Search results for: corpus-driven approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13992

Search results for: corpus-driven approach

10782 Historical Memory and Social Representation of Violence in Latin American Cinema: A Cultural Criminology Approach

Authors: Maylen Villamanan Alba

Abstract:

Latin America is marked by its history: conquest, colonialism, and slavery left deep footprints in most Latin American countries. Also, the past century has been affected by wars, military dictatorships, and political violence, which profoundly influenced Latin American popular culture. Consequently, reminiscences of historical crimes are frequently present in daily life, media, public opinion, and arts. This legacy is remembered in novels, paintings, songs, and films. In fact, Latin American cinema has a trend which refers to the verisimilitude with reality in fiction films. These films about historical violence are narrated as fictional characters, but their stories are based on real historical contexts. Therefore, cultural criminology has considered films as a significant field to understand social representations of violence related to historical crimes. The aim of the present contribution is to analyze the legacy of past and historical memory in social representations of violence in Latin American cinema as a critical approach to historical crimes. This qualitative research is based on content analysis. The sample is seven multi-award winning films of the International Festival of New Latin American Cinema of Havana. The films selected are Kamchatka, Argentina (2002); Carandiru, Brazil (2003); Enlightened by fire, Argentina (2005); Post-mortem, Chile (2010); No, Chile (2012) Wakolda; Argentina (2013) and The Clan, Argentina (2015). Cultural criminology highlights that cinema shapes meanings of social practices such as historical crimes. Critical criminology offers a critical theory framework to interpret Latin American cinema. This analysis reveals historical conditions deeply associated with power relationships, policy, and inequality issues. As indicated by this theory, violence is characterized as a structural process based on social asymmetries. These social asymmetries are crossed by social scopes, including institutional and personal dimensions. Thus, institutions of the states are depicted through personal stories of characters involved with human conflicts. Intimacy and social background are linked in the personages who simultaneously perform roles such as soldiers, policemen, professionals or inmates and they are at the same time depict as human beings with family, gender, racial, ideological or generational issues. Social representations of violence related to past legacy are a portrait of historical crimes perpetrated against Latin American citizens. Thereby, they have contributed to political positions, social behaviors, and public opinion. The legacy of these historical crimes suggests a path that should never be taken again. It means past legacy is a reminder, a warning, and a historic lesson for Latin American people. Social representations of violence are permeated by historical memory as denunciation under a critical approach.

Keywords: Latin American cinema, historical memory, social representation, violence

Procedia PDF Downloads 154
10781 The Essence and Attribution of Intellectual Property Rights Generated in the Digitization of Intangible Cultural Heritage

Authors: Jiarong Zhang

Abstract:

Digitizing intangible cultural heritage is a complex and comprehensive process from which sorts of intellectual property rights may be generated. Digitizing may be a repacking process of cultural heritage, which creates copyrights; recording folk songs and indigenous performances can create 'related rights'. At the same time, digitizing intangible cultural heritage may infringe the intellectual property rights of others unintentionally. Recording religious rituals of indigenous communities without authorization can violate the moral right of the ceremony participants of the community; making digital copies of rock paintings may infringe the right of reproduction. In addition, several parties are involved in the digitization process: indigenous peoples, museums, and archives can be holders of cultural heritage; companies and research institutions can be technology providers; internet platforms can be promoters and sellers; the public and groups above can be beneficiaries. When diverse intellectual property rights versus various parties, problems and disputes can arise easily. What are the types of intellectual property rights generated in the digitization process? What is the essence of these rights? Who should these rights belong to? How to use intellectual property to protect the digitalization of cultural heritage? How to avoid infringing on the intellectual property rights of others? While the digitization has been regarded as an effective approach to preserve intangible cultural heritage, related intellectual property issues have not received the attention and full discussion. Thus, parties involving in the digitization process may face intellectual property infringement lawsuits. The article will explore those problems from the intersection perspective of intellectual property law and cultural heritage. From a comparative approach, the paper will analysis related legal documents and cases, and shed some lights of those questions listed. The findings show, although there are no intellectual property laws targeting the cultural heritage in most countries, the involved stakeholders can seek protection from existing intellectual property rights following the suggestions of the article. The research will contribute to the digitization of intangible cultural heritage from a legal and policy aspect.

