Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10608

Search results for: logistic performance

10608 Evaluating the Logistic Performance Capability of Regeneration Processes

Authors: Thorben Kuprat, Julian Becker, Jonas Mayer, Peter Nyhuis

Abstract:

For years now, it has been recognized that logistic performance capability contributes enormously to a production enterprise’s competitiveness and as such is a critical control lever. In doing so, the orientation on customer wishes (e.g. delivery dates) represents a key parameter not only in the value-adding production but also in product regeneration. Since production and regeneration processes have different characteristics, production planning and control measures cannot be directly transferred to regeneration processes. As part of a special research project, the Institute of Production Systems and Logistics Hannover is focused on increasing the logistic performance capability of regeneration processes for complex capital goods. The aim is to ensure logistic targets are met by implementing a model specifically designed to align the capacities and load in regeneration processes.

Keywords: capacity planning, complex capital goods, logistic performance, regeneration process

Procedia PDF Downloads 370
10607 Effects of Gross Domestic Product and International Trade on Logistic Performance: An Effect Observation Trial

Authors: Ibrahim Halil Korkmaz, Eren Özceylan, Cihan Çetinkaya

Abstract:

Logistics function has great potential for increasing sustainable competitive advantage, profitability, productivity, customer satisfaction and decreasing costs in all sectors. The performance of logistics sector, which has such great influence on the overall performance of the economy, attracts more attention of both researchers and sector representatives day by day. The purpose of this study is to determine the effects of research and development expenditures which spent by enterprises operating in the transportation and storage sectors on Turkey’s logistic performance index (LPI). To do so, research and development investment expenditure among the years 2009-2015 of Turkish transportation and storage firms data from the Turkish Statistical Institute and Turkeys country points in the World Bank logistics performance index in the same years data were examined. As the result of the parametric evaluation, it is seen that the research and development expenditures made have a positive effect on the logistic performance of Turkey.

Keywords: logistics performance index, R&D investments, transportation, storage, Turkey

Procedia PDF Downloads 247
10606 Developing a Cybernetic Model of Interdepartmental Logistic Interactions in SME

Authors: Jonas Mayer, Kai-Frederic Seitz, Thorben Kuprat

Abstract:

In today’s competitive environment production’s logistic objectives such as ‘delivery reliability’ and ‘delivery time’ and distribution’s logistic objectives such as ‘service level’ and ‘delivery delay’ are attributed great importance. Especially for small and mid-sized enterprises (SME) attaining these objectives pose a key challenge. Within this context, one of the difficulties is that interactions between departments within the enterprise and their specific objectives are insufficiently taken into account and aligned. Interdepartmental independencies along with contradicting targets set within the different departments result in enterprises having sub-optimal logistic performance capability. This paper presents a research project which will systematically describe the interactions between departments and convert them into a quantifiable form.

Keywords: department-specific actuating and control variables, interdepartmental interactions, cybernetic model, logistic objectives

Procedia PDF Downloads 235
10605 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 244
10604 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 206
10603 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 360
10602 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 87
10601 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 102
10600 The Theory behind Logistic Regression

Authors: Jan Henrik Wosnitza

Abstract:

The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.

Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression

Procedia PDF Downloads 319
10599 Lean Implementation Analysis on the Safety Performance of Construction Projects in the Philippines

Authors: Kim Lindsay F. Restua, Jeehan Kyra A. Rivero, Joneka Myles D. Taguba

Abstract:

Lean construction is defined as an approach in construction with the purpose of reducing waste in the process without compromising the value of the project. There are numerous lean construction tools that are applied in the construction process, which maximizes the efficiency of work and satisfaction of customers while minimizing waste. However, the complexity and differences of construction projects cause a rise in challenges on achieving the lean benefits construction can give, such as improvement in safety performance. The objective of this study is to determine the relationship between lean construction tools and their effects on safety performance. The relationship between construction tools applied in construction and safety performance is identified through Logistic Regression Analysis, and Correlation Analysis was conducted thereafter. Based on the findings, it was concluded that almost 60% of the factors listed in the study, which are different tools and effects of lean construction, were determined to have a significant relationship with the level of safety in construction projects.

Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety

Procedia PDF Downloads 51
10598 Comparing Performance Indicators among Mechanistic, Organic, and Bureaucratic Organizations

Authors: Benchamat Laksaniyanon, Padcharee Phasuk, Rungtawan Boonphanakan

Abstract:

With globalization, organizations had to adjust to an unstable environment in order to survive in a competitive arena. Typically within the field of management, different types of organizations include mechanistic, bureaucratic and organic ones. In fact, bureaucratic and mechanistic organizations have some characteristics in common. Bureaucracy is one type of Thailand organization which adapted from mechanistic concept to develop an organization that is suitable for the characteristic and culture of Thailand. The objective of this study is to compare the adjustment strategies of both organizations in order to find key performance indicators (KPI) suitable for improving organization in Thailand. The methodology employed is binary logistic regression. The results of this study will be valuable for developing future management strategies for both bureaucratic and mechanistic organizations.

Keywords: mechanistic, bureaucratic and organic organization, binary logistic regression, key performance indicators (KPI)

Procedia PDF Downloads 289
10597 Efficient Management of Construction Logistics: A Challenge to Both Conventional and Technological Systems in the Developing Nations

Authors: Nuruddeen Usman, Ahmad Muhammad Ibrahim

Abstract:

Management of construction logistics at construction sites becomes increasingly complex with rising construction volume, which made it relatively inefficient in the developing nations even with the technological advancement. The objective of this research is to conceptually synthesise the approaches and challenges befall in the course of construction logistic management, with the aim to proffer possible solution to it. Therefore, this study appraised the glitches associated with both conventional and technological methods of construction logistic management that result in its inefficiency. Thus, this investigation found that, both conventional and the technological issues were due to certain obstacles that affect the construction logistic management which resulted into delays, accidents, fraudulent activities, time and cost overrun. Therefore, this study has developed a framework that might bring a lasting solution to the challenges of construction logistic management.

Keywords: construction, conventional, logistic, technological

Procedia PDF Downloads 415
10596 Business Constraints and Growth Potential of Smes: Case Study of Electrical Industry in Pakistan

Authors: Muhammad Waseem Akram

Abstract:

The current study attempts to analyze the impact of business constraints on the growth potential and performance of Small and Medium Enterprises (SMEs) in the electrical industry of Pakistan. Primary data have been utilized for the study collected from the electrical industry cluster in Sargodha, Pakistan. OLS regression is used to assess the impact of business constraints on the performance of SMEs by controlling the effect of Technology Level, Innovations, and Firm Size. To associate business constraints with the growth potential of SMEs, the study utilized Tetrachoric Correlation and Logistic Regression. Findings reveal that all the business constraints negatively affect the performance of SMEs in the electrical industry except Political Instability. Results of Tetrachoric Correlation show that all the business constraints are negatively correlated with the growth potential of SMEs. Logistic Regression results show that Energy Constraint, Inflation and Price Instability, and Bad Business Practices, all three business constraints cause to reduce the probability of income growth in sample SMEs.

Keywords: SMEs, business constraints, performance, growth potential

Procedia PDF Downloads 53
10595 An Information Matrix Goodness-of-Fit Test of the Conditional Logistic Model for Matched Case-Control Studies

Authors: Li-Ching Chen

Abstract:

The case-control design has been widely applied in clinical and epidemiological studies to investigate the association between risk factors and a given disease. The retrospective design can be easily implemented and is more economical over prospective studies. To adjust effects for confounding factors, methods such as stratification at the design stage and may be adopted. When some major confounding factors are difficult to be quantified, a matching design provides an opportunity for researchers to control the confounding effects. The matching effects can be parameterized by the intercepts of logistic models and the conditional logistic regression analysis is then adopted. This study demonstrates an information-matrix-based goodness-of-fit statistic to test the validity of the logistic regression model for matched case-control data. The asymptotic null distribution of this proposed test statistic is inferred. It needs neither to employ a simulation to evaluate its critical values nor to partition covariate space. The asymptotic power of this test statistic is also derived. The performance of the proposed method is assessed through simulation studies. An example of the real data set is applied to illustrate the implementation of the proposed method as well.

