Search results for: industrial recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4893

Search results for: industrial recovery

1593 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus

Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri

Abstract:

Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.

Keywords: natural convection, concentric, eccentric, Nusselt number, annulus

Procedia PDF Downloads 365
1592 Textile Firms Response to the Restriction of Nonylphenol and Its Ethoxylates: Looking from the Perspectives of Attitude and the Perceptions of Technical and Organizational Adaptabilities, Risks, Benefits, and Barriers

Authors: Hien T. T. Ho, Tsunemi Watanabe

Abstract:

The regulatory and market pressures on the restriction of nonylphenol and its ethoxylates in textile articles have confronted the textile manufacturers, particularly those in developing countries. This study aimed to examine the tentative behavior of the textile manufacturers in Vietnam from the perspectives of attitude and the perceptions of technical and organizational adaptabilities, risks, benefits, and barriers. Personal interviews were conducted with five technical specialists from four textile firms and one chemical supplier. The environmental regulatory and market situations regarding the chemical use in Vietnam were also described. The findings revealed two main opposing trends of chemical substitution depending on the market orientation of firms that governed the patterns of risk and benefit perception. The indirect influence of perceived adaptabilities on firm tentative behavior through perceived risks was elucidated, which initiated a conceptual model of firm’s behavior combining the organizational-based and the rational-based relationships. The intermediary role of non-governmental textile and garment industrial/ trade associations is highlighted to strengthen private firm’s informative capacity.

Keywords: firm behavior, institutional analysis, organizational adaptation, technical adaptation

Procedia PDF Downloads 161
1591 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: polyethylene, polymerization, density, melt index, neural network

Procedia PDF Downloads 141
1590 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 446
1589 Risk Management Strategy for Protecting Cultural Heritage: Case Study of the Institute of Egypt

Authors: Amany A. Ragheb, Ghada Ragheb, Abd ElRahman A.

Abstract:

Egypt has a countless heritage of mansions, castles, cities, towns, villages, industrial and manufacturing sites. This richness of heritage provides endless and matchless prospects for culture. Despite being famous worldwide, Egypt’s heritage still is in constant need of protection. Political conflicts and religious revolutions form a direct threat to buildings in various areas, historic, archaeological sites, and religious monuments. Egypt has witnessed two revolutions in less than 60 years; both had an impact on its architectural heritage. In this paper, the authors aim to review legal and policy framework to protect the cultural heritage and present the risk management strategy for cultural heritage in conflict. Through a review of selected international models of devastated architectural heritage in conflict zones and highlighting some of their changes, we can learn from the experiences of other countries to assist towards the development of a methodology to halt the plundering of architectural heritage. Finally, the paper makes an effort to enhance the formulation of a risk management strategy for protection and conservation of cultural heritage, through which to end the plundering of Egypt’s architectural legacy in the Egyptian community (revolutions, 1952 and 2011); and by presenting to its surrounding community the benefits derived from maintaining it.

Keywords: cultural heritage, legal regulation, risk management, preservation

Procedia PDF Downloads 393
1588 A Comparative Analysis of Global Minimum Variance and Naïve Portfolios: Performance across Stock Market Indices and Selected Economic Regimes Using Various Risk-Return Metrics

Authors: Lynmar M. Didal, Ramises G. Manzano Jr., Jacque Bon-Isaac C. Aboy

Abstract:

This study analyzes the performance of global minimum variance and naive portfolios across different economic periods, using monthly stock returns from the Philippine Stock Exchange Index (PSEI), S&P 500, and Dow Jones Industrial Average (DOW). The performance is evaluated through the Sharpe ratio, Sortino ratio, Jensen’s Alpha, Treynor ratio, and Information ratio. Additionally, the study investigates the impact of short selling on portfolio performance. Six-time periods are defined for analysis, encompassing events such as the global financial crisis and the COVID-19 pandemic. Findings indicate that the Naive portfolio generally outperforms the GMV portfolio in the S&P 500, signifying higher returns with increased volatility. Conversely, in the PSEI and DOW, the GMV portfolio shows more efficient risk-adjusted returns. Short selling significantly impacts the GMV portfolio during mid-GFC and mid-COVID periods. The study offers insights for investors, suggesting the Naive portfolio for higher risk tolerance and the GMV portfolio as a conservative alternative.