Keywords: copyright, digitization, intangible cultural heritage, intellectual property, Internet platforms

Procedia PDF Downloads 154
10780 Enhancing Residential Architecture through Generative Design: Balancing Aesthetics, Legal Constraints, and Environmental Considerations

Authors: Radul Shishkov

Abstract:

This research paper presents an in-depth exploration of the use of generative design in urban residential architecture, with a dual focus on aligning aesthetic values with legal and environmental constraints. The study aims to demonstrate how generative design methodologies can innovate residential building designs that are not only legally compliant and environmentally conscious but also aesthetically compelling. At the core of our research is a specially developed generative design framework tailored for urban residential settings. This framework employs computational algorithms to produce diverse design solutions, meticulously balancing aesthetic appeal with practical considerations. By integrating site-specific features, urban legal restrictions, and environmental factors, our approach generates designs that resonate with the unique character of urban landscapes while adhering to regulatory frameworks. The paper explores how modern digital tools, particularly computational design and algorithmic modelling, can optimize the early stages of residential building design. By creating a basic parametric model of a residential district, the paper investigates how automated design tools can explore multiple design variants based on predefined parameters (e.g., building cost, dimensions, orientation) and constraints. The paper aims to demonstrate how these tools can rapidly generate and refine architectural solutions that meet the required criteria for quality of life, cost efficiency, and functionality. The study utilizes computational design for database processing and algorithmic modelling within the fields of applied geodesy and architecture. It focuses on optimizing the forms of residential development by adjusting specific parameters and constraints. The results of multiple iterations are analyzed, refined, and selected based on their alignment with predefined quality and cost criteria. The findings of this research will contribute to a modern, complex approach to residential area design. The paper demonstrates the potential for integrating BIM models into the design process and their application in virtual 3D Geographic Information Systems (GIS) environments. The study also examines the transformation of BIM models into suitable 3D GIS file formats, such as CityGML, to facilitate the visualization and evaluation of urban planning solutions. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the investment during its entire lifecycle.

Keywords: algorithmic modeling, architectural design, residential buildings, urban development, generative design, parametric models

Procedia PDF Downloads 20
10779 The Impact of the Flipped Classroom Instructional Model on MPharm Students in Two Pharmacy Schools in the UK

Authors: Mona Almanasef, Angel Chater, Jane Portlock

Abstract:

Introduction: A 'flipped classroom' uses technology to shift the traditional lecture outside the scheduled class time and uses the face-to-face time to engage students in interactive activities. Aim of the Study: Assess the feasibility, acceptability, and effectiveness of using the 'flipped classroom' teaching format with MPharm students in two pharmacy schools in the UK: UCL School of Pharmacy and the School of Pharmacy and Biomedical Sciences at University of Portsmouth. Methods: An experimental mixed methods design was employed, with final year MPharm students in two phases; 1) a qualitative study using focus groups, 2) a quasi-experiment measuring knowledge acquisition and satisfaction by delivering a session on rheumatoid arthritis, in two teaching formats: the flipped classroom and the traditional lecture. Results: The flipped classroom approach was preferred over the traditional lecture for delivering a pharmacy practice topic, and it was comparable or better than the traditional lecture with respect to knowledge acquisition. In addition, this teaching approach was found to overcome the perceived challenges of the traditional lecture method such as fast pace instructions, student disengagement and boredom due to lack of activities and/or social anxiety. However, high workload and difficult or new concepts could be barriers to pre-class preparation, and therefore successful flipped classroom. The flipped classroom encouraged learning scaffolding where students could benefit from application of knowledge, and interaction with peers and the lecturer, which might, in turn, facilitate learning consolidation and deep understanding. This research indicated that the flipped classroom was beneficial for all learning styles. Conclusion: Implementing the flipped classroom at both pharmacy institutions was successful and well received by final year MPharm students. Given the attention now being put on the Teaching Excellence Framework (TEF), understanding effective methods of teaching to enhance student achievement and satisfaction is now more valuable than ever.