Keywords: conditional logistic model, goodness-of-fit, information matrix, matched case-control studies

Procedia PDF Downloads 207
10594 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 290
10593 Trust in Technology: Investigating Aspects Influencing Users’ Trust in an Automated Delivery Bot

Authors: Fredrick Ekman, Lars-Ola Bligård, MariAnne Karlsson

Abstract:

Automated delivery bots (bots) have been presented as a possible solution for last-mile deliveries (LMD) of parcels. However, before logistic service providers and logistic personnel can reap the benefits of bots for LMD, trust in this novel technology must first be established. A project was therefore initiated where a bot was implemented in the logistic system at Chalmers University, Gothenburg, Sweden, with the aim to evaluate how logistic personnel experienced and trusted a bot as a tool for LMD of parcels. Based on pre-and post-study interviews and questionnaires, the findings show that the logistic personnel’s trust in the bot was affected by; (i) perceived risk in terms of possible theft and traffic accidents, (ii) how difficult it was for the bot to conduct a task, (iii) the degree to which the bot increased task difficulty and workload for the personnel, and finally (iv) the personnel’s experience of the bot not adding any benefit to the logistic system at the university. Thus, whereas most studies on trust in automated artefacts often focus only on trust in the specific automated artefact, this study shows that the users’ trust in the delivery bot was not only a matter of trust in the technology or the automated artefact per se but also how the artefact performed within the context of work.

Keywords: automated delivery bot, trust in automation, last-mile delivery, logistics

Procedia PDF Downloads 24
10592 Radio Frequency Identification Encryption via Modified Two Dimensional Logistic Map

Authors: Hongmin Deng, Qionghua Wang

Abstract:

A modified two dimensional (2D) logistic map based on cross feedback control is proposed. This 2D map exhibits more random chaotic dynamical properties than the classic one dimensional (1D) logistic map in the statistical characteristics analysis. So it is utilized as the pseudo-random (PN) sequence generator, where the obtained real-valued PN sequence is quantized at first, then applied to radio frequency identification (RFID) communication system in this paper. This system is experimentally validated on a cortex-M0 development board, which shows the effectiveness in key generation, the size of key space and security. At last, further cryptanalysis is studied through the test suite in the National Institute of Standards and Technology (NIST).

Keywords: chaos encryption, logistic map, pseudo-random sequence, RFID

Procedia PDF Downloads 332
10591 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 292
10590 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 95
10589 A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz

Abstract:

Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results.

Keywords: poverty line, risk of poverty, auxiliary variable, ratio method

Procedia PDF Downloads 322
10588 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 396
10587 A Two-Pronged Truncated Deferred Sampling Plan for Log-Logistic Distribution

Authors: Braimah Joseph Odunayo, Jiju Gillariose

Abstract:

This paper is aimed at developing a sampling plan that uses information from precedent and successive lots for lot disposition with a pretention that the life-time of a particular product assumes a Log-logistic distribution. A Two-pronged Truncated Deferred Sampling Plan (TTDSP) for Log-logistic distribution is proposed when the testing is truncated at a precise time. The best possible sample sizes are obtained under a given Maximum Allowable Percent Defective (MAPD), Test Suspension Ratios (TSR), and acceptance numbers (c). A formula for calculating the operating characteristics of the proposed plan is also developed. The operating characteristics and mean-ratio values were used to measure the performance of the plan. The findings of the study show that: Log-logistic distribution has a decreasing failure rate; furthermore, as mean-life ratio increase, the failure rate reduces; the sample size increase as the acceptance number, test suspension ratios and maximum allowable percent defective increases. The study concludes that the minimum sample sizes were smaller, which makes the plan a more economical plan to adopt when cost and time of production are costly and the experiment being destructive.