Keywords: portfolio performance, global minimum variance, naïve portfolio, risk-adjusted metrics, short-selling

Procedia PDF Downloads 90
1587 Evaluation of the Integration of a Direct Reduction Process into an Existing Steel Mill

Authors: Nils Mueller, Gregor Herz, Erik Reichelt, Matthias Jahn

Abstract:

In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO₂ emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO₂ emissions while still being able to further utilize existing blast furnaces, the possibility of including a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing pig iron. By varying boundary conditions of the DRP while recording the CO₂ emissions of the two process steps, the overall potential for the reduction of CO₂ emissions was estimated. Within the simulated range, a maximum reduction of CO₂ emissions of 23.5% relative to typical emissions of a blast furnace could be determined.

Keywords: blast furnace, CO₂ mitigation, DRI, hydrogen

Procedia PDF Downloads 279
1586 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 33
1585 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology

Authors: Christo Nicholls

Abstract:

The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.

Keywords: AI, AMI, demand response, multi-agent

Procedia PDF Downloads 107
1584 Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa

Authors: A. Nkohla, U. Nwodo, L. V. Mabinya, A. I. Okoh

Abstract:

A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products.

Keywords: lignocellulosic material, chryseobacterium sp., submerged fermentation, cellulase, xylanase

Procedia PDF Downloads 304
1583 Environmental Effects on Energy Consumption of Smart Grid Consumers

Authors: S. M. Ali, A. Salam Khan, A. U. Khan, M. Tariq, M. S. Hussain, B. A. Abbasi, I. Hussain, U. Farid

Abstract:

Environment and surrounding plays a pivotal rule in structuring life-style of the consumers. Living standards intern effect the energy consumption of the consumers. In smart grid paradigm, climate drifts, weather parameter and green environmental directly relates to the energy profiles of the various consumers, such as residential, commercial and industrial. Considering above factors helps policy in shaping utility load curves and optimal management of demand and supply. Thus, there is a pressing need to develop correlation models of load and weather parameters and critical analysis of the factors effecting energy profiles of smart grid consumers. In this paper, we elaborated various environment and weather parameter factors effecting demand of consumers. Moreover, we developed correlation models, such as Pearson, Spearman, and Kendall, an inter-relation between dependent (load) parameter and independent (weather) parameters. Furthermore, we validated our discussion with real-time data of Texas State. The numerical simulations proved the effective relation of climatic drifts with energy consumption of smart grid consumers.

Keywords: climatic drifts, correlation analysis, energy consumption, smart grid, weather parameter

Procedia PDF Downloads 368
1582 Comparative Techno-Economic Assessment and LCA of Selected Integrated Sugarcane-Based Biorefineries

Authors: Edgard Gnansounoua, Pavel Vaskan, Elia Ruiz Pachón

Abstract:

This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues in the context of Brazil. We have considered four multiproduct scenarios; two from existing Brazilian sugar mills and the others from ethanol autonomous distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity. We show the results for the analysis and comparison of the different scenarios using a techno-economic value-based approach and LCA methodology. We have found that all the analysed scenarios show positive values of Climate change and Fossil depletion reduction as compared to the reference systems. However the scenario producing only ethanol shows less efficiency in Human toxicity, Freshwater ecotoxicity and Freshwater eutrophication impacts. The best economic configuration is provided by the scenario with the largest ethanol production. On the other hand, the best environmental performance is presented by the scenario with full integration sugar – 1G2G ethanol production. The integration of 2G based residues in a 1G ethanol production plant leads to positive environmental impacts compared to the conventional 1G industrial plant but proves to be more expensive.

Keywords: sugarcane, biorefinery, 1G/2G bioethanol integration, LCA, Brazil

Procedia PDF Downloads 349
1581 A Comparison and Discussion of Modern Anaesthetic Techniques in Elective Lower Limb Arthroplasties

Authors: P. T. Collett, M. Kershaw

Abstract:

Introduction: The discussion regarding which method of anesthesia provides better results for lower limb arthroplasty is a continuing debate. Multiple meta-analysis has been performed with no clear consensus. The current recommendation is to use neuraxial anesthesia for lower limb arthroplasty; however, the evidence to support this decision is weak. The Enhanced Recovery After Surgery (ERAS) society has recommended, either technique can be used as part of a multimodal anesthetic regimen. A local study was performed to see if the current anesthetic practice correlates with the current recommendations and to evaluate the efficacy of the different techniques utilized. Method: 90 patients who underwent total hip or total knee replacements at Nevill Hall Hospital between February 2019 to July 2019 were reviewed. Data collected included the anesthetic technique, day one opiate use, pain score, and length of stay. The data was collected from anesthetic charts, and the pain team follows up forms. Analysis: The average of patients undergoing lower limb arthroplasty was 70. Of those 83% (n=75) received a spinal anaesthetic and 17% (n=15) received a general anaesthetic. For patients undergoing knee replacement under general anesthetic the average day, one pain score was 2.29 and 1.94 if a spinal anesthetic was performed. For hip replacements, the scores were 1.87 and 1.8, respectively. There was no statistical significance between these scores. Day 1 opiate usage was significantly higher in knee replacement patients who were given a general anesthetic (45.7mg IV morphine equivalent) vs. those who were operated on under spinal anesthetic (19.7mg). This difference was not noticeable in hip replacement patients. There was no significant difference in length of stay between the two anesthetic techniques. Discussion: There was no significant difference in the day one pain score between the patients who received a general or spinal anesthetic for either knee or hip replacements. The higher pain scores in the knee replacement group overall are consistent with this being a more painful procedure. This is a small patient population, which means any difference between the two groups is unlikely to be representative of a larger population. The pain scale has 4 points, which means it is difficult to identify a significant difference between pain scores. Conclusion: There is currently little standardization between the different anesthetic approaches utilized in Nevill Hall Hospital. This is likely due to the lack of adherence to a standardized anesthetic regimen. In accordance with ERAS recommends a standard anesthetic protocol is a core component. The results of this study and the guidance from the ERAS society will support the implementation of a new health board wide ERAS protocol.

Keywords: anaesthesia, orthopaedics, intensive care, patient centered decision making, treatment escalation

Procedia PDF Downloads 124
1580 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 147
1579 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach

Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson

Abstract:

This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.

Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks

Procedia PDF Downloads 248
1578 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles

Authors: Samir Dekali, David Crouzier

Abstract:

Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.

Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology

Procedia PDF Downloads 436
1577 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model

Authors: A. Shakoor, M. Arshad

Abstract:

The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.

Keywords: groundwater quality, groundwater management, PMWIN, MT3D model

Procedia PDF Downloads 374
1576 Etiological Factors for Renal Cell Carcinoma: Five-Year Study at Mayo Hospital Lahore

Authors: Muhammad Umar Hassan

Abstract:

Renal cell carcinoma is a subset of kidney cancer that arises in the lining of DCT and is present in parenchymal tissue. Diagnosis is based on lab reports, including urinalysis, renal function tests (RFTs), and electrolyte balance, along with imaging techniques. Organ failure and other complications have been commonly observed in these cases. Over the years, the presentation of patients has varied, so carcinoma was classified on the basis of site, shape, and consistency for detailed analysis. Lifestyle patterns and occupational history were inquired about and recorded. Methods: Data from 100 patients presenting to the oncology and nephrology department of Mayo Hospital in the year 2015-2020 were included in this retrospective study on a random basis. The study was specifically focused on three risk factors. Smoking, occupational exposures, and Hakim medicine are taken by the patient for any cause. After procurement of data, follow-up contacts of these patients were established, resulting in a detailed analysis of lifestyle. Conclusion: The inference drawn is a direct causal link between smoking, industrial workplace exposure, and Hakim medicine with the development of Renal Cell Carcinoma. It was shown in the majority of the patients and hence confirmed our hypothesis.

Keywords: renal cell carcinoma, kidney cancer, clear cell carcinoma

Procedia PDF Downloads 99
1575 Marine Litter Dispersion in the Southern Shores of the Caspian Sea (Case Study: Mazandaran Province)

Authors: Siamak Jamshidi

Abstract:

One of the major environmental problems in the southern coasts of the Caspian Sea is that the marine and coastal debris is being deposited and accumulated due to industrial, urban and tourism activities. Study, sampling and analysis on the type, size, amount and origin of human-made (anthropogenic) waste in the coastal areas of this sea can be very effective in implementing management, cultural and informative programs to reduce marine environmental pollutants. Investigation on marine litter distribution under impact of seawater dynamics was performed for the first time in this research. The rate of entry and distribution of marine and coastal pollutants and wastes, which are mainly of urban, tourist and hospital origin, has multiplied on the southern shore of the Caspian Sea in the last decade. According to the results, the two most important sources of hospital waste in the coastal areas are Tonekabon and Mahmoudabad. In this case, the effect of dynamic parameters of seawater such as flow (with speeds of up to about 1 m/s) and waves, as well as the flow of rivers leading to the shoreline are also influential factors in the distribution of marine litter in the region. Marine litters in the southern coastal region were transported from west to east by the shallow waters of the southern Caspian Sea. In other words, the marine debris density has been observed more in the eastern part.