Keywords: blended learning, flipped classroom, inverted classroom, pharmacy education

Procedia PDF Downloads 139
10778 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 197
10777 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 62
10776 Concrete Mixes for Sustainability

Authors: Kristyna Hrabova, Sabina Hüblova, Tomas Vymazal

Abstract:

Structural design of concrete structure has the result in qualities of structural safety and serviceability, together with durability, robustness, sustainability and resilience. A sustainable approach is at the heart of the research agenda around the world, and the Fibrillation Commission is also working on a new model code 2020. Now it is clear that the effects of mechanical, environmental load and even social coherence need to be reflected and included in the designing and evaluating structures. This study aimed to present the methodology for the sustainability assessment of various concrete mixtures.

Keywords: concrete, cement, sustainability, Model Code 2020

Procedia PDF Downloads 181
10775 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 206
10774 GPS Signal Correction to Improve Vehicle Location during Experimental Campaign

Authors: L. Della Ragione, G. Meccariello

Abstract:

In recent years the progress of the automobile industry in Italy in the field of reduction of emissions values is very remarkable. Nevertheless, their evaluation and reduction is a key problem, especially in the cities, which account for more than 50% of world population. In this paper we dealt with the problem of describing a quantitative approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars.

Keywords: air pollution, driving cycles, GPS signal, vehicle location

Procedia PDF Downloads 432
10773 Decreasing Non-Compliance with the Garbage Collection Fee Payment: A Case Study from the Intervention in a Municipality in the Slovak Republic

Authors: Anetta Caplanova, Eva Sirakovova, Estera Szakadatova

Abstract:

Non-payment of taxes and fees represents a problem, which occurs at national and local government levels in many countries. An effective tax collection is key for generating government and local government budget revenues to finance public services and infrastructure; thus, there is the need to address this problem. The standard approach considers as a solution raising taxes/fees to boost public revenues, which may be politically challenging and time-consuming to implement. An alternative approach is related to using behavioral interventions. These can be usually implemented relatively quickly, and in most cases, they are associated with low cost. In the paper, we present the results of the behavioral experiment focused on raising the level of compliance with the payment of garbage collection fees in a selected municipality in the Slovak Republic. The experiment was implemented using the leaflets sent to residential households together with the invoice for the garbage collection in the municipality Hlohovec, Western Slovakia, in Spring 2021. The sample of about 10000 households was divided into three random groups, a control group and two intervention groups. Households in intervention group 1 were sent a leaflet using the social norm nudge, while households in intervention group 2 were sent a leaflet using the deterrence nudge. The social norm framing leaflet pointed out that in the municipality, the prevailing majority of people paid the garbage collection fee and encouraged recipients to join this majority. The deterrent leaflet reminded the recipients that if they did not pay the fee on time, enforcement proceedings would follow. This was aimed to increase the subjective perception of citizens of the enforcement proceedings in case of noncompliance. In the paper, we present and discuss the results from the experiment and formulate relevant generalizations for other municipalities.

Keywords: municipal governments, garbage fee collection, behavioural intervention, social norm, deterrence nudge

Procedia PDF Downloads 195
10772 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 110
10771 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity

Authors: Vahid Ebrahimipour

Abstract:

Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.

Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation

Procedia PDF Downloads 112
10770 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 16
10769 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 55
10768 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 70
10767 Pragmatic Interpretation in Translated Texts

Authors: Jamal Alqinai

Abstract:

A pragmatic approach to translation studies the rules and principles governing the use of language over and above the rules of syntax or morphology, and what makes some uses of language more appropriate than others in [communicative] situations. It attempts to explain translation as a procedure and product from the point of view of how, why and what is done by the source text author (ST) and what is to be done in the target text (TT) rendition. The latter will be subject to evaluation not as generated by the linguistics system but as conveyed and manipulated by participants in a communicative situation according to the referential and pragmatic standards employed. The failure of a purely lexical or structural translation stems from ignoring the relation between words as signs and the effect they have on their users. A more refined approach would also consider those processes that are sometimes labeled extra-linguistic or intuitive and which translators strive to reproduce unscathed in the translation process. We need to grasp the kind of actions an ST author performs on his readers by combining linguistic and non-linguistic elements against a backdrop of beliefs and cultural values. In other words, aside from considering the cohesive ties at the textual level, one needs to understand how the whole ST discourse hangs together logically in order to reproduce a coherent TT. The latter can only be achieved by an analysis of the pragmatic elements of presuppositions, implicatures and acts performed in the ST. Establishing cohesive ties within a text may require seeking reference outside the immediate text. The illocutionary functions manifested in one language/culture are relatively autonomous cultural/linguistic categories, but are imaginable by members of other cultures and, to some extent , are translatable though not, of course, without translation loss. Globalization and the spread of literacy worldwide may have created a universal empathy to comprehend the performative aspect of utterances when explained by approximate glosses or by paraphrase. Yet, it is often the multilayered and the culture-specific nature of illocutionary functions that de-universalize their possible interpretations. This paper addresses the pragmatic interpretation of culturally specific texts with examples adduced from a number of distinct settings to illustrate the influence of the pragmatic factors at stake.