Keywords: consumers risk, mean life, minimum sample size, operating characteristics, producers risk

Procedia PDF Downloads 47
10586 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 495
10585 A Kolmogorov-Smirnov Type Goodness-Of-Fit Test of Multinomial Logistic Regression Model in Case-Control Studies

Authors: Chen Li-Ching

Abstract:

The multinomial logistic regression model is used popularly for inferring the relationship of risk factors and disease with multiple categories. This study based on the discrepancy between the nonparametric maximum likelihood estimator and semiparametric maximum likelihood estimator of the cumulative distribution function to propose a Kolmogorov-Smirnov type test statistic to assess adequacy of the multinomial logistic regression model for case-control data. A bootstrap procedure is presented to calculate the critical value of the proposed test statistic. Empirical type I error rates and powers of the test are performed by simulation studies. Some examples will be illustrated the implementation of the test.

Keywords: case-control studies, goodness-of-fit test, Kolmogorov-Smirnov test, multinomial logistic regression

Procedia PDF Downloads 349
10584 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 93
10583 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme

Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye

Abstract:

In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.

Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model

Procedia PDF Downloads 304
10582 Research of the Factors Affecting the Administrative Capacity of Enterprises in the Logistic Sector of Bulgaria

Authors: R. Kenova, K. Anguelov, R. Nikolova

Abstract:

The human factor plays a major role in boosting the competitive capacity of logistic enterprises. This is of particular importance when it comes to logistic companies. On the one hand they should be strictly compliant with legislation; on the other hand, they should be competitive in terms of pricing and of delivery timelines. Moreover, their policies should allow them to be as flexible as possible. All these circumstances are reason for very serious challenges for the qualification, motivation and experience of the human resources, working in logistic companies or in logistic departments of trade and industrial enterprises. The geographic place of Bulgaria puts it in position of a country with some specific competitive advantages in the goods transport from Europe to Asia and back. Along with it, there is a number of logistic companies, that operate in this sphere in Bulgaria. In the current paper, the authors aim to establish the condition of the administrative capacity and human resources in the logistic companies and logistic departments of trade and industrial companies in Bulgaria in order to propose some guidelines for improving of their effectiveness. Due to independent empirical research, conducted in Bulgarian logistic, trade and industrial enterprises, the authors investigate both the impact degree and the interdependence of various factors that characterize the administrative capacity. The study is conducted with a prepared questionnaire, in format of direct interview with the respondents. The volume of the poll is 50 respondents, representatives of: general managers of industrial or trade enterprises; logistic managers of industrial or trade enterprises; general managers of forwarding companies – either with own or with hired transport; experts from Bulgarian association of logistics; logistic lobbyist and scientists of the relevant area. The data are gathered for 3 months, then arranged by a specialized software program and analyzed by preset criteria. Based on the results of this methodological toolbox, it can be claimed that there is a correlation between the individual criteria. Also, a commitment between the administrative capacity and other factors that determine the competitiveness of the studied companies is established. In this paper, the authors present results of the empirical research that concerns the number and the workload in the logistic departments of the enterprises. Also, what is commented is the experience, related to logistic processes management and human resources competence. Moreover, the overload level of the logistic specialists is analyzed as one of the main threats for making mistakes and losing clients. The paper stands behind the thesis that there is indispensability of forming an effective and efficient administrative capacity, based on the number, qualification, experience and motivation of the staff in the logistic companies. The paper ends with recommendations about the qualification and experience of the specialists in logistic departments; providing effective and efficient administrative capacity in the logistic departments; interdependence of the human factor and the other factors that influence the enterprise competitiveness.

Keywords: administrative capacity, human resources, logistic competitiveness, staff qualification

Procedia PDF Downloads 84
10581 Logistics Information Systems in the Distribution of Flour in Nigeria

Authors: Cornelius Femi Popoola

Abstract:

This study investigated logistics information systems in the distribution of flour in Nigeria. A case study design was used and 50 staff of Honeywell Flour Mill was sampled for the study. Data generated through a questionnaire were analysed using correlation and regression analysis. The findings of the study revealed that logistic information systems such as e-commerce, interactive telephone systems and electronic data interchange positively correlated with the distribution of flour in Honeywell Flour Mill. Finding also deduced that e-commerce, interactive telephone systems and electronic data interchange jointly and positively contribute to the distribution of flour in Honeywell Flour Mill in Nigeria (R = .935; Adj. R2 = .642; F (3,47) = 14.739; p < .05). The study therefore recommended that Honeywell Flour Mill should