Keywords: southern shelf, coastal oceanography, seawater flow, vertical structure, marine environment

Procedia PDF Downloads 66
1574 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method

Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar

Abstract:

New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.

Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition

Procedia PDF Downloads 522
1573 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: UWS (Urea-Water-Solution), selective catalytic reduction (SCR), evaporation, thermolysis, injection

Procedia PDF Downloads 392
1572 The Financial Impact of Covid 19 on the Hospitality Industry in New Zealand

Authors: Kay Fielden, Eelin Tan, Lan Nguyen

Abstract:

In this research project, data was gathered at a Covid 19 Conference held in June 2021 from industry leaders who discussed the impact of the global pandemic on the status of the New Zealand hospitality industry. Panel discussions on financials, human resources, health and safety, and recovery were conducted. The themes explored for the finance panel were customer demographics, hospitality sectors, financial practices, government impact, and cost of compliance. The aim was to see how the hospitality industry has responded to the global pandemic and the steps that have been taken for the industry to recover or sustain their business. The main research question for this qualitative study is: What are the factors that have impacted on finance for the hospitality industry in New Zealand due to Covid 19? For financials, literature has been gathered to study global effects, and this is being compared with the data gathered from the discussion panel through the lens of resilience theory. Resilience theory applied to the hospitality industry suggests that the challenges imposed by Covid 19 have been the catalyst for government initiatives, technical innovation, engaging local communities, and boosting confidence. Transformation arising from these ground shifts have been a move towards sustainability, wellbeing, more awareness of climate change, and community engagement. Initial findings suggest that there has been a shift in customer base that has prompted regional accommodation providers to realign offers and to become more flexible to attract and maintain this realigned customer base. Dynamic pricing structures have been required to meet changing customer demographics. Flexible staffing arrangements include sharing staff between different accommodation providers, owners with multiple properties adopting different staffing arrangements, maintaining a good working relationship with the bank, and conserving cash. Uncertain times necessitate changing revenue strategies to cope with external factors. Financial support offered by the government has cushioned the financial downturn for many in the hospitality industry, and managed isolation and quarantine (MIQ) arrangements have offered immediate financial relief for those hotels involved. However, there is concern over the long-term effects. Compliance with mandated health and safety requirements has meant that the hospitality industry has streamlined its approach to meeting those requirements and has invested in customer relations to keep paying customers informed of the health measures in place. Initial findings from this study lie within the resilience theory framework and are consistent with findings from the literature.

Keywords: global pandemic, hospitality industry, new Zealand, resilience

Procedia PDF Downloads 96
1571 The Impact of Human Rights on Society and Legislations

Authors: Eid Nasr Saad Nasr

Abstract:

Although human rights protection in the industrial sector has increased, human rights violations continue to occur. Although the government has passed human rights laws, labor laws, and an international treaty ratified by the United States, human rights crimes continue to occur and go undetected. The growing number of textile companies in Bekasi is also leading to an increase in human rights violations as the government has no obligation to protect them. The United States government and business leaders should respect, protect and defend the human rights of workers. The article discusses the human rights violations faced by garment factory workers in the context of the law, as well as ideas for improving the protection of workers' rights. The connection between development and human rights has long been the subject of academic debate. Therefore, to understand the dynamics between these two concepts, a number of principles have been adopted, ranging from the right to development to a human rights-based approach to development. Despite these attempts, the precise connection between development and human rights is not yet fully understood. However, the inherent interdependence between these two concepts and the idea that development efforts must respect human rights guarantees has gained momentum in recent years. It will then be examined whether the right to sustainable development is recognized.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 54
1570 Properties of Fly Ash Brick Prepared in Local Environment of Bangladesh

