Search results for: early mathematics learning
10273 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students
Authors: Prasita Sooksamran, Wareerat Kaewurai
Abstract:
STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).Keywords: instructional model, STEM education, scientific mind, problem solving
Procedia PDF Downloads 19210272 Implementing Lesson Study in Qatari Mathematics Classroom: A Case Study of a New Experience for Teachers through IMPULS-QU Lesson Study Program
Authors: Areej Isam Barham
Abstract:
The implementation of Japanese lesson study approach in the mathematics classroom has been grown worldwide as a model of professional development for teachers. In Qatar, the implementation of IMPULS-QU lesson study program aimed to establish a robust organizational improvement model of professional development for mathematics teachers in Qatar schools. This study describes the implementation of a lesson study model at Al-Markhyia Independent Primary School through different stages; and discusses how the planning process, the research lesson, and the post discussion participates in providing teachers and researchers with a successful research lesson for teacher professional development. The research followed a case study approach in one mathematics classroom. Two teachers and one professional development specialist participated the planning process. One teacher conducted the research lesson study by introducing a problem solving related to the concept of the ‘Mean’ in a mathematics class, 21 students in grade 6 participated in solving the mathematic problem, 11 teachers, 4 professional development specialists, and 4 mathematics professors observed the research lesson. All previous participants except the students participated in a pre and post-lesson discussion within this research. This study followed a qualitative research approach by analyzing the collected data through different stages in the research lesson study. Observation, field notes, and semi-structured interviews conducted to collect data to achieve the research aims. One feature of this lesson study research is that this research describes the implementation for a lesson study as a new experience for one mathematics teacher and 21 students after 3 years of conducting IMPULS-QU project in Al-Markhyia school. The research describes various stages through the implementation of this lesson study model starting from the planning process and ending by the post discussion process. Findings of the study also address the impact of lesson study approach in teaching mathematics for the development of teachers from their point views. Results of the study show the benefits of using lesson study from the point views of participated teachers, theory perceptions about the essential features of lesson study, and their needs for future development. The discussion of the study addresses different features and issues related to the implementation of IMPULS-QU lesson study model in the mathematics classroom. In the light of the study, the research presents recommendations and suggestions for future professional development.Keywords: lesson study, mathematics education, mathematics teaching experience, teacher professional development
Procedia PDF Downloads 18510271 Multilingualism and Unification of Teaching
Authors: Mehdi Damaliamiri, Firouzeh Akbari
Abstract:
Teaching literature to children at an early age is of great importance, and there have been different methods to facilitate learning literature. Based on the law, all children going to school in Iran should learn the Persian language and literature. This has been concomitant with two different levels of learning related to urban or rural bilingualism. For bilingual children living in the villages, learning literature and a new language (Persian) turns into a big challenge as it is done based on the translation the teacher does while in the city, it is easier as the confrontation of children with the Persian language is more. Over recent years, to change the trend of learning Persian by children speaking another language, the TV and radio programs have been considered to be effective, but the scores of the students in Persian language national exams show that these programs have not been so effective for the bilingual students living in the villages. To identify the determinants of weak learning of Persian by bilingual children, two different regions were chosen, Turkish-speaking and Kurdish-speaking communities, to compare their learning of Persian at the first and second levels of elementary school. The criteria of learning was based on the syllabification of Persian words, word order in the sentence, and compound sentences. Students were taught in Persian how to recognize syllabification without letting them translate the words in their own languages and were asked to produce simple sentences in Persian in response to situational questions. Teaching methods, language relatedness with Persian, and exposure to social media programs, especially TV and radio, were the factors that were considered to affect the potential of children in learning Persian.Keywords: bilingualism, persian, education, Literature
Procedia PDF Downloads 7310270 Remote Learning During Pandemic: Malaysian Classroom
Authors: Hema Vanita Kesevan
Abstract:
The global spread of Covid-19 virus in early 2020 has led to major changes in many walks of life, including the education system. Traditional face to face lessons that were carried out for years has been replaced by online learning. Although online learning has been used before the pandemic, it has not been the only source of teaching and learning. This drastic change has brought significant impact to the process of teaching and learning in many classrooms around the world. Likewise, in country like Malaysia that that has been promoting online learning but has not utilize it fully due to many restrictions in terms of technology, accessibility, and online literacy, the sudden change to full online platform learning in all educational sector has definitely caused Issues in terms of its adaptation and usage. Although many studies have been conducted to explore the efficiency and impact of online learning during the pandemic, studies focusing on the same are limited in Malaysian classroom context, especially in English language classrooms. Thus, this study seeks to explore on the efficacy and effectiveness of online learning tools in ESL classroom contexts during the pandemic. The aim of this study is to understand the educator's and student's perceptions on the implementation of online learning tools in the teaching and learning process and the types of online learning tools that were used to assist the teaching and learning process during the pandemic. Particularly, this study focused to explore the types of online learning tools used in Malaysian schools and university during the online teaching and learning process and further explores how the various types of tools used impacted the students' participation in the lessons conducted. The participants of this study are secondary school students, teachers, and university students. Data will be collected in terms of survey questionnaire and interviews. The survey data intends to obtain information on the types of online learning used in ESL teaching and learning practices during the pandemic, how the various types of online tools influence students' participation during lessons. The interview data from the teachers serves to provide information about the selection of online learning tools, challenges of using it to conduct online lessons, and other arising issues. A mixed method design will be used to analysed the data obtained. The questionnaire will be analysed quantitatively using descriptive analysis meanwhile, the interview data will be analysed qualitatively.Keywords: Covid 19, online learning tools, ESL classroom, effectiveness, efficacy
Procedia PDF Downloads 23610269 Intentional Learning vs Incidental Learning
Authors: Shahbaz Ahmed
Abstract:
This study is conducted to demonstrate the knowledge of intentional learning and incidental learning. Hypothesis of this experiment is intentional learning is better than incidental learning, participants were demonstrated and were asked to learn the 10 nonsense syllables in a specific sequence from the colored cards in the end they were asked to recall the background color of each card instead of nonsense syllables. Independent variables of the experiment are the colored cards containing nonsense syllables which are to be memorized by the participants, dependent variables are the number of correct responses made by the participant. The findings of the experiment concluded that intentional learning is better than incidental learning, hence hypothesis is proved.Keywords: intentional learning, incidental learning, non-sense syllable cards, score sheets
Procedia PDF Downloads 53410268 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 7510267 PlayTrain: A Research and Intervention Project for Early Childhood Teacher Education
Authors: Dalila Lino, Maria Joao Hortas, Carla Rocha, Clarisse Nunes, Natalia Vieira, Marina Fuertes, Kátia Sa
Abstract:
The value of play is recognized worldwide and is considered a fundamental right of all children, as defined in Article 31 of the United Nations Children’s Rights. It is consensual among the scientific community that play, and toys are of vital importance for children’s learning and development. Play promotes the acquisition of language, enhances creativity and improves social, affective, emotional, cognitive and motor development of young children. Young children ages 0 to 6 who have had many opportunities to get involved in play show greater competence to adapt to new and unexpected situations and more easily overcome the pain and suffering caused by traumatic situations. The PlayTrain Project aims to understand the places/spaces of play in the education of children from 0 to 6 years and promoting the training of preschool teachers to become capable of developing practices that enhance children’s agency, experimentation in the physical and social world and the development of imagination and creativity. This project follows the Design-Based-Research (DBR) and has two dimensions: research and intervention. The participants are 120 students from the Master in Pre-school Education of the Higher School of Education, Polytechnic Institute of Lisbon enrolled in the academic year 2018/2019. The development of workshops focused on the role of play and toys for young children’s learning promotes the participants reflection and the development of skills and knowledge to construct developmentally appropriated practices in early childhood education. Data was collected through an online questionnaire and focal groups. Results show that the PlayTrain Project contribute to the development of a body of knowledge about the role of play for early childhood education. It was possible to identify the needs of preschool teacher education and to enhance the discussion among the scientific and academic community about the importance of deepening the role of play and toys in the study plans of the masters in pre-school education.Keywords: children's learning, early childhood education, play, teacher education, toys
