Search results for: stirred tank reactors
332 Experimental Quantification and Modeling of Dissolved Gas during Hydrate Crystallization: CO₂ Hydrate Case
Authors: Amokrane Boufares, Elise Provost, Veronique Osswald, Pascal Clain, Anthony Delahaye, Laurence Fournaison, Didier Dalmazzone
Abstract:
Gas hydrates have long been considered as problematic for flow assurance in natural gas and oil transportation. On the other hand, they are now seen as future promising materials for various applications (i.e. desalination of seawater, natural gas and hydrogen storage, gas sequestration, gas combustion separation and cold storage and transport). Nonetheless, a better understanding of the crystallization mechanism of gas hydrate and of their formation kinetics is still needed for a better comprehension and control of the process. To that purpose, measuring the real-time evolution of the dissolved gas concentration in the aqueous phase during hydrate formation is required. In this work, CO₂ hydrates were formed in a stirred reactor equipped with an Attenuated Total Reflection (ATR) probe coupled to a Fourier Transform InfraRed (FTIR) spectroscopy analyzer. A method was first developed to continuously measure in-situ the CO₂ concentration in the liquid phase during solubilization, supersaturation, hydrate crystallization and dissociation steps. Thereafter, the measured concentration data were compared with those of equilibrium concentrations. It was observed that the equilibrium is instantly reached in the liquid phase due to the fast consumption of dissolved gas by the hydrate crystallization. Consequently, it was shown that hydrate crystallization kinetics is limited by the gas transfer at the gas-liquid interface. Finally, we noticed that the liquid-hydrate equilibrium during the hydrate crystallization is governed by the temperature of the experiment under the tested conditions.Keywords: gas hydrate, dissolved gas, crystallization, infrared spectroscopy
Procedia PDF Downloads 282331 Standardization Of Miniature Neutron Research Reactor And Occupational Safety Analysis
Authors: Raymond Limen Njinga
Abstract:
The comparator factors (Fc) for miniature research reactors are of great importance in the field of nuclear physics as it provide accurate bases for the evaluation of elements in all form of samples via ko-NAA techniques. The Fc was initially simulated theoretically thereafter, series of experiments were performed to validate the results. In this situation, the experimental values were obtained using the alloy of Au(0.1%) - Al monitor foil and a neutron flux setting of 5.00E+11 cm-2.s-1. As was observed in the inner irradiation position, the average experimental value of 7.120E+05 was reported against the theoretical value of 7.330E+05. In comparison, a percentage deviation of 2.86 (from theoretical value) was observed. In the large case of the outer irradiation position, the experimental value of 1.170E+06 was recorded against the theoretical value of 1.210E+06 with a percentage deviation of 3.310 (from the theoretical value). The estimation of equivalent dose rate at 5m from neutron flux of 5.00E+11 cm-2.s-1 within the neutron energies of 1KeV, 10KeV, 100KeV, 500KeV, 1MeV, 5MeV and 10MeV were calculated to be 0.01 Sv/h, 0.01 Sv/h, 0.03 Sv/h, 0.15 Sv/h, 0.21Sv/h and 0.25 Sv/h respectively with a total dose within a period of an hour was obtained to be 0.66 Sv.Keywords: neutron flux, comparator factor, NAA techniques, neutron energy, equivalent dose
Procedia PDF Downloads 182330 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine
Procedia PDF Downloads 137329 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando
Abstract:
Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.Keywords: olive stone, combustion, reaction rate, fluidized bed
Procedia PDF Downloads 200328 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System
Authors: S. Gherbi, F. Bouchareb
Abstract:
This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor
Procedia PDF Downloads 432327 Convective Boiling of CO₂/R744 in Macro and Micro-Channels
Authors: Adonis Menezes, J. C. Passos
Abstract:
The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels
Procedia PDF Downloads 142326 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles
Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh
Abstract:
Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric
Procedia PDF Downloads 163325 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure
Authors: T. T. Naas, Y. Lasbet, C. Kezrane
Abstract:
The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.Keywords: natural convection in enclosure, inclined enclosure, Nusselt number, entropy generation analyze
Procedia PDF Downloads 260324 Sloshing Response of Liquid in Prismatic Container under Oscillation
Authors: P. R. Maiti, S. K. Bhattacharyya
Abstract:
Sloshing is a physical phenomenon characterized by the oscillation of unrestrained free surface of liquid in a partially liquid filled container subjected to external excitation. Determination of sloshing frequency in container is important to avoid resonance condition of the system. The complex behavior of the free surface movement and its combined mode of vibration make difficulty for exact analysis of sloshing. In the present study, numerical analysis is carried out for a partially liquid filled tank under external forces. Boundary element approach is used to formulate the sloshing problem in two -dimensional prismatic container with potential flow. Effort has been made to find slosh response for two dimensional problems in partially liquid filled prismatic container.Keywords: sloshing, boundary element method, prismatic container, oscillation
Procedia PDF Downloads 321323 Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk
Authors: Norul Hisham Hamid, Amir Affan, Ummi Hani Abdullah, Paridah Md. Tahir, Khairul Akmal Azhar, Rahmat Nawai, W. B. H. Wan Sulwani Izzati
Abstract:
The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica.Keywords: epoxy, composite, dimensional stability, static bending, silica
Procedia PDF Downloads 215322 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride
Authors: Kleiner Marques Marra, Tércio Pedrosa
Abstract:
This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.Keywords: uranium-molybdenum alloys, incorporation of carbon, solidification, macrosegregation and microsegregation
Procedia PDF Downloads 149321 New Insulation Material for Solar Thermal Collectors
Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka
Abstract:
1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.Keywords: clay, insulation material, polystyrene, solar collector, straw
Procedia PDF Downloads 461320 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics
Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact
Procedia PDF Downloads 403319 Experimental Study of Discharge with Sharp-Crested Weirs
Authors: E. Keramaris, V. Kanakoudis
Abstract:
In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.Keywords: sharp-crested weir, weir height, flow measurement, open channel flow
Procedia PDF Downloads 139318 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission
Authors: Alex B. Cusick
Abstract:
The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions
Procedia PDF Downloads 171317 Batch Biodrying of Pulp and Paper Secondary Sludge: Influence of Initial Moisture Content on the Process
Authors: César Huiliñir, Danilo Villanueva, Pedro Iván Alvarez, Francisco Cubillos
Abstract:
Biodrying aims at removing water from biowastes and has been mostly studied for municipal solid wastes (MSW), while few studies have dealt with secondary sludge from the paper and pulp industry. The goal of this study was to investigate the effect of initial moisture content (MC) on the batch biodrying of pulp and paper secondary sludge, using rice husks as bulking agents. Three initial MCs were studied (54, 65, and 74% w.b.) in closed batch laboratory-scale reactors under adiabatic conditions and with a constant air-flow rate (0.65 l min-1 kg-1 wet solid). The initial MC of the mixture of secondary sludge and rice husks showed a significant effect on the biodrying process. Using initial moisture content between 54-65% w.b., the solid moisture content was reduce up to 37 % w.b. in ten days, getting calorific values between 8000-9000 kJ kg-1. It was concluded that a decreasing of initial MC improves the drying rate and decreases the solid volatile consumption, therefore, the optimization of biodrying should consider this parameter.Keywords: biodrying, secondary sludge, initial moisture content, pulp and paper industry, rice husk
Procedia PDF Downloads 509316 Removal of Lead in High Rate Activated Sludge System
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda
Abstract:
The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt
Procedia PDF Downloads 518315 2D CFD-PBM Coupled Model of Particle Growth in an Industrial Gas Phase Fluidized Bed Polymerization Reactor
Authors: H. Kazemi Esfeh, V. Akbari, M. Ehdaei, T. N. G. Borhani, A. Shamiri, M. Najafi
Abstract:
In an industrial fluidized bed polymerization reactor, particle size distribution (PSD) plays a significant role in the reactor efficiency evaluation. The computational fluid dynamic (CFD) models coupled with population balance equation (CFD-PBM) have been extensively employed to investigate the flow behavior in the poly-disperse multiphase fluidized bed reactors (FBRs) utilizing ANSYS Fluent code. In this study, an existing CFD-PBM/ DQMOM coupled modeling framework has been used to highlight its potential to analyze the industrial-scale gas phase polymerization reactor. The predicted results reveal an acceptable agreement with the observed industrial data in terms of pressure drop and bed height. The simulated results also indicate that the higher particle growth rate can be achieved for bigger particles. Hence, the 2D CFD-PBM/DQMOM coupled model can be used as a reliable tool for analyzing and improving the design and operation of the gas phase polymerization FBRs.Keywords: computational fluid dynamics, population balance equation, fluidized bed polymerization reactor, direct quadrature method of moments