Authors: Robiul Islam, Monjurul Hasan, Rezaul Karim, M. F. M. Zain

Abstract:

Coal fly ash, an industrial by product of coal combustion thermal power plants is considered as a hazardous material and its improper disposal has become an environmental issue. On the other hand, manufacturing conventional clay bricks involves on consumption of large amount of clay and leads substantial depletion of topsoil. This paper unveils the possibility of using fly ash as a partial replacement of clay for brick manufacturing considering the local technology practiced in Bangladesh. The effect of fly ash with different replacing ratio (0%, 20%, 30%, 40% and 50% by volume) of clay on properties of bricks were studied. Bricks were made in the field parallel to ordinary bricks marked with specific number for different percentage to identify them at time of testing. No physical distortion is observed in fly ash brick after burning in the kiln. Results from laboratory test show that compressive strength of brick is decreased with the increase of fly ash and maximum compressive strength is found to be 19.6 MPa at 20% of fly ash. In addition, water absorption of fly ash brick is increased with the increase of fly ash. The abrasion value and Specific gravity of coarse aggregate prepared from brick with fly ash also studied and the results of this study suggests that 20% fly ash can be considered as the optimum fly ash content for producing good quality bricks utilizing present practiced technology.

Keywords: Bangladesh brick, fly ash, clay brick, physical properties, compressive strength

Procedia PDF Downloads 251
1569 Occupational Diseases in the Automotive Industry in Czechia

Authors: J. Jarolímek, P. Urban, P. Pavlínek, D. Dzúrová

Abstract:

The industry constitutes a dominant economic sector in Czechia. The automotive industry represents the most important industrial sector in terms of gross value added and the number of employees. The objective of this study was to analyse the occurrence of occupational diseases (OD) in the automotive industry in Czechia during the 2001-2014 period. Whereas the occurrence of OD in other sectors has generally been decreasing, it has been increasing in the automotive industry, including growing spatial discrepancies. Data on OD cases were retrieved from the National Registry of Occupational Diseases. Further, we conducted a survey in automotive companies with a focus on occupational health services and positions of the companies in global production networks (GPNs). An analysis of OD distribution in the automotive industry was performed (age, gender, company size and its role in GPNs, regional distribution of studied companies, and regional unemployment rate), and was accompanied by an assessment of the quality and range of occupational health services. The employees older than 40 years had nearly 2.5 times higher probability of OD occurrence compared with employees younger than 40 years (OR 2.41; 95% CI: 2.05-2.85). The OD occurrence probability was 3 times higher for women than for men (OR 3.01; 95 % CI: 2.55-3.55). The OD incidence rate was increasing with the size of the company. An association between the OD incidence and the unemployment rate was not confirmed.

Keywords: occupational diseases, automotive industry, health geography, unemployment

Procedia PDF Downloads 247
1568 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 175
1567 Renewable and Functional Biopolymers Using Green Chemistry

Authors: Aman Ullah

Abstract:

The use of renewable resources in supplementing and/or replacing traditional petrochemical products, through green chemistry, is becoming the focus of research. The utilization of oils can play a primitive role towards sustainable development due to their large scale availability, built-in-functionality, biodegradability and no net CO2 production. Microwaves, being clean, green and environmentally friendly, are emerging as an alternative source for product development. Solvent free conversion of fatty acid methyl esters (FAME's) derived from canola oil and waste cooking oil under microwave irradiation demonstrated dramatically enhanced rates. The microwave-assisted reactions lead to the most valuable terminal olefins with enhanced yields, purities and dramatic shortening of reaction times. Various monomers/chemicals were prepared in high yield in very short time. The complete conversions were observed at temperatures as low as 40 ºC within less than five minutes. The products were characterized by GC-MS, GC-FID and NMR. The monomers were separated and polymerized into different polymers including biopolyesthers, biopolyesters, biopolyamides and biopolyolefins. The polymers were characterized in details for their structural, thermal, mechanical and viscoelastic properties. The ability for complete conversion of oils under solvent free conditions and synthesis of different biopolymers is undoubtedly an attractive concept from both an academic and an industrial point of view.