Procedia PDF Downloads 14410266 Character Education Model for Early Childhood Based Javanese Culture
Authors: Rafika Bayu Kusumandari, Istyarini, Ispen Safrel
Abstract:
Character education will be more meaningful if carried out since early childhood. This is because early childhood education is the foundation of the formation of character. This study intends to find a model of character education in early childhood based on Javanese culture. In keeping with the focus of the study, long-term goals to be achieved through this research is to find once described the development of a model of character education in early childhood Javanese culture based in Semarang are then applied across early childhood education institutions in Semarang City. The specific objective of the study is: Describe the character models and management education in early childhood Java-based culture in Semarang City. The benefits of this research are; Provide an overview of the model and describe the management of character education in early childhood Java-based culture in Semarang City. Referring to the objectives of the research program was designed with a "Research and Development", meaning that a program of research followed by development programs for improvement or refinement. To produce a prototype model of character education in early childhood Java-based culture in the city, taken systematic measures in the form of the action, reflection, evaluation and innovation by applying qualitative research methods, descriptive, development, experimentation, and evaluation. This study aims to gain in-depth description of the model of character education in early childhood Java-based culture in the city of Semarang. The reason for the use of the use of qualitative methods researcher's knowledge, no study results and empirical research specifically about the model of character education in early childhood Java-based culture in the city of Semarang. On the implementation of character education early childhood adapted to the characteristics of each school and the emphasis of each agency arrangements for early childhood education, culture-based Java. Javanese culture should be introduced early in order not to erode the cultural lost outside the entrance as the era of globalization. In addition, Java is promoting a culture of courtesy and manners are very appropriate for the character formation of children of early age.Keywords: education character, Javanese culture, childhood, character
Procedia PDF Downloads 39110265 Discussion on Big Data and One of Its Early Training Application
Authors: Fulya Gokalp Yavuz, Mark Daniel Ward
Abstract:
This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.Keywords: Big Data, computation, mentoring, training
Procedia PDF Downloads 36210264 Science and Mathematics Instructional Strategies, Teaching Performance and Academic Achievement in Selected Secondary Schools in Upland
Authors: Maria Belen C. Costa, Liza C. Costa
Abstract:
Teachers have an important influence on students’ academic achievement. Teachers play a crucial role in educational attainment because they stand in the interface of the transmission of knowledge, values, and skills in the learning process through the instructional strategies they employ in the classroom. The level of achievement of students in school depends on the degree of effectiveness of instructional strategies used by the teacher. Thus, this study was conceptualized and conducted to examine the instructional strategies preferred and used by the Science and Mathematics teachers and the impact of those strategies in their teaching performance and students’ academic achievement in Science and Mathematics. The participants of the study comprised a total enumeration of 61 teachers who were chosen through total enumeration and 610 students who were selected using two-stage random sampling technique. The descriptive correlation design was used in this study with a self-made questionnaire as the main tool in the data gathering procedure. Relationship among variables was tested and analyzed using Spearman Rank Correlation Coefficient and Wilcoxon Signed Rank statistics. The teacher participants under study mainly belonged to the age group of ‘young’ (35 years and below) and most were females having ‘very much experienced’ (16 years and above) in teaching. Teaching performance was found to be ‘very satisfactory’ while academic achievement in Science and Mathematics was found to be ‘satisfactory’. Demographic profile and teaching performance of teacher participants were found to be ‘not significant’ to their instructional strategy preferences. Results implied that age, sex, level of education and length of service of the teachers does not affect their preference on a particular instructional strategy. However, the teacher participants’ extent of use of the different instructional strategies was found to be ‘significant’ to their teaching performance. The instructional strategies being used by the teachers were found to have a direct effect on their teaching performance. Academic achievement of student participants was found to be ‘significant’ to the teacher participants’ instructional strategy preferences. The preference of the teachers on instructional strategies had a significant effect on the