Search results for: colorectal cancer cell line (HCT-116)
7070 RhoA Regulates E-Cadherin Intercellular Junctions in Oral Squamous Carcinoma Cells
Authors: Ga-Young Lee, Hyun-Man Kim
Abstract:
The modulation of the cell-cell junction is critical in epithelial-mesenchymal transition during tumorigenesis. As RhoA activity is known to be up-regulated to dissociate cell-cell junction by contracting acto-myosin complex in various cancer cells, the present study investigated if RhoA activity was also associated with the disruption of the cell-cell junction of oral cancer cells. We studied SCC-25 cells which are established from oral squamous cell carcinoma if their E-cadherin junction (ECJ) was under control of RhoA. Interestingly, development of ECJ of SCC-25 cells depended on the amount of fibronectin (FN) coated on the culture dishes. Seeded cells promptly aggregated to develop ECJ on the substrates coated with a low amount of FN, whereas they were retarded in the development of ECJ on the substrates coated with a high amount of FN. However, it was an unexpected finding that total RhoA activity was lower in the dissociated cells on the substrates of high FN than in the aggregated cells on the substrates of low FN. Treating the dissociated cells on the substrates of high FN with LPA, a RhoA activator, promoted the development to ECJ. In contrast, treating the aggregated cells on the substrates of low FN with Clostridium botulinum C3, a toxin decreasing RhoA activity, dissociated cells concomitant with the disruption of ECJ. Genetical knockdown of RhoA expression by transfecting RhoA siRNA also down-regulated the development of ECJ in SCC-25 cells. Furthermore, PMA, an activator of protein kinase C (PKC), down-regulated the development of ECJ junction of SCC-25 cells on the substrates coated with low FN. In contrast, GO6976, a PKC inhibitor, up-regulated the development of ECJ of SCC-25 cells with the activation of RhoA on the substrates coated with high FN. In conclusion, in the present study, we demonstrated unexpected results that the activation of RhoA promotes the development of ECJ, whereas the inhibition of RhoA retards the development of ECJ in SCC-25 cells.Keywords: E-cadherin junction, oral squamous cell carcinoma, PKC, RhoA, SCC-25
Procedia PDF Downloads 3317069 hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen's Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients
Authors: Mahsa Taghavi
Abstract:
In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug.Keywords: tamoxifen, breast cancer, bioinformatics analysis, EMT, miRNAs
Procedia PDF Downloads 1297068 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 1347067 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis
Procedia PDF Downloads 3267066 Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells
Authors: Debasmita Mukhopadhyay, Manika Pal Bhadra
Abstract:
MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer.Keywords: breast cancer, microRNA, metastasis, EMT
Procedia PDF Downloads 5657065 Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach
Authors: Sahar Nasr, Lin Li, Edwin Wang
Abstract:
Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes.Keywords: data analysis, gene expression analysis, gene identification, immunoinformatic, functional genomics, transcriptomics
Procedia PDF Downloads 1557064 Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer
Authors: S. Subramaniam, J. S. A. Rao, P. Ramdas, K. R. Selvaduray, N. M. Han, M. K. Kutty, A. K. Radhakrishnan
Abstract:
Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer.Keywords: breast cancer, gamma tocotrienol, immune suppression, supplement
Procedia PDF Downloads 2227063 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer
Authors: Philippa Saunders, Claire Fletcher
Abstract:
INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft
Procedia PDF Downloads 1437062 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2537061 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells
Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao
Abstract:
Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis
Procedia PDF Downloads 2147060 Prognostic and Predictive Value of Tumor: Infiltrating Lymphocytes in Triple Negative Breast Cancer
Authors: Wooseok Byon, Eunyoung Kim, Junseong Kwon, Byung Joo Song, Chan Heun Park
Abstract:
Background/Purpose: Previous preclinical and clinical data suggest that increased lymphocytic infiltration would be associated with good prognosis and benefit from immunogenic chemotherapy especially in triple-negative breast cancer (TNBC). We investigated a single-center experience of TNBC and relationship with lymphocytic infiltration. Methods: From January 2004 to December 2012, at the Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, we retrospectively reviewed 897 breast cancer patients-clinical outcomes, clinicopathological characteristics, breast cancer subtypes. And we reviewed lymphocytic infiltration of TNBC specimens by two pathologists. Statistical analysis of risk factors associated with recurrence was performed. Results: A total of 897 patients, 76 were TNBC (8.47%). Mean age of TNBC patients were 50.95 (SD10.42) years, mean follow-up periods was 40.06 months. We reviewed 49 slides, and there were 8 recurrent breast cancer patients (16.32%), and 4 patients were expired (8.16%). There were 9 lymphocytic predominant breast cancers (LPBC)-carcinomas with either intratumoral lymphocytes in >60% of tumor cell nests. 1 patient of LPBC was recurred and 8 were not. In multivariate logistic regression, the odds ratio of lymphocytic infiltration was 0.59 (p=0.643). Conclusion: In a single-center experience of TNBC, the lymphocytic infiltration in tumor cell nest might be a good trend on the prognosis but there was not statistically significant.Keywords: tumor-infiltrating lymphocytes, triple negative breast cancer, medical and health sciences
Procedia PDF Downloads 4077059 In-silico Analysis of Plumbagin against Cancer Receptors
Authors: Arpita Roy, Navneeta Bharadvaja
Abstract:
Cancer is an uncontrolled growth of abnormal cells in the body. It is one of the most serious diseases on which extensive research work has been going on all over the world. Structure-based drug designing is a computational approach which helps in the identification of potential leads that can be used for the development of a drug. Plumbagin is a naphthoquinone derivative from Plumbago zeylanica roots and belongs to one of the largest and diverse groups of plant metabolites. Anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin shows inhibitory effects on multiple cancer-signaling proteins; however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. In this investigation, an attempt to provide structural insights into the binding mode of plumbagin against four cancer receptors using molecular docking was performed. Plumbagin showed minimal energy against targeted cancer receptors, therefore suggested its stability and potential towards different cancers. The least binding energies of plumbagin with COX-2, TACE, and CDK6 are -5.39, -4.93, -and 4.81 kcal/mol, respectively. Comparison studies of plumbagin with different receptors showed that it is a promising compound for cancer treatment. It was also found that plumbagin obeys the Lipinski’s Rule of 5 and computed ADMET properties which showed drug likeliness and improved bioavailability. Since plumbagin is from a natural source, it has reduced side effects, and these results would be useful for cancer treatment.Keywords: cancer, receptor, plumbagin, docking
Procedia PDF Downloads 1437058 Characterization of Herberine Hydrochloride Nanoparticles
Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang
Abstract:
A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer
Procedia PDF Downloads 1227057 Etiological Factors for Renal Cell Carcinoma: Five-Year Study at Mayo Hospital Lahore
Authors: Muhammad Umar Hassan
Abstract:
Renal cell carcinoma is a subset of kidney cancer that arises in the lining of DCT and is present in parenchymal tissue. Diagnosis is based on lab reports, including urinalysis, renal function tests (RFTs), and electrolyte balance, along with imaging techniques. Organ failure and other complications have been commonly observed in these cases. Over the years, the presentation of patients has varied, so carcinoma was classified on the basis of site, shape, and consistency for detailed analysis. Lifestyle patterns and occupational history were inquired about and recorded. Methods: Data from 100 patients presenting to the oncology and nephrology department of Mayo Hospital in the year 2015-2020 were included in this retrospective study on a random basis. The study was specifically focused on three risk factors. Smoking, occupational exposures, and Hakim medicine are taken by the patient for any cause. After procurement of data, follow-up contacts of these patients were established, resulting in a detailed analysis of lifestyle. Conclusion: The inference drawn is a direct causal link between smoking, industrial workplace exposure, and Hakim medicine with the development of Renal Cell Carcinoma. It was shown in the majority of the patients and hence confirmed our hypothesis.Keywords: renal cell carcinoma, kidney cancer, clear cell carcinoma
Procedia PDF Downloads 1027056 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line
Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan
Abstract:
Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA
Procedia PDF Downloads 1357055 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer
Authors: Rahaba Marima, Clement Penny
Abstract:
The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer
Procedia PDF Downloads 1567054 Non-melanoma Nasal Skin Cancer: Literature Review
