Search results for: mage segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 462

Search results for: mage segmentation

162 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 521
161 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 423
160 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 118
159 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: big data, image processing, multispectral, principal component analysis

Procedia PDF Downloads 175
158 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 266
157 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students

Authors: Arto Grasten

Abstract:

Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.

Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory

Procedia PDF Downloads 280
156 Data Gathering and Analysis for Arabic Historical Documents

Authors: Ali Dulla

Abstract:

This paper introduces a new dataset (and the methodology used to generate it) based on a wide range of historical Arabic documents containing clean data simple and homogeneous-page layouts. The experiments are implemented on printed and handwritten documents obtained respectively from some important libraries such as Qatar Digital Library, the British Library and the Library of Congress. We have gathered and commented on 150 archival document images from different locations and time periods. It is based on different documents from the 17th-19th century. The dataset comprises differing page layouts and degradations that challenge text line segmentation methods. Ground truth is produced using the Aletheia tool by PRImA and stored in an XML representation, in the PAGE (Page Analysis and Ground truth Elements) format. The dataset presented will be easily available to researchers world-wide for research into the obstacles facing various historical Arabic documents such as geometric correction of historical Arabic documents.

Keywords: dataset production, ground truth production, historical documents, arbitrary warping, geometric correction

Procedia PDF Downloads 168
155 Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task

Authors: Nikita Rajendra Sharma, Jai Prakash Kushvah, Gerhard Rinkenauer

Abstract:

Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction.

Keywords: additional information, lane change task, motor preparation, movement pre-cueing, reaction time, steering wheel amplitude

Procedia PDF Downloads 191
154 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z

Authors: M. Bredice, M. B. Forleo, L. Quici

Abstract:

Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.

Keywords: cluster analysis, education, knowledge, young people

Procedia PDF Downloads 77
153 Smartphone Based Wound Assessment System for Diabetes Patients

Authors: Vaibhav V. Dixit, Shubham Ajay Karwa

Abstract:

Diabetic foot ulcers speak to a critical medical problem. Right now, clinicians and medical caretakers primarily construct their injury evaluation in light of visual examination of wound size and mending status, while the patients themselves rarely have a chance to play a dynamic part. Henceforth, love quantitative and practical examination technique that empowers the patients and their parental figures to take a more dynamic part in every day wound care possibly can quicken wound recuperating, spare travel cost and diminish human services costs. Considering the commonness of cell phones with a high-determination computerized camera, evaluating wounds by breaking down pictures of ceaseless foot ulcers is an alluring choice. In this paper, we propose a novel injury picture examination framework actualized using feature extraction and color segmentation. Here we are using the Normalized minimum distance classifier for classifying the output.

Keywords: diabetic, Gabor wavelet, normalized minimum distance classifier, quantiable parameters

Procedia PDF Downloads 270
152 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
151 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means

Procedia PDF Downloads 210
150 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 125
149 FISCEAPP: FIsh Skin Color Evaluation APPlication

Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez

Abstract:

Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.

Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation

Procedia PDF Downloads 262
148 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning

Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.

Abstract:

Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.

Keywords: image processing, python, convolution neural network (CNN), machine learning

Procedia PDF Downloads 76
147 Cognitive Performance and Everyday Functionality in Healthy Greek Seniors

Authors: George Pavlidis, Ana Vivas

Abstract:

The demographic change into an aging population has stimulated the examination of seniors’ mental health and ability to live independently. The corresponding literature depicts the relation between cognitive decline and everyday functionality with aging, focusing largely in individuals that are reaching or have bridged the threshold of various forms of neuropathology and disability. In this context, recent meta-analysis depicts a moderate relation between cognitive performance and everyday functionality in AD sufferers. However, there has not been an analogous effort for the examination of this relation in the healthy spectrum of aging (i.e, in samples that are not challenged from a neurodegenerative disease). There is a consensus that the assessment tools designed to detect neuropathology with those that assess cognitive performance in healthy adults are distinct, thus their universal use in cognitively challenged and in healthy adults is not always valid. The same accounts for the assessment of everyday functionality. In addition, it is argued that everyday functionality should be examined with cultural adjusted assessment tools, since many vital everyday tasks are heterotypical among distinct cultures. Therefore, this study was set out to examine the relation between cognitive performance and everyday functionality a) in the healthy spectrum of aging and b) by adjusting the everyday functionality tools EPT and OTDL-R in the Greek cultural context. In Greece, 107 cognitively healthy seniors ( Mage = 62.24) completed a battery of neuropsychological tests and everyday functionality tests. Both were carefully chosen to be sensitive in fluctuations of performance in the healthy spectrum of cognitive performance and everyday functionality. The everyday functionality assessment tools were modified to reflect the local cultural context (i.e., EPT-G and OTDL-G). The results depicted that performance in all everyday functionality measures decline with age (.197 < r > .509). Statistically significant correlations emerged between cognitive performance and everyday functionality assessments that range from r =0.202 to r=0.510. A series of independent regression analysis including the scores of cognitive assessments has yield statistical significant models that explained 20.9 < AR2 > 32.4 of the variance in everyday functionality scored indexes. All everyday functionality measures were independently predicted by the TMT B-A index, and indicator of executive function. Stepwise regression analyses depicted that TMT B-A and age were statistically significant independent predictors of EPT-G and OTDL-G. It was concluded that everyday functionality is declining with age and that cognitive performance and everyday functional may be related in the healthy spectrum of aging. Age seems not to be the sole contributing factor in everyday functionality decline, rather executive control as well. Moreover, it was concluded that the EPT-G and OTDL-G are valuable tools to assess everyday functionality in Greek seniors that are not cognitively challenged, especially for research purposes. Future research should examine the contributing factors of a better cognitive vitality especially in executive control, as vital for the maintenance of independent living capacity with aging.

Keywords: cognition, everyday functionality, aging, cognitive decline, healthy aging, Greece

Procedia PDF Downloads 523
146 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images

Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim

Abstract:

In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.

Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles

Procedia PDF Downloads 260
145 Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Authors: Moaz H. Ali, Ahmed H. Al-Saadi

Abstract:

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, lightweight, and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provide a serious challenge for cutting tool material during the machining process. The reduction in cutting temperature distributions leads to an increase in tool life and a decrease in wear rate. Hence, the chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The result of low thermal conductivity and diffusivity of this alloy in the concentration of high temperatures at the tool-work-piece and tool-chip interface. Consequently, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. Otherwise, the result will be accelerating tool wear, increasing manufacturing cost and time consuming.

Keywords: machinability, titanium alloy (ti-6al-4v), chip formation, milling process

Procedia PDF Downloads 450
144 Ethnic Militias and Insecurity in Democratic Nigeria

Authors: Adeyemi Kamil Hamzah, Abayomi Nathaniel Oyesikun

Abstract:

Throughout modern history internal strife has burdened Africa most populous nation, Nigeria. The country encompassed more than four hundred ethnic and sub ethnic groups with the different background and identities. This group has not fussed themselves together to emerge as a nation what we have are mere ethnic and religious groups i.e. Hausa/Fulani Igbo Yoruba Ijaw, Ibibio, christian, and Muslim. The source of problematic Nigeria is linked to colonial policy of segmentation, discontent to religion, faith, and ethnicity. The wave of spiral killing among the major ethnic entities with different religious affiliation has brought the process of good governance in the country to its kneel. This paper will place insecurity in Nigeria in context by reviewing the root and rise of ethnic militia. In doing so it will evaluate how the West Africa power house arrive at the point where it is today with all unprecedented unrest from regions that formed Nigeria. Both primary and secondary sources were applied for the quality of this paper. The effects of ethnic militia in realizing and actualizing political stability are equally discussed, recommendations proffered and conclusion given.

Keywords: ethnic, militia, violence, insecurity, democracy

Procedia PDF Downloads 338
143 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 145
142 Assisted Video Colorization Using Texture Descriptors

Authors: Andre Peres Ramos, Franklin Cesar Flores

Abstract:

Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference.