students’ academic performance. On the other hand, teacher participants’ extent of use of instructional strategies was showed to be ‘not significant’ to the academic achievement of students in Science and Mathematics. The instructional strategy being used by the teachers did not affect the level of performance of students in Science and Mathematics. The results of the study revealed that there was a significant difference between the teacher participants’ preference of instructional strategy and the student participants’ instructional strategy preference as well as between teacher participants’ extent of use and student participants’ perceived level of use of the different instructional strategies. Findings found a discrepancy between the teaching strategy preferences of students and strategies implemented by teachers.Keywords: academic achievement, extent of use, instructional strategy, preferences
Procedia PDF Downloads 31310263 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed
Authors: Marion G. Ben-Jacob, David Wang
Abstract:
There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.Keywords: emporium model, mathematics, pedagogy, STEM
Procedia PDF Downloads 7510262 Assessment of Physical Learning Environments in ECE: Interdisciplinary and Multivocal Innovation for Chilean Kindergartens
Authors: Cynthia Adlerstein
Abstract:
Physical learning environment (PLE) has been considered, after family and educators, as the third teacher. There have been conflicting and converging viewpoints on the role of the physical dimensions of places to learn, in facilitating educational innovation and quality. Despite the different approaches, PLE has been widely recognized as a key factor in the quality of the learning experience , and in the levels of learning achievement in ECE . The conceptual frameworks of the field assume that PLE consists of a complex web of factors that shape the overall conditions for learning, and that much more interdisciplinary and complementary methodologies of research and development are required. Although the relevance of PLE attracts a broad international consensus, in Chile it remains under-researched and weakly regulated by public policy. Gaining deeper contextual understanding and more thoughtfully-designed recommendations require the use of innovative assessment tools that cross cultural and disciplinary boundaries to produce new hybrid approaches and improvements. When considering a PLE-based change process for ECE improvement, a central question is what dimensions, variables and indicators could allow a comprehensive assessment of PLE in Chilean kindergartens? Based on a grounded theory social justice inquiry, we adopted a mixed method design, that enabled a multivocal and interdisciplinary construction of data. By using in-depth interviews, discussion groups, questionnaires, and documental analysis, we elicited the PLE discourses of politicians, early childhood practitioners, experts in architectural design and ergonomics, ECE stakeholders, and 3 to 5 year olds. A constant comparison method enabled the construction of the dimensions, variables and indicators through which PLE assessment is possible. Subsequently, the instrument was applied in a sample of 125 early childhood classrooms, to test reliability (internal consistency) and validity (content and construct). As a result, an interdisciplinary and multivocal tool for assessing physical learning environments was constructed and validated, for Chilean kindergartens. The tool is structured upon 7 dimensions (wellbeing, flexible, empowerment, inclusiveness, symbolically meaningful, pedagogically intentioned, institutional management) 19 variables and 105 indicators that are assessed through observation and registration on a mobile app. The overall reliability of the instrument is .938 while the consistency of each dimension varies between .773 (inclusive) and .946 (symbolically meaningful). The validation process through expert opinion and factorial analysis (chi-square test) has shown that the dimensions of the assessment tool reflect the factors of physical learning environments. The constructed assessment tool for kindergartens highlights the significance of the physical environment in early childhood educational settings. The relevance of the instrument relies in its interdisciplinary approach to PLE and in its capability to guide innovative learning environments, based on educational habitability. Though further analysis are required for concurrent validation and standardization, the tool has been considered by practitioners and ECE stakeholders as an intuitive, accessible and remarkable instrument to arise awareness on PLE and on equitable distribution of learning opportunities.Keywords: Chilean kindergartens, early childhood education, physical learning environment, third teacher
Procedia PDF Downloads 35710261 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 6710260 The Family Sense of Coherence of Early Childhood Education Students
Abstract:
The aim of this study is to examine the family sense of coherence of early childhood education students. The Family Sense of Coherence Inventory has applied to 233 (108 girls and 125 boys) early childhood education students in Turkey. At the stage of data collection, with the aim of determining the family sense of coherence of early childhood education students, Family Sense of Coherence Inventory which was developed by Çeçen (2007) was used. In the process of the analysis of data, independent samples t-test, and one-way ANOVA were used. According to the results of the study, there were significant differences between some demographic variables in terms of the family sense of coherence.Keywords: family sense of coherence, early childhood education students