Authors: Geovanna dos Santos Romeiro, Polintia Rayza Brito da Silva, Luis Henrique Moura, Izadora Moreira Do Amaral, Marília Vitória Pinto Milhomem
Abstract:
Introduction: The nose is one of the most likely sites for the appearance of malignancy on the face. This can be associated with its unique position of exposure to environmental damage, lack of photoprotection and because it is an area susceptible to greater sun exposure. It is already known that the most common type of nasal tumor is basal cell carcinoma. Squamous cell carcinoma is less common but considerably more aggressive, with a tendency to grow rapidly and metastasize. Nasal skin cancer can have a good prognosis, regardless of the type of treatment chosen, i.e., surgery, radiotherapy or electrodissection. However, tumors that are not diagnosed and treated quickly can be harmful and have a greater chance of metastasizing. When curative surgery is performed, therapies and reconstructive surgical procedures are usually required. Objective: The objective is to review the literature on nasal skin tumors and their types and specific locations. Forty-four articles published in Pubmed related to the location of skin cancer in the specific nasal areas region were analyzed. Twelve were excluded for being prior to the year 2000, three with inconclusive results, and one with unbiased conclusions. Results and Conclusion: Regarding the prevalence of types of nasal tumors, basal cell carcinoma comprises the majority, occurring predominantly in the ala, tip and root; squamous cell carcinoma, on the other hand, is more common in the lateral borders and columella. Even so, 2 articles report that the prevalence of metastasis has a higher incidence in squamous cell carcinomas. All of this points to the importance of early location, including regions that are often overlooked in the examination if the patient is wearing glasses. This topic needs further investigation for a greater correlation between anatomy and clinical-surgical implications.Keywords: skin cancer, melanoma, non-melanoma, surgery
Procedia PDF Downloads 527053 The Economic Burden of Breast Cancer on Women in Nigeria: Implication for Socio-Economic Development
Authors: Tolulope Allo, Mofoluwake P. Ajayi, Adenike E. Idowu, Emmanuel O. Amoo, Fadeke Esther Olu-Owolabi
Abstract:
Breast cancer which was more prevalent in Europe and America in the past is gradually being mirrored across the world today with greater economic burden on low and middle income countries (LMCs). Breast cancer is the most common cancer among women globally and current studies have shown that a woman dies with the diagnosis of breast cancer every thirteen minutes. The economic cost of breast cancer is overwhelming particularly for developing economies. While it causes billion of dollar in losses of national income, it pushes millions of people below poverty line. This study examined the economic burden of breast cancer on Nigerian women, its impacts on their standard of living and its effects on Nigeria’s socio economic development. The study adopts a qualitative research approach using the in-depth interview technique to elicit valuable information from respondents with cancer experience from the Southern part of Nigeria. Respondents constituted women in their reproductive age (15-49 years) that have experienced and survived cancer and also those that are currently receiving treatment. Excerpts from the interviews revealed that the cost of treatment is one of the major factors contributing to the late presentation of breast cancer incidences among women as many of them could not afford to pay for their own treatment. The study also revealed that many women prefer to explore other options such as herbal treatments and spiritual consultations which is less expensive and affordable. The study therefore concludes that breast cancer diagnosis and treatment should be subsidized by the government in order to facilitate easy access and affordability thereby promoting early detection and reducing the economic burden of treatment on women.Keywords: breast cancer, development, economic burden, women
Procedia PDF Downloads 3587052 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study
Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith
Abstract:
Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles
Procedia PDF Downloads 1147051 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin
Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin
Abstract:
Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study
Procedia PDF Downloads 1307050 Influence of the Line Parameters in Transmission Line Fault Location
Authors: Marian Dragomir, Alin Dragomir
Abstract:
In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.Keywords: estimation algorithms, fault location, line parameters, simulation tool
Procedia PDF Downloads 3557049 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing
Procedia PDF Downloads 3607048 COX-2 Inhibitor NS398 Counteracts Chemoresistance to Temozolomide in T98G Glioblastoma Cell Line
Authors: Francesca Lombardi, Francesca Rosaria Augello, Benedetta Cinque, Maria Grazia Cifone, Paola Palumbo
Abstract:
Glioblastoma multiforme (GBM) is a high-grade primary brain tumor refractory to current forms of treatment. The survival benefits of patients with GBM remain unsatisfactory due to the intrinsic or acquired resistance to temozolomide (TMZ), an alkylating agent, used as the first-line chemotherapeutic drug to treat GBM patients. Its cytotoxic effect is visualized by the induction of O6-methylguanine (O6MeG) within DNA. Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of GBM, its inhibition shows anticancer activities. In the present study, it was verified if the combination of a COX-2 selective inhibitor, NS398, with TMZ could counteract the TMZ resistance. In particular, the effect of NS398 mixed with TMZ was investigated in the GBM TMZ-resistant cell line, T98G. Cells were pretreated with NS398 (100µM, 24 hours) and then exposed to TMZ alone (200µM), NS398 alone, or both for 72 hours, after which cell growth rate and cycle phases, as well as apoptosis level, were evaluated. Coadministration of NS398 and TMZ caused a significant decrease in cell growth and a progressive increase of dead cells detected by trypan blue staining. Moreover, a significant level of apoptotic cell percentage and alteration of cell cycle phases were observed in T98G treated with TMZ-NS398 combination when compared to untreated cells or TMZ-treated cells. TMZ-resistant tumors, as GBM, express elevated levels of DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The mixture drastically reduced MGMT expression in the TMZ-resistant cell line T98G, known to express high levels of MGMT basically. Moreover, while TMZ alone did not influence the COX-2 protein expression, the combination successfully reduced it. In conclusion, these results demonstrated that NS398 enhanced the efficacy of TMZ through cell number reduction, apoptosis induction, and decreased MGMT levels, suggesting the ability of drug combination to reduce the chemoresistance. This drug combination deserves attention and could be considered as a promising therapeutic strategy for GBM patients.Keywords: COX-2, COX-2 inhibitor, glioblastoma, NS398, T98G, temozolomide
Procedia PDF Downloads 1527047 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment
Authors: Saman Khan, Imrana Naseem
Abstract:
Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis
Procedia PDF Downloads 2917046 Urinary Exosome miR-30c-5p as a Biomarker for Early-Stage Clear Cell Renal Cell Carcinoma
Authors: Shangqing Song, Bin Xu, Yajun Cheng, Zhong Wang
Abstract:
miRNAs derived from exosomes exist in a body fluid such as urine were regarded as potential biomarkers for various human cancers diagnosis and prognosis, as mature miRNAs can be steadily preserved by exosomes. However, its potential value in clear cell renal cell carcinoma (ccRCC) diagnosis and prognosis remains unclear. In the present study, differentially expressed miRNAs from urinal exosomes were identified by next-generation sequencing (NGS) technology. The 16 differentially expressed miRNAs were identified between ccRCC patients and healthy donors. To explore the specific diagnosis biomarker of ccRCC, we validated these urinary exosomes from 70 early-stage renal cancer patients, 30 healthy people and other urinary system cancers, including 30 early-stage prostate cancer patients and 30 early-stage bladder cancer patients by qRT-PCR. The results showed that urinary exosome miR-30c-5p could be stably amplified and meanwhile the expression of miR-30c-5p has no significant difference between other urinary system cancers and healthy control, however, expression level of miR-30c-5p in urinary exosomal of ccRCC patients was lower than healthy people and receiver operation characterization (ROC) curve showed that the area under the curve (AUC) values was 0.8192 (95% confidence interval was 0.7388-0.8996, P= 0.0000). In addition, up-regulating miR-30c-5p expression could inhibit renal cell carcinoma cells growth. Lastly, HSP5A was found as a direct target gene of miR-30c-5p. HSP5A depletion reversed the promoting effect of ccRCC growth casued by miR-30c-5p inhibitor, respectively. In conclusion, this study demonstrated that urinary exosomal miR-30c-5p is readily accessible as diagnosis biomarker of early-stage ccRCC, and miR-30c-5p might modulate the expression of HSPA5, which correlated with the progression of ccRCC.Keywords: clear cell renal cell carcinoma, exosome, HSP5A, miR-30c-5p
Procedia PDF Downloads 2677045 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma
Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi
Abstract:
In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma
Procedia PDF Downloads 1117044 Immunoliposomes for Co-Delivery of Doxorubicin and Ribonucleotide Reductase M2 Sirna Inhibit of Gastric Cancer Growth
Authors: Jie Gao
Abstract:
The combination of chemotherapy with gene therapy is highly effective in cancer therapy. To achieve combined therapeutic effects in human gastric cancer over expressing EGFR, we developed targeted LPD (liposome-polycation-DNA complex) conjugated with anti-EGFR (epidermal growth factor receptor) Fab’ for co-delivery of doxorubicin (DOX) and ribonucleotide reductase M2 (RRM2) siRNA (DOX-RRM2-TLPD). The results showed that EGFR was over expressed in several gastric cancer cell lines and gastric cancer tissues. Gene Expression Omnibus (GEO) results showed that RRM2 expression was significantly higher in gastric cancer than in non-gastric cancer tissue, and RRM2 siRNA inhibited the proliferation of several gastric cancer cells, indicating that RRM2 is a candidate target for gastric cancer therapy. Confocal studies and flow cytometry showed that DOX-RRM2-TLPD delivered DOX and RRM2 siRNA to EGFR over expressing gastric cancer cells specifically and efficiently both in vitro and in vivo, resulting in enhanced therapeutic effects (cytotoxicity and apoptosis) compared with single-drug loaded or non-targeted controls, including DOX-NC-TLPD (targeted LPD co-delivering DOX and negative control siRNA), RRM2-TLPD (targeted LPD delivering RRM2 siRNA) and DOX-RRM2-NTLPD (non-targeted LPD co-delivering DOX and RRM2 siRNA). The in vivo antitumor assay showed that the average weight of the gastric cancer in mice treated with DOX-RRM2-TLPD was significantly lighter than that of mice treated with other controls. DOX-RRM2-TLPD represents an effective approach for combined therapy of gastric cancer over expressing EGFR.Keywords: gene therapy, chemotherapy, immunoliposomes, gastric cancer
Procedia PDF Downloads 4207043 Health Promoting Properties of Phytochemicals from Rosemary (Rosmarinus officinalis) for Cancer and Inflammatory Bowel Disease
Authors: Jeremy J. Johnson
Abstract:
Mediterranean herbs including rosemary (Rosmarinus officinalis) contain a variety of phytochemicals including diterpenes that possess extensive biological activity. Applications of diterpenes, including the more abundant forms carnosol and carnosic acid, have been shown to possess anti-cancer, anti-inflammatory, anti-oxidant, and anti-proliferation properties. To confirm these properties, we have evaluated rosemary extract and selected diterpenes for biological activity in cancer and inflammatory models. Our preliminary data have revealed that select diterpenes can disrupt androgen receptor functionality in prostate and breast cancer cells. This property is unique among natural products for hormone-responsive cancers. The second area of interest has been evaluating rosemary extract and selected diterpenes for activation of sestrin-2, an antioxidant protein, in colon cancer cells. A combination of in vitro and in vivo approaches have been utilized to characterize the activity of rosemary diterpenes in rosemary. Taken together, these results suggest that phytochemicals found in rosemary have distinct pharmacological actions for disrupting cell-signaling pathways in cancer and inflammatory bowel disease.Keywords: rosemary, diterpene, cancer, inflammation
Procedia PDF Downloads 1467042 An Activatable Theranostic for Targeted Cancer Therapy and Imaging
Authors: Sankarprasad Bhuniya, Sukhendu Maiti, Eun-Joong Kim, Hyunseung Lee, Jonathan L. Sessler, Kwan Soo Hong, Jong Seung Kim
Abstract:
A new theranostic strategy is described. It is based on the use of an “all in one” prodrug, namely the biotinylated piperazine-rhodol conjugate 4a. This conjugate, which incorporates the anticancer drug SN-38, undergoes self-immolative cleavage when exposed to biological thiols. This leads to the tumor-targeted release of the active SN-38 payload along with fluorophore 1a. This release is made selective as the result of the biotin functionality. Fluorophore 1a is 32-fold more fluorescent than prodrug 4a. It permits the delivery and release of the SN-38 payload to be monitored easily in vitro and in vivo, as inferred from cell studies and ex vivo analyses of mice xenografts derived HeLa cells, respectively. Prodrug 4a also displays anticancer activity in the HeLa cell murine xenograft tumor model. On the basis of these findings we suggest that the present strategy, which combines within a single agent the key functions of targeting, release, imaging, and treatment, may have a role to play in cancer diagnosis and therapy.Keywords: theranostic, prodrug, cancer therapy, fluorescence
Procedia PDF Downloads 5377041 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage
Authors: Shaista Suhail
Abstract:
As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.Keywords: oral carcinoma, telomere, telomerase, blockage
Procedia PDF Downloads 175