Keywords: pragmatic, presupposition, implicature, cohesion

Procedia PDF Downloads 16
10766 Heroic Villains: An Exploration of the Use of Narrative Plotlines and Emerging Identities within Recovery Stories of Former Substance Abusers

Authors: Tria Moore Aimee Walker-Clarke

Abstract:

The purpose of the study was to develop a deeper understanding of how self-identity is negotiated and reconstructed by people in recovery from substance abuse. The approach draws on the notion that self-identity is constructed through stories. Specifically, dominant narratives of substance abuse involve the 'addict identity' in which the meaning of being an addict is constructed though social interaction and informed by broader social meanings of substance misuse, which are considered deviant. The addict is typically understood as out of control, weak and feckless. Users may unconsciously embody this addict identity which makes recovery less likely. Typical approaches to treatment employ the notion that recovery is much more likely when users change the way they think and feel about themselves by assembling a new identity. Recovery, therefore, involves a reconstruction of the self in a new light, which may mean rejecting a part of the self (the addict identity). One limitation is that previous research on this topic has been quantitative which, while useful, tells us little about how this process is best managed. Should one, for example, reject the past addict identity completely and move on to the new identity, or, is it more effective to accept the past identity and use this in the formation of the new non-user identity? The purpose of this research, then, is to explore how addicts in recovery have managed the transition between their past and current selves and whether this may inform therapeutic practice. Using a narrative approach, data were analyzed from five in-depth interviews with former addicts who had been abstinent for at least a year, and who were in some form of volunteering role at substance treatment services in the UK. Although participants' identified with a previous ‘addict identity,’ and made efforts to disassociate themselves from this, they also recognized that acceptance was an important part of reconstructing their new identity. The participants' narratives used familiar plot lines to structure their stories, in which they positioned themselves as the heroes in their own stories, rather than as victim of circumstance. Instead of rejecting their former addict identity, which would mean rejecting a part of the self, participants used their experience in a reconstructive and restorative way. The findings suggest that encouraging people to tell their story and accept their addict identity are important factors in successful recovery.

Keywords: addiction, identity, narrative, recovery, substance abuse

Procedia PDF Downloads 307
10765 Women with Invisible Wounds: A Qualitative Exploration of Emotional Abuse

Authors: Mehar Pruthi, Manjula V.

Abstract:

For the longest time, Indian households have been hosts to a variety of domestic evils such as intimate partner violence, physical abuse, sexual assaults, and more commonly gender-based violence. The prevalence of such heinous acts against women is often swept under the carpet of patriarchy and leaves women scarred. Many times, these wounds are caused by more insidious and subtle acts of violence. For this study, the choice of term for these acts is Emotional Abuse. The ill effects of emotional abuse on the victim’s sense of self and psychological health have been widely established. The current study takes a qualitative approach to explore women’s experiences at the brunt of emotional abuse. To this end, six participants (N=6) were identified using purposive and snowball sampling which was followed by a pre-screening form to assess for the presence of emotional abuse. A semi-structured interview guide was employed to investigate the victim’s perception of emotional abuse, the manifestation of emotional abuse in a patriarchal society, and the reasons women remain in abusive relationships. Each interview lasted about 50-60 mins and was accompanied by extensive note-making. A preliminary analysis of the interviews was done using the Interpretative Phenomenological Approach. Initial findings reveal the emergence of themes such as feelings of loneliness, intergenerational transmission of violence, denial, justifying the partner’s behavior, staying because of children, hoping things would change, and faith in God. The study is instrumental in conceptualizing the patterns of emotional abuse keeping in mind the patriarchal context of the Indian society. It has implications for professionals in the mental health field who work with this population so they can better understand their plight. Future research could focus on rebuilding relationships for those partners who decide to sustain such relationships and focus on various coping mechanisms with special emphasis on religious beliefs.