Procedia PDF Downloads 16410259 Use and Appreciation of a Type of Mathematics Textbook for Secondary Education
Authors: Verónica Díaz Quezada
Abstract:
Despite the wide variety of educational resources on the market and the advances produced in the technological field, the practice of teaching continues to be supported mainly by textbooks. This article reports on descriptive research with qualitative methodology carried out on secondary school mathematics teachers in a region of Chile, in order to describe the use and the indicators of appreciation that teachers have on the textbooks distributed by the official body to public educational establishments. Data were collected through an open response opinion questionnaire. According to the results, among the texts available for the annual performance of their teaching work, the expository and technological books predominate, to the detriment of comprehensive books. The exhibition structure favors master expositions and repetitive exercises, while, with the technological structure, a productive exercise is attempted, proposing numerous applications with the intention of giving meaning to the different mathematical rules and procedures. In relation to the indicators of appreciation that teachers have regarding the use of mathematics textbooks, the suitability and quality of the teaching resources are verified as the most satisfying characteristic.Keywords: mathematics, secondary school, teachers, textbooks
Procedia PDF Downloads 16410258 The Relevance of Smart Technologies in Learning
Authors: Rachael Olubukola Afolabi
Abstract:
Immersive technologies known as X Reality or Cross Reality that include virtual reality augmented reality, and mixed reality have pervaded into the education system at different levels from elementary school to adult learning. Instructors, instructional designers, and learning experience specialists continue to find new ways to engage students in the learning process using technology. While the progression of web technologies has enhanced digital learning experiences, analytics on learning outcomes continue to be explored to determine the relevance of these technologies in learning. Digital learning has evolved from web 1.0 (static) to 4.0 (dynamic and interactive), and this evolution of technologies has also advanced teaching methods and approaches. This paper explores how these technologies are being utilized in learning and the results that educators and learners have identified as effective learning opportunities and approaches.Keywords: immersive technologoes, virtual reality, augmented reality, technology in learning
Procedia PDF Downloads 14510257 Chest Trauma and Early Pulmonary Embolism: The Risks
Authors: Vignesh Ratnaraj, Daniel Marascia, Kelly Ruecker
Abstract:
Purpose: Pulmonary embolism (PE) is a major cause of morbidity and mortality in trauma patients. Data suggests PE is occurring earlier in trauma patients, with attention being turned to possible de novo events. Here, we examine the incidence of early PE at a level 1 trauma center and examine the relationship with a chest injury. Method: A retrospective analysis was performed from a prospective trauma registry at a level 1 trauma center. All patients admitted from 1 January 2010 to 30 June 2019 diagnosed with PE following trauma were included. Early PE was considered a diagnosis within 72 hours of admission. The severity of the chest injury was determined by the Abbreviated Injury Score (AIS). Analysis of severe chest injury and incidence of early PE was performed using chi-square analysis. Sub-analysis on the timing of PE and PE location was also performed using chi-square analysis. Results: Chest injury was present in 125 of 184 patients diagnosed with PE. Early PE occurred in 28% (n=35) of patients with a chest injury, including 24.39% (n=10) with a severe chest injury. Neither chest injury nor severe chest injury determined the presence of early PE (p= > 0.05). Sub-analysis showed a trend toward central clots in early PE (37.14%, n=13) compared to late (27.78%, n=25); however, this was not found to be significant (p= > 0.05). Conclusion: PE occurs early in trauma patients, with almost one-third being diagnosed before 72 hours. This analysis does not support the paradigm that chest injury, nor severe chest injury, results in statistically significant higher rates of early PE. Interestingly, a trend toward early central PE was noted in those suffering chest trauma.Keywords: trauma, PE, chest injury, anticoagulation
Procedia PDF Downloads 10210256 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients
Procedia PDF Downloads 36410255 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok
Authors: Teerada Apibunyopas, Nithinant Thammakoranonta
Abstract:
Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees skill efficiently. This study focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increased. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.Keywords: e-Learning, job satisfaction, learning and growth, Bangkok
Procedia PDF Downloads 49110254 Learning Compression Techniques on Smart Phone
Authors: Farouk Lawan Gambo, Hamada Mohammad
Abstract:
Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.Keywords: data compression, learning preference, mobile learning, multimedia