Keywords: monomers, biopolymers, green chemistry, bioplastics, biomaterials

Procedia PDF Downloads 102
1566 Determination of Chemical Contaminants in UHT Milk Consumed in Sharjah, UAE

Authors: Adem Rama, Rabiha Seboussi, Mahmoud Muhamadin, Sultan Alzarooni, Fatima Mohamed, Khuloud Al Ali

Abstract:

To assess public health hazards associated with the occurrence of Antibiotics and AFM1 residues in UHT milk, a survey was carried out in Sharjah, UAE. In the present study, a total of 42 UHT milk samples analyzed were from different commercial brands manufactured in industrial dairy units in the UAE and from foreign producers. Milk samples were collected for four months (January to April 2020). The occurrence and concentration range of Antibiotics (Streptomycin and Gentamycin) and AFM1 in the samples were investigated by applying the ELISA method. According to the methodology used in this study, in total, 2 (5%) out of 42(95%) samples tested positive on the presence of AFM1. While, 1(2.4%) out of 41(97.6%) positive samples were found to contain Streptomycin and Gentamycin, respectively. The positive incidence of AFM1 in the UHT milk samples ranged from 58.8 to 1074 µg/L, for Streptomycin from up to 1004 µg/L, and Gentamycin up to 6909 µg/L. There were no positive samples found in locally produced UHT milk. AFM1 and antibiotic levels in positive samples UHT milk samples exceeded the maximum tolerable limits as set by the European Union - EC guidelines/standards. These levels in the samples show a presence of contaminants that might constitute a human health risk in Sharjah. The results of this study imply that more emphasis should be given to the routine inspection of milk and dairy products in the Sharjah region.

Keywords: milk, contaminant residues, ELISA, public health, Sharjah

Procedia PDF Downloads 114
1565 Staphylococcus Aureus Septic Arthritis and Necrotizing Fasciitis in a Patient With Undiagnosed Diabetes Mellitus.

Authors: Pedro Batista, André Vinha, Filipe Castelo, Bárbara Costa, Ricardo Sousa, Raquel Ricardo, André Pinto

Abstract:

Background: Septic arthritis is a diagnosis that must be considered in any patient presenting with acute joint swelling and fever. Among the several risk factors for septic arthritis, such as age, rheumatoid arthritis, recent surgery, or skin infection, diabetes mellitus can sometimes be the main risk factor. Staphylococcus aureus is the most common pathogen isolated in septic arthritis; however, it is uncommon in monomicrobial necrotizing fasciitis. Objectives: A case report of concomitant septic arthritis and necrotizing fasciitis in a patient with undiagnosed diabetes based on clinical history. Study Design & Methods: We report a case of a 58-year-old Portuguese previously healthy man who presented to the emergency department with fever and left knee swelling and pain for two days. The blood work revealed ketonemia of 6.7 mmol/L and glycemia of 496 mg/dL. The vital signs were significant for a temperature of 38.5 ºC and 123 bpm of heart rate. The left knee had edema and inflammatory signs. Computed tomography of the left knee showed diffuse edema of the subcutaneous cellular tissue and soft tissue air bubbles. A diagnosis of septic arthritis and necrotising fasciitis was made. He was taken to the operating room for surgical debridement. The samples collected intraoperatively were sent for microbiological analysis, revealing infection by multi-sensitive Staphylococcus aureus. Given this result, the empiric flucloxacillin (500 mg IV) and clindamycin (1000 mg IV) were maintained for 3 weeks. On the seventh day of hospitalization, there was a significant improvement in subcutaneous and musculoskeletal tissues. After two weeks of hospitalization, there was no purulent content and partial closure of the wounds was possible. After 3 weeks, he was switched to oral antibiotics (flucloxacillin 500 mg). A week later, a urinary infection by Pseudomonas aeruginosa was diagnosed and ciprofloxacin 500 mg was administered for 7 days without complications. After 30 days of hospital admission, the patient was discharged home and recovered. Results: The final diagnosis of concomitant septic arthritis and necrotizing fasciitis was made based on the imaging findings, surgical exploration and microbiological tests results. Conclusions: Early antibiotic administration and surgical debridement are key in the management of septic arthritis and necrotizing fasciitis. Furthermore, risk factors control (euglycemic blood glucose levels) must always be taken into account given the crucial role in the patient's recovery.

Keywords: septic arthritis, Necrotizing fasciitis, diabetes, Staphylococcus Aureus

Procedia PDF Downloads 312
1564 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine

Authors: Allouache Nadia

Abstract:

Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.

Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine

Procedia PDF Downloads 251