Keywords: emotional abuse, gender-based violence, intimate partner violence, marriage, patriarchy

Procedia PDF Downloads 95
10764 Integration of LCA and BIM for Sustainable Construction

Authors: Laura Álvarez Antón, Joaquín Díaz

Abstract:

The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.

Keywords: building information modeling (BIM), construction industry, design phase, life cycle assessment (LCA), sustainability

Procedia PDF Downloads 453
10763 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 146
10762 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm

Authors: El Harraj Abdeslam, Raissouni Naoufal

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes

Procedia PDF Downloads 262
10761 Critical Discourse Analysis of Xenophobia in UK Political Party Blogs

Authors: Nourah Almulhim

Abstract:

This paper takes a critical discourse analysis (CDA) approach to investigate discourse and ideology in political blogs, focusing in particular on the Conservative Home blog from the UK’s current governing party. The Conservative party member’s discourse strategies as the blogger, alongside the discourse used by members of the public who reply to the blog in the below-the-lines comments, will be examined. The blog discourse reflects the writer's political identity and authorial voice. The analysis of the below-the-lines comments enables members of the public to engage in creating adversative positions, introducing different language users who bring their own individual and collective identities. These language users can play the role of news reporters, political analysts, protesters or supporters of a specific agenda and current socio-political topics or events. This study takes a qualitative approach to analyze the discriminatory context towards Islam/Muslims in ' The Conservative Home' blog. A cognitive approach is adopted and an analysis of dominant discourses in the blog text and the below-the-line comments is used. The focus of the study is, firstly, on the construction of self/ collective national identity in comparison to Muslim identity, highlighting the in-group and out-group construction. Second, the type of attitudes, whether feelings or judgments, related to these social actors as they are explicated to draw on the social values. Third, the role of discursive strategies in justifying and legitimizing those Islamophobic discriminatory practices. Therefore, the analysis is based on the systematic analysis of social actors drawing on actors, actions, and arguments to explicate identity construction and its development in the different discourses. A socio-semantic categorization of social actors is implemented to draw on the discursive strategies in addition to using literature to understand these strategies. An appraisal analysis is further used to classify attitudes and elaborate on core values in both genres. Finally, the grammar of othering is applied to explain how discriminatory dichotomies of 'Us' Vs. ''Them' actions are carried in discourse. Some of the key findings of the analysis can be summarized in two main points. First, the discursive practice used to represent Muslims/Islam as different from ‘Us’ are different in both genres as the blogger uses a covert voice while the commenters generally use an overt voice. This is to say that the blogger uses a mitigated strategy to represent the Muslim identity, for example, using the noun phrase ‘British Muslim’ but then representing them as ‘radical’ and ‘terrorists'. Contrary to this is in below the lines comments, where a direct strategy with an active declarative voice is used to negatively represent the Muslim identity as ‘oppressors’ and ‘terrorists’ with no inclusion of the noun phrase ‘British Muslims’. Second, the negotiation of the ‘British’ identity and values, such as culture and democracy, are prominent in the comment section as being unique and under threat by Muslims, while in the article, these standpoints are not represented.

Keywords: xenophobia, blogs, identity, critical discourse analysis

Procedia PDF Downloads 101
10760 Pilgrimage: Between Culture and Religion Case study of Pilgrimage in Shia tradition in Indonesia, Traditional Philosophy approach of Seyyed Hosein Nasr and Religious Experience of William James

Authors: Ma'ruf

Abstract:

Pilgrimage has a universal value, founded in every religion. No exception to Islam, has a ritual value, and became part of the religion, as well as the procession of a social culture in nature. The tradition of pilgrimage, especially in Indonesia, rooted in the society, because the Islam that entered into the archipelago through Sufism (tasawuf). In the Sufi tradition, the interconnecty of the human spirit (ruh) to the spirit (ruh) of God, must go through a guardian (wasilah) appointed by God himself ,the prophet Muhammad and wali. In the process of pilgrimage rituals usually by reading the prayer to praise God, the prophet and wali, then convey intent (hajat). In the pilgrimage procession, usually not only done in the house, but aslo completed the process by direct pilgrimage visiting the tombs of saints. The tradition of pilgrimage, especially in Indonesia continues to be maintained, and still attached to the traditions in Nahdiyin (NU followers). The relationship with God manifested in wasilah prayer to God, the prophet Muhammad, the best companions of the Prophet and Nine wali (Songo), who had been influential in spreading Islam in Java. The tradition of pilgrimage in Indonesia is also linked to the Shia community in Indonesia, along with a growing number of followers of the Shia in Indonesia, especially after the Islamic revolution of Iran after the 1979. Pilgrimage in the Shia community, Likewise NU members also pray with supplication of tawasul to the Prophet and Shia Imams. If NU members to make improvements pilgrimage to visit the tomb wali Songo in Java, residents Shia pilgrimage rituals abroad, usually one package with umrah trip, with a pilgrimage to the tomb of the prophet, proceed to the tomb of the Imam Shia, in Iran and Iraq. Trends of pilgrimage as a ritual in the Indonesian Shia tradition, together with the growing number of Shia residents increased, followed by increasing the awareness (syi’isme) - bond with the Imam, Shia. In every certain months (arbaeen, asyuro) Shia pilgrims routinely perform pilgrimage, along with increasing number spiritual travel.

Keywords: traditional approach, religious experience, culture, religion, pilgrimage, Syria

Procedia PDF Downloads 385
10759 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 106
10758 Designing a Model for Measuring the Components of Good Governance in the Iranian Higher Education System

Authors: Maria Ghorbanian, Mohammad Ghahramani, Mahmood Abolghasemi

Abstract:

Universities and institutions of higher education in Iran, like other higher education institutions in the world, have a heavy mission and task to educate students based on the needs of the country. Taking on such a serious responsibility requires having a good governance system for planning, formulating executive plans, evaluating, and finally modifying them in accordance with the current conditions and challenges ahead. In this regard, the present study was conducted with the aim of identifying the components of good governance in the Iranian higher education system by survey method and with a quantitative approach. In order to collect data, a researcher-made questionnaire was used, which includes two parts: personal and professional characteristics (5 questions) and the three components of good governance in the Iranian higher education system, including good management and leadership (8 items), continuous evaluation and effective (university performance, finance, and university appointments) (8 items) and civic responsibility and sustainable development (7 items). These variables were measured and coded in the form of a five-level Likert scale from "Very Low = 1" to "Very High = 5". First, the validity and reliability of the research model were examined. In order to calculate the reliability of the questionnaire, two methods of Cronbach's alpha and combined reliability were used. Fornell-Larker interaction and criterion were also used to determine the degree of diagnostic validity. The statistical population of this study included all faculty members of public universities in Tehran (N = 4429). The sample size was estimated to be 340 using the Cochran's formula. These numbers were studied using a randomized method with a proportional assignment. The data were analyzed by the structural equation method with the least-squares approach. The results showed that the component of civil responsibility and sustainable development with a factor load of 0.827 is the most important element of good governance.

Keywords: good governance, higher education, sustainable, development

Procedia PDF Downloads 177
10757 A Universal Approach to Categorize Failures in Production

Authors: Konja Knüppel, Gerrit Meyer, Peter Nyhuis

Abstract:

The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems.

Keywords: failure categorization, failure management, logistic performance, production optimization

Procedia PDF Downloads 379
10756 Role of Symbolism in the Journey towards Spirituality: A Case Study of Mosque Architecture in Bahrain

Authors: Ayesha Agha Shah

Abstract:

The purpose of a mosque or a place of worship is to build a spiritual relation with God. If the sense of spirituality is not achieved, then sacred architecture appears to be lacking depth. Form and space play a significant role to enhance the architectural quality to impart a divine feel to a place. To achieve this divine feeling, form and space, and unity of opposites, either abstract or symbolic can be employed. It is challenging to imbue the emptiness of a space with qualitative experience. Mosque architecture mostly entails traditional forms and design typology. This approach for Muslim worship produces distinct landmarks in the urban neighborhoods of Muslim societies, while creating a great sense of spirituality. The universal symbolic characters in the mosque architecture had prototype geometrical forms for a long time in history. However, modern mosques have deviated from this approach to employ different built elements and symbolism, which are often hard to be identified as related to mosques or even as Islamic. This research aims to explore the sense of spirituality in modern mosques and questions whether the modification of geometrical features produce spirituality in the same manner. The research also seeks to investigate the role of ‘geometry’ in the modern mosque architecture. The research employs the analytical study of some modern mosque examples in the Kingdom of Bahrain, reflecting on the geometry and symbolism adopted in the new mosque architecture design. It buttresses the analysis by the engagement of people’s perceptions derived using a survey of opinions. The research expects to see the significance of geometrical architectural elements in the mosque designs. It will find answers to the questions such as; what is the role of the form of the mosque, interior spaces and the effect of the modified symbolic features in the modern mosque design? How can the symbolic geometry, forms and spaces of a mosque invite a believer to leave the worldly environment behind and move towards spirituality?