Procedia PDF Downloads 44710253 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 12810252 Maker-Based Learning in Secondary Mathematics: Investigating Students’ Proportional Reasoning Understanding through Digital Making
Authors: Juan Torralba
Abstract:
Student digital artifacts were investigated, utilizing a qualitative exploratory research design to understand the ways in which students represented their knowledge of seventh-grade proportionality concepts as they participated in maker-based activities that culminated in the creation of digital 3-dimensional models of their dream homes. Representations of the geometric and numeric dimensions of proportionality were analyzed in the written, verbal, and visual data collected from the students. A directed content analysis approach was utilized in the data analysis, as this work aimed to build upon existing research in the field of maker-based STEAM Education. The results from this work show that students can represent their understanding of proportional reasoning through open-ended written responses more accurately than through verbal descriptions or digital artifacts. The geometric and numeric dimensions of proportionality and their respective components of attributes of similarity representation and percents, rates, and ratios representations were the most represented by the students than any other across the data, suggesting a maker-based instructional approach to teaching proportionality in the middle grades may be promising in helping students gain a solid foundation in those components. Recommendations for practice and research are discussed.Keywords: learning through making, maker-based education, maker education in the middle grades, making in mathematics, the maker movement
Procedia PDF Downloads 7110251 Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
The use of brain stem auditory evoked potential (BAEP) is a common way to study the auditory function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost, and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and to the authors' best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to take into account both ears; with these latest data, it has been possible had diagnosed more precise some cases than with the previous data had been diagnosed as 'normal' despite showing signs of some alteration that motivated the new consultation to the specialist.Keywords: ear, neurodevelopment, auditory evoked potentials, intervals of normality, learning disabilities
Procedia PDF Downloads 16510250 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 35010249 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 11910248 Early Childhood Developmental Delay in 63 Low- and Middle-Income Countries: Prevalence and Inequalities Estimated from National Health Surveys
Authors: Jesus D. Cortes Gil, Fernanda Ewerling, Leonardo Ferreira, Aluisio J. D. Barros
Abstract:
Background: The sustainable development goals call for inclusive, equitable, and quality learning opportunities for all. This is especially important for children, to ensure they all develop to their full potential. We studied the prevalence and inequalities of suspected delay in child development in 63 low- and middle-income countries. Methods and Findings: We used the early child development module from national health surveys, which covers four developmental domains (physical, social-emotional, learning, literacy-numeracy) and provides a combined indicator (early child development index, ECDI) of whether children are on track. We calculated the age-adjusted prevalence of suspected delay at the country level and stratifying by wealth, urban/rural residence, sex of the child, and maternal education. We also calculated measures of absolute and relative inequality. We studied 330.613 children from 63 countries. The prevalence of suspected delay for the ECDI ranged from 3% in Barbados to 67% in Chad. For all countries together, 25% of the children were suspected of developmental delay. At regional level, the prevalence of delay ranged from 10% in Europe and Central Asia to 42% in West and Central Africa. The literacy-numeracy domain was by far the most challenging, with the highest proportions of delay. We observed very large inequalities, and most markedly for the literacy-numeracy domain. Conclusions: To date, our study presents the most comprehensive analysis of child development using an instrument especially developed for national health surveys. With a quarter of the children globally suspected of developmental delay, we face an immense challenge. The multifactorial aspect of early child development and the large gaps we found only add to the challenge of not leaving these children behind.Keywords: child development, inequalities, global health, equity
Procedia PDF Downloads 11910247 The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar
Authors: Abdullah Abu-Tineh, Youmen Chaaban
Abstract:
This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.Keywords: initiative, professional development, school based support Program (SBSP), school reform
Procedia PDF Downloads 49610246 An Online Mastery Learning Method Based on a Dynamic Formative Evaluation
Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim
Abstract:
This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.Keywords: online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement
Procedia PDF Downloads 51110245 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 26810244 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 143