Keywords: colorization, feature matching, texture descriptors, video segmentation

Procedia PDF Downloads 162
141 The Role of Self-Compassion for the Diagnosis of Social Anxiety Disorder in Adolescents

Authors: Diana Vieira Figueiredo, Rita Ramos Miguel, Maria do Céu Salvador, Luiza Nobre-Lima, Daniel RIjo, Paula Vagos

Abstract:

Social Anxiety Disorder (SAD) is characterized by a marked and persistent fear of social and/or performance situations in which one may be exposed to the scrutiny of others.  SAD has its usual onset and is highly prevalent during adolescence; if left untreated, it often has a chronic and unremitting course. So, it seems important to understand the psychological processes that might predict the development of SAD. One of these processes may be self-compassion, which has been found to be associated with social anxiety in both adults and adolescents. Self-compassion involves three main components, each with a positive (compassionate behavior) and negative (uncompassionate behavior) pole – self-kindness versus self-judgment, common humanity versus isolation, and mindfulness versus over-identification. The negative indicators of self-compassion (self-judgement, isolation, and over-identification) were found to be more strongly linked to mental health problems than the positive indicators (self-kindness, common humanity, and mindfulness). Additionally, negative associations were found between the positive indicators of self-compassion (self-kindness, common humanity, mindfulness) and psychopathology. The current study aimed to investigate the role of self-kindness, self-judgment, common humanity, isolation, mindfulness, and over-identification in the likelihood of an adolescent presenting SAD by comparing groups of normative and socially anxious adolescents. The sample consisted of 32 adolescents (Mage = 15.88, SD = .833) of which 23 were girls. Adolescents were assessed through a clinical structured interview that led 17 to be assigned to the clinical group (presenting a primary diagnosis of SAD) and 15 to be assigned to the non-clinical group (presenting no clinical diagnosis). Variables under study were measured through the Self-Compassion Scale for adolescents (SCS-A), which assesses the six indicators of self-compassion presented above. Six separate models were tested, each with one of the subscales of the SCS-A as the independent variable and with the group (clinical versus non-clinical) as the dependent variable. The models considering isolation, over-identification, self-judgement, and self-kindness fitted the data and accurately predicted group belonging for between 75% to 84.4% of cases. Results indicated that the log of the odds of an adolescent presenting SAD was positively related to isolation, over-identification, and self-judgement and negatively associated with self-kindness. Findings provide support for the idea that decreased self-compassion may place adolescents at increased risk for experiencing clinical levels of social anxiety: on the one hand, adolescents with higher levels of isolation, over-identification, and self-judgement seem to be more prone to the development of psychopathological levels of social anxiety; on the other hand, self-kindness may play a protective role in the development of SAD in this developmental phase. So, if focusing on social feared consequences and perceiving to be different from others may be distinctive features of SAD, developing self-kindness may be the antidote to promote diminished levels of social anxiety and more.

Keywords: adolescents, social anxiety disorder, self-compassion, diagnosis odds-ration

Procedia PDF Downloads 159
140 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 124
139 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique

Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef

Abstract:

X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.

Keywords: enhancement, x-rays, pixel intensity values, MatLab

Procedia PDF Downloads 483
138 Micro-sovereignty Dynamics: Property Management and Biopolitics

Authors: Sibo Lu, Zhongkai Qian, Haotian Zhang

Abstract:

This article examines the phenomenon of micro-sovereignty in the context of property management and its implications for biopolitics and urban governance in mainland China. It explores the transformation of urban spaces into privatized communities managed by property companies, leading to the reterritorialization of urban areas and the segmentation of urban populations. Drawing on legal frameworks, we analyze how commercial real estate development and property management have reshaped the urban landscape, placing nearly all urban residents within service areas of property management firms, thus establishing micro-sovereign entities that exercise control over residential spaces. Through a critique of property management's sovereign effects on social organization and the exploration of autonomous, democratic alternatives in community governance, this article contributes to the broader discourse on sovereignty, governance, and resistance within the urban milieu of contemporary China. It underscores the urgent need for more democratic forms of community management that can transcend the capitalist logic of property management companies and foster genuine participatory governance at the grassroots level.

Keywords: biopolitic, critical theory, political sociology, political philosophy

Procedia PDF Downloads 47
137 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 127
136 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li

Abstract:

The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.

Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition

Procedia PDF Downloads 306
135 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 262
134 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition

Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni

Abstract:

Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.

Keywords: BEMD, breast density, contend-based, image retrieval, mammography

Procedia PDF Downloads 232
133 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 190