Keywords: geometry, mosque architecture, spirituality, symbolism

Procedia PDF Downloads 119
10755 Emphasizing Sumak Kawsay in Peace Ethics

Authors: Lisa Tragbar

Abstract:

Since the Rio declaration, the agreement resulting from the Earth Summit in 1992, the UN member states acknowledge that peace and environmental protection are deeply linked to each other. It has also been made clear by Contemporary Peace research since the early 2000 that the lack of natural resources increases conflicts, as well as potential war conflicts (general environmental conflict thesis). I argue that peace ethics need to reconsider the role of the environment in peace ethics, from conflict prevention to peacebuilding. Sumak kawsay is a concept that offers a non-anthropocentric perspective on the subject. Several Contemporary Peace Ethicists don’t take environmental peace sufficiently into account. 1. The Peace theorist Johan Galtung famously argues that positive peace depends mostly on social, economic and political factors, as institutional structures establish peace. Galtung has a relational approach to peace, yet only between human interactors. 2. Michael Fox claims in his anti-war argument to consider nonhuman entities in conflicts. Because of their species interrelation, humans cannot decide on the fate of other species. 3. Although Mark Woods considers himself a peace ecologist, following Reichberg and Syse, and argues from a duty-based perspective towards nature, he mostly focuses on the protection of the environment during war conflicts. I want to focus on a non-anthropocentric view to argue that the environment is an entity of human concern in order to construct peace. Based on the premises that the lack of natural resources create tensions that play a significant part in international conflicts and these conflicts are potential war conflicts, I argue that a non-anthropocentric account to peace ethics is an indispensable perspective towards the recovery of these resources and therefore the reduction of war conflicts. Sumak kawsay is an approach contributing to a peaceful environment, which can play a crucial role in international peacekeeping operations. To emphasize sumak kawsay in peace ethics, it is necessary to explain what this principle includes and how it renews Contemporary Peace ethics. The indigenous philosophy of life of the Andean Quechua philosophy in Ecuador and varities from other countries from the Global South include a holistic real-world vision that contains concepts like the de-hierarchization of humans and nature as well as the reciprocity principle towards nature. Sumak kawsay represents the idea of the intrinsic value of nature and an egalitarian way of life and interconnectedness between human and nonhuman entities, which has been widely neglected in Traditional War and Peace Ethics. If sumak kawsay is transferred to peacekeeping practices, peacekeepers have restorative duties not only towards humans, but also towards nature. Resource conservation and environmental protection are the first step towards a positive peace. By recognising that healthy natural resources contribute to peacebuilding, by restoring balance through compensatory justice practices like recovery, by fostering dialogue between peacekeeping forces and by entitling ecosystems with rights natural resources and environmental conflicts are more unlikely to happen. This holistic approach pays nature sufficient attention and can contribute to a positive peace.

Keywords: environment, natural resources, peace, Sumak Kawsay

Procedia PDF Downloads 79
10754 Exploring the Changing Foreign Policy of Singapore on China: New Ideas of Pragmatism and Hedging Strategy

Authors: Yibo Shao, Jiajie Liu

Abstract:

This article uncovers the practice of pragmatism of Singaporean foreign policy by analyzing its foreign diplomatic behavior. It also points out the Singapore’s hedging strategy on the relations between China and American and how to balance these two greater powers in Southeast Asian. This paper used qualitative approach by reviewing literature and policy documents intensively to find out the responses to our research questions.

Keywords: hedging, pragmatism, Sino-Singapore relations, South China Sea

Procedia PDF Downloads 368
10753 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 330