Procedia PDF Downloads 367314 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization
Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson
Abstract:
A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion
Procedia PDF Downloads 210313 Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq
Abstract:
Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 398312 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors
Authors: Amin Mojiri, Hamidi Abdul Aziz
Abstract:
Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon
Procedia PDF Downloads 465311 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves
Authors: Yingchen Yang
Abstract:
Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction
Procedia PDF Downloads 172310 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array
Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin
Abstract:
We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell
Procedia PDF Downloads 148309 Study of the Performance of Metal Tanks with a Floating Roof
Authors: Rezki Akkouche
Abstract:
This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project.Keywords: tanks of metal, floating roof, performance, comparative analysis
Procedia PDF Downloads 129308 Power Consumption for Viscoplastic Fluid in a Rotating Vessel with an Anchor Impeller
Authors: Draoui Belkacem, Rahmani Lakhdar, Benachour Elhadj, Seghier Oussama
Abstract:
Rheology is known to have a strong impact on the flow behavior and the power consumption of mechanically agitated vessels. The laminar 2D agitation flow and power consumption of viscoplastic fluids with an anchor impeller in a stirring tank is studied by using computational fluid dynamics (CFD). In this work the objective of this paper is: to evaluate the power consumption for yield stress fluids in standard mixing system. The power consumption is calculated for the different types of anchor impeller configurations and an optimum configuration is proposed.The hydrodynamic fields of incompressible yield stress fluid with model of Bingham in a cylindrical vessel not chicaned equipped with anchor stirrer was undertaken by means of numerical simulation. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed.Keywords: rheology, 2D, numerical, anchor, rotating vissel, non-Newtonien fluid
Procedia PDF Downloads 520307 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy
Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah
Abstract:
This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio
Procedia PDF Downloads 286306 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation
Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad
Abstract:
Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization
Procedia PDF Downloads 249305 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 361304 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle
Authors: Yury S. Shpanskiy, Boris V. Kuteev
Abstract:
Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle
Procedia PDF Downloads 147303 Microbial Corrosion on Oil and Gas Facilities: A Case Study of Oil and Gas Facilities in the Niger-Delta
Authors: Frederick Otite Ighovojah
Abstract:
Corrosion in the oil and gas industries is one of the most common causes of failure. Such failure includes leaks in above-ground storage tanks (AGST). The involvement of microorganisms in the corrosion process in AGST systems is often ignored, and this outlines the need to investigate the effect of microbial corrosion in oil and gas facilities. This study's methodology comprised gathering generated water samples from a nearby AGST oil facility that was operating, which were then equally divided into two batch reactors, 1 and 2. Each batch reactor was filled with five prepared X60 coupons using sterilized forceps. To provide nutrients for the microorganisms in batch reactor 1 during the test period, 2g of NPK 15- 15-15 fertilizer was added on a weekly basis. To kill the microorganisms and significantly lower their concentration in the generated water, 5ml of dissolved ozone (a biocide) with a 0.5ppm concentration was added to batch reactor 2. The weight loss measurement (WLM) was used to evaluate for corrosion. Coupons were removed from each batch reactor, and weight loss was measured at every interval of 336 hrs for 2016 hrs. The overall results obtained indicated that coupons from the batch 1 reactor showed a higher corrosion rate and higher mass loss, and this was due to the metabolic production of an aggressive compound in the medium.Keywords: AGST, microbial corrosion, reactor, X60 steel
Procedia PDF Downloads 83