggering healthcare cost. Studies have shown that as the prevalence of obesity rises, we continue to see a rise in degenerative joint disease. The percentage of arthritis cases linked directly to obesity has risen from 3 percent in 1971 to 18 percent in 2002. A person with obesity is around 60 percent more likely to develop arthritis than someone of normal body weight. In women, obesity is associated with increased mortality from breast, cervical, endometrial and ovarian cancer that may accompany debilitating joint diseases and restricted mobility.Keywords: obesity, endocrine, degenerative, mortality, joint diseases, cancer, debilitating, mobility
Procedia PDF Downloads 4491231 Estimation of the Nutritive Value of Local Forage Cowpea Cultivars in Different Environments
Authors: Salem Alghamdi
Abstract:
Genotypes collected from farmers at a different region of Saudi Arabia as well as from Egyptian cultivar and a new line from Yamen. Seeds of these genotypes were grown in Dirab Agriculture Research Station, (Middle Region) and Al-Ahsa Palms and Dates Research Center (East region), during summer of 2015. Field experiments were laid out in randomized complete block design on the first week of June with three replications. Each experiment plot contained 6 rows 3m in length. Inter- and intra-row spacing was 60 and 25cm, respectively. Seed yield and its components were estimated in addition to qualitative characters on cowpea plants grown only in Dirab using cowpea descriptor from IPGRI, 1982. Seeds for chemical composite and antioxidant contents were analyzed. Highly significant differences were detected between genotypes in both locations and the combined of two locations for seed yield and its components. Mean data clearly show exceeded determine genotypes in seed yield while indeterminate genotypes had higher biological yield that divided cowpea genotypes to two main groups 1- forage genotypes (KSU-CO98, KSU-CO99, KSU-CO100, and KSU-CO104) that were taller and produce higher branches, biological yield and these are suitable to feed on haulm 2- food genotypes (KSU-CO101, KSU-CO102, and KSU-CO103) that produce higher seed yield with lower haulm and also these genotypes characters by high seed index and light seed color. Highly significant differences were recorded for locations in all studied characters except the number of branches, seed index, and biological yield, however, the interaction of genotype x location was significant only for plant height, the number of pods and seed yield per plant.Keywords: Cowpea, genotypes, antioxidant contents, yield
Procedia PDF Downloads 2551230 Chemiluminescent Detection of Microorganisms in Food/Drug Product Using Reducing Agents and Gold Nanoplates
Authors: Minh-Phuong Ngoc Bui, Abdennour Abbas
Abstract:
Microbial spoilage of food/drug has been a constant nuisance and an unavoidable problem throughout history that affects food/drug quality and safety in a variety of ways. A simple and rapid test of fungi and bacteria in food/drugs and environmental clinical samples is essential for proper management of contamination. A number of different techniques have been developed for detection and enumeration of foodborne microorganism including plate counting, enzyme-linked immunosorbent assay (ELISA), polymer chain reaction (PCR), nucleic acid sensor, electrical and microscopy methods. However, the significant drawbacks of these techniques are highly demand of operation skills and the time and cost involved. In this report, we introduce a rapid method for detection of bacteria and fungi in food/drug products using a specific interaction between a reducing agent (tris(2-carboxylethyl)phosphine (TCEP)) and the microbial surface proteins. The chemical reaction was transferred to a transduction system using gold nanoplates-enhanced chemiluminescence. We have optimized our nanoplates synthetic conditions, characterized the chemiluminescence parameters and optimized conditions for the microbial assay. The new detection method was applied for rapid detection of bacteria (E.coli sp. and Lactobacillus sp.) and fungi (Mucor sp.), with limit of detection as low as single digit cells per mL within 10 min using a portable luminometer. We expect our simple and rapid detection method to be a powerful alternative to the conventional plate counting and immunoassay methods for rapid screening of microorganisms in food/drug products.Keywords: microorganism testing, gold nanoplates, chemiluminescence, reducing agents, luminol
Procedia PDF Downloads 2991229 The Use of Microbiological Methods to Reduce Aflatoxin M1 in Cheese
Authors: Bruna Goncalves, Jennifer Henck, Romulo Uliana, Eliana Kamimura, Carlos Oliveira, Carlos Corassin
Abstract:
Studies have shown evidence of human exposure to aflatoxin M1 due to the consumption of contaminated milk and dairy products (mainly cheeses). This poses a great risk to public health, since milk and milk products are frequently consumed by a portion of the population considered immunosuppressed, children and the elderly. Knowledge of the negative impacts of aflatoxins on health and economics has led to investigations of strategies to prevent their formation in food, as well as to eliminate, inactivate or reduce the bioavailability of these toxins in contaminated products This study evaluated the effect of microbiological methods using lactic acid bacteria on aflatoxin M1 (AFM1) reduction in Minas Frescal cheese (typical Brazilian product, being among the most consumed cheeses in Brazil) spiked with 1 µg/L AFM1. Inactivated lactic acid bacteria (0,5%, v/v de L. rhamnosus e L. lactis) were added during the cheese production process. Nine cheeses were produced, divided into three treatments: negative controls (without AFM1 or lactic acid bacteria), positive controls (AFM1 only), and lactic acid bacteria + AFM1. Samples of cheese were collected on days 2, 10, 20 and 30 after the date of production and submitted to composition analyses and determination of AFM1 by high-performance liquid chromatography. The reductions of AFM1 in cheese by lactic acid bacteria at the end of the trial indicate a potential application of inactivated lactic acid bacteria in reducing the bioavailability of AFM1 in Minas frescal cheese without physical-chemical and microbiological modifications during the 30-day experimental period. The authors would like to thank São Paulo Research Foundation – FAPESP (grants #2017/20081-6 and #2017/19683-1).Keywords: aflatoxin, milk, minas frescal cheese, decontamination
Procedia PDF Downloads 1941228 Effect of Diet Inulin Prebiotic on Growth, Reproductive Performance, Carcass Composition and Resistance to Environmental Stresses in Zebra Danio (Danio rerio)
Authors: Ehsan Ahmadifar
Abstract:
In this research, the effects of different levels (control group (T0), (T1)1, (T2)2 and (T3)3 gr Inulin per Kg diet) of prebiotic Inulin as nutritional supplement on Danio rerio were investigated for 4 month. Since the beginning of feeding larvae until adult (average weight: 67.1 g, length: 4.5 cm) were fed with experimental diets. The survival rate of fish had no significant effect on rate survival (P > 0.05). The highest food conversion ratio (FCR) was in control group and the lowest was observed in T3. Treatment of T3 significantly caused the best feed conversion ratio in Zebra fish (P < 0.05). By increasing the inulin diet during the experiment, specific growth rate increased. The highest and the lowest body weight gain and condition factor were observed in T3 and control, respectively (P < 0.05). Adding 3 gr inulin in Zebra fish diet can improve the performance of the growth indices and final biomass, also this prebiotic can be considered as a suitable supplement for Cyprinidae diet. In the first sampling stage for feeding fish, fat and muscle protein was significantly higher than the second sampling stage (P < 0.05). Given that the second stage fish were full sexual maturity, the amount of fat in muscle decreased (P < 0.05). Moisture and ash levels were significantly (P < 0.05) higher in the second stage sampling than the first stage. Overall, different stage of living affected on muscle chemical composition muscle. Reproductive performance in treatment T2 and T3 were significantly higher than other treatments (P < 0.05). According to the results, the prebiotic inulin does not have a significant impact on the sex ratio in zebrafish (P > 0.05). Based on histology of the gonads, the use of dietary inulin accelerates the process of gonad development in zebrafish.Keywords: inulin, zebrafish, reproduction, histology
Procedia PDF Downloads 3051227 Cement Bond Characteristics of Artificially Fabricated Sandstones
Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen
Abstract:
The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing
Procedia PDF Downloads 1671226 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)
Authors: Abdullah Ay, Şehnaz Şener
Abstract:
It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli
Procedia PDF Downloads 231225 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent
Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya
Abstract:
Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.Keywords: sol-gel, allethrin, TEOS, biochemistry
Procedia PDF Downloads 3751224 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture
Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin
Abstract:
Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF
Procedia PDF Downloads 2741223 Assets Integrity Management in Oil and Gas Production Facilities through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield
Authors: Iftikhar Ahmad, Youssef Elkezza
Abstract:
Sarir oilfield is in North Africa. It has facilities for oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) well bore and wellheads; (ii) vessels such as separators, desalters, and gas processing facilities; (iii) pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection.Keywords: assets integrity management, corrosion prevention in oilfield assets, corrosion management in oilfield, corrosion prevention, inspection activities
Procedia PDF Downloads 871222 Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics
Authors: Jahangir Ahmad Rather, Emad A. Khudaish, Ahsanulhaq Qurashi, Palanisamy Kannan
Abstract:
Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11).Keywords: diazonium salt reduction, ethylparaben (EP), endocrine disruptor, fullerene nanorods (C60NRs), gold–polyaniline nanocomposite (Au–PANI)
Procedia PDF Downloads 2331221 Silica Nanofibres – Promising Material for Regenerative Medicine
Authors: Miroslava Rysová, Zdena Syrová, Tomáš Zajíc, Petr Exnar
Abstract:
Currently, attention of tissue engineers has been attracted to novel nanofibrous materials having advanced properties and ability to mimic extracellular matrix (ECM) by structure which makes them interesting candidates for application in regenerative medicine as scaffolding and/or drug delivering material. Throughout the last decade, more than 200 synthetic and natural polymers have been successfully electrospun leading to the formation of nanofibres with a wide range of chemical, mechanical and degradation properties. In this family, inorganic nanofibres represent very specific group offering an opportunity to manufacture inert to body, well degradable and in properties tunable material. Aim of this work, was to reveal unique properties of silica (SiO2, CAS 7631-86-9) nanofibres and their potential in field of regenerative medicine. Silica nanofibres were prepared by sol-gel method from tetraethyl orthosilicate (TEOS, CAS 78-10-4) as a precursor and subsequently manufactured by needleless electrospinning on NanospiderTM device. Silica nanofibres thermally stabilized under 200°C were confirmed to be fully biodegradable and soluble in several simulated body fluids. In vitro cytotoxicity tests of eluate (ES ISO 10993-5:1999) and in direct contact (ES ISO 10993-5:2009) showed no toxicity - e.g. cell viabilities reached values exceeding 80%. Those results were obtained equally from two different cell lines (Vero, 3T3). Non-toxicity of silaca nanofibres´ eluate was additionally confirmed in real time by testing on xCelligence (ACEA Biosciences, Inc.) device. Both cell types also showed good adhesion to material. To conclude, all mentioned results lead to resumption that silica nanofibres have a potential as material for regenerative medicine which opens door to further research.Keywords: cytotoxicity, electrospinning, nanofibres, silica, tissue engineering
Procedia PDF Downloads 4291220 Combining Transcriptomics, Bioinformatics, Biosynthesis Networks and Chromatographic Analyses for Cotton Gossypium hirsutum L. Defense Volatiles Study
Authors: Ronald Villamar-Torres, Michael Staudt, Christopher Viot
Abstract:
Cotton Gossypium hirsutum L. is one of the most important industrial crops, producing the world leading natural textile fiber, but is very prone to arthropod attacks that reduce crop yield and quality. Cotton cultivation, therefore, makes an outstanding use of chemical pesticides. In reaction to herbivorous arthropods, cotton plants nevertheless show natural defense reactions, in particular through volatile organic compounds (VOCs) emissions. These natural defense mechanisms are nowadays underutilized but have a very high potential for cotton cultivation, and elucidating their genetic bases will help to improve their use. Simulating herbivory attacks by mechanical wounding of cotton plants in greenhouse, we studied by qPCR the changes in gene expression for genes of the terpenoids biosynthesis pathway. Differentially expressed genes corresponded to higher levels of the terpenoids biosynthesis pathway and not to enzymes synthesizing particular terpenoids. The genes were mapped on the G. hirsutum L. reference genome; their global relationships inside the general metabolic pathways and the biosynthesis of secondary metabolites were visualized with iPath2. The chromatographic profiles of VOCs emissions indicated first monoterpenes and sesquiterpenes emissions, dominantly four molecules known to be involved in plant reactions to arthropod attacks. As a result, the study permitted to identify potential key genes for the emission of volatile terpenoids by cotton plants in reaction to an arthropod attack, opening possibilities for molecular-assisted cotton breeding in benefit of smallholder cotton growers.Keywords: biosynthesis pathways, cotton, mechanisms of plant defense, terpenoids, volatile organic compounds
Procedia PDF Downloads 3741219 Innovation of a New Plant Tissue Culture Medium for Large Scale Plantlet Production in Potato (Solanum tuberosum L.)
Authors: Ekramul Hoque, Zinat Ara Eakut Zarin, Ershad Ali
Abstract:
The growth and development of explants is governed by the effect of nutrient medium. Ammonium nitrate (NH4NO3) as a major salt of stock solution-1 for the preparation of tissue culture medium. But, it has several demerits on human civilization. It is use for the preparation of bomb and other destructive activities. Hence, it is totally ban in our country. A new chemical was identified as a substitute of ammonium nitrate. The concentrations of the other ingredients of major and minor salt were modified from the MS medium. The formulation of new medium is totally different from the MS nutrient composition. The most widely use MS medium composition was used as first check treatment and MS powder (Duchefa Biocheme, The Netherland) was used as second check treatment. The experiments were carried out at the Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. Two potato varieties viz. Diamant and Asterix were used as experimental materials. The regeneration potentiality of potato onto new medium was best as compare with the two check treatments. The traits -node number, leaf number, shoot length, root lengths were highest in new medium. The plantlets were healthy, robust and strong as compare to plantlets regenerated from check treatments. Three subsequent sub-cultures were made in the new medium to observe the growth pattern of plantlet. It was also showed the best performance in all the parameter under studied. The regenerated plantlet produced good quality minituber under field condition. Hence, it is concluded that, a new plant tissue culture medium as discovered from the Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh under the leadership of Professor Dr. Md. Ekramul Hoque.Keywords: new medium, potato, regeneration, ammonium nitrate
Procedia PDF Downloads 951218 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing
Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare
Abstract:
Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell
Procedia PDF Downloads 771217 Antimicrobial Activity of Eucalyptus globulus Essential Oil: Disc Diffusion versus Vapour Diffusion Methods
Authors: Boukhatem Mohamed Nadjib, Ferhat Mohamed Amine
Abstract:
Essential Oils (EO) produced by medicinal plants have been traditionally used for respiratory tract infections and are used nowadays as ethical medicines for colds. The aim of this study was to test the efficacy of the Algerian EGEO against some respiratory tract pathogens by disc diffusion and vapour diffusion methods at different concentrations. The chemical composition of the EGEO was analysed by Gas Chromatography-Mass Spectrometry. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%) and β-myrcene (1.5%) being the main components. By disc diffusion method, EGEO showed potent antimicrobial activity against Gram-positive more than Gram-negative bacteria. The Diameter of Inhibition Zone (DIZ) varied from 69 mm to 75 mm for Staphylococcus aureus and Bacillus subtilis (Gram +) and from 13 to 42 mm for Enterobacter sp and Escherichia coli (Gram-), respectively. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial activity was observed in the vapour phase at lower concentrations. A. baumanii and Klebsiella pneumoniae were the most susceptible strains to the oil vapour with DIZ varied from 38 to 42 mm. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. Else, the DIZ increased with increase in the concentration of the oil. There is growing evidence that EGEO in the vapour phase are effective antibacterial systems and appears worthy to be considered for practical uses in the treatment or prevention of patients with respiratory tract infections or as air decontaminants in the hospital. The present study indicates that EGEO has considerable antimicrobial activity, deserving further investigation for clinical applications.Keywords: eucalyptus globulus, essential oils, respiratory tract pathogens, antimicrobial activity, vapour phase
Procedia PDF Downloads 3671216 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant
Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala
Abstract:
Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.Keywords: candlenut shells, filtration, nutshell filter, pecan shells, walnut shells
Procedia PDF Downloads 1111215 Technical Sustainable Management: An Instrument to Increase Energy Efficiency in Wastewater Treatment Plants, a Case Study in Jordan
Authors: Dirk Winkler, Leon Koevener, Lamees AlHayary
Abstract:
This paper contributes to the improvement of the municipal wastewater systems in Jordan. An important goal is increased energy efficiency in wastewater treatment plants and therefore lower expenses due to reduced electricity consumption. The chosen way to achieve this goal is through the implementation of Technical Sustainable Management adapted to the Jordanian context. Three wastewater treatment plants in Jordan have been chosen as a case study for the investigation. These choices were supported by the fact that the three treatment plants are suitable for average performance and size. Beyond that, an energy assessment has been recently conducted in those facilities. The project succeeded in proving the following hypothesis: Energy efficiency in wastewater treatment plants can be improved by implementing principles of Technical Sustainable Management adapted to the Jordanian context. With this case study, a significant increase in energy efficiency can be achieved by optimization of operational performance, identifying and eliminating shortcomings and appropriate plant management. Implementing Technical Sustainable Management as a low-cost tool with a comparable little workload, provides several additional benefits supplementing increased energy efficiency, including compliance with all legal and technical requirements, process optimization, but also increased work safety and convenient working conditions. The research in the chosen field continues because there are indications for possible integration of the adapted tool into other regions and sectors. The concept of Technical Sustainable Management adapted to the Jordanian context could be extended to other wastewater treatment plants in all regions of Jordan but also into other sectors including water treatment, water distribution, wastewater network, desalination, or chemical industry.Keywords: energy efficiency, quality management system, technical sustainable management, wastewater treatment
Procedia PDF Downloads 1621214 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)
Authors: Violina R. Angelova
Abstract:
Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.Keywords: Lathyrus sativus L, macroelements, microelements, quality
Procedia PDF Downloads 1441213 Cytotoxic Activity against MCF-7 Breast Cancer Cells and Antioxidant Property of Aqueous Tempe Extracts from Extended Fermentation
Authors: Zatil Athaillah, Anastasia Devi, Dian Muzdalifah, Wirasuwasti Nugrahani, Linar Udin
Abstract:
During tempe fermentation, some chemical changes occurred and they contributed to sensory, appearance, and health benefits of soybeans. Many studies on health properties of tempe have specialized on their isoflavones. In this study, other components of tempe, particularly water soluble chemicals, was investigated for their biofunctionality. The study was focused on the ability to suppress MCF-7 breast cancer cell growth and antioxidant activity, as expressed by DPPH radical scavenging activity, total phenols and total flavonoids, of the water extracts. Fermentation time of tempe was extended up to 120 hr to increase the possibility to find the functional components. Extraction yield and soluble nitrogen content were also quantified as accompanying data. Our findings suggested that yield of water extraction of tempe increased as fermentation was extended up to 120 hr, except for a slight decrease at 72 hr. Water extracts of tempe showed inhibition of MCF-7 breast cancer cell growth, as shown by lower IC50 values when compared to control (unfermented soybeans). Among the varied fermentation timescales, 60-hr period showed the highest activity (IC50 of 8.7 ± 4.95 µg/ml). The anticancer activity of extracts obtained from different fermentation time was positively correlated with total soluble nitrogens, but less relevant with antioxidant data. During 48-72 hr fermentation, at which cancer suppression activity was significant, the antioxidant properties from the three assays were not higher than control. These findings indicated that water extracts of tempe from extended fermentation could inhibit breast cancer cell growth but further study to determine the mechanism and compounds that play important role in the activity should be conducted.Keywords: tempe, anticancer, antioxidant, phenolic compounds
Procedia PDF Downloads 2451212 The Social Psychology of Illegal Game Room Addiction in the Historic Chinatown District of Honolulu, Hawaii: Illegal Compulsive Gambling, Chinese-Polynesian Organized Crime Syndicates, Police Corruption, and Loan Sharking Rings
Authors: Gordon James Knowles
Abstract:
Historically the Chinatown district in Sandwich Islands has been plagued with the traditional vice crimes of illegal drugs, gambling, and prostitution since the early 1800s. However, a new form of psychologically addictive arcade style table gambling machines has become the dominant form of illegal revenue made in Honolulu, Hawaii. This study attempts to document the drive, desire, or will to play and wager with arcade style video gaming and understand the role of illegal game rooms in facilitating pathological gambling addiction. Indicators of police corruption by Chinese organized crime syndicates related to protection rackets, bribery, and pay-offs were revealed. Information fusion from a police science and sociological intelligence perspective indicates insurgent warfare is being waged on the streets of Honolulu by the People’s Republic of China. This state-sponsored communist terrorism in the Hawaiian Islands used “contactless” irregular warfare entailing: (1) the deployment of psychologically addictive gambling machines, (2) the distribution of the physically addictive fentanyl drug as a lethal chemical weapon, and (3) psychological warfare by circulating pro-China anti-American propaganda newspapers targeted at the small island populace.Keywords: Chinese and Polynesian organized crime, china daily newspaper, electronic arcade style table games, gaming technology addiction, illegal compulsive gambling, and police intelligence
Procedia PDF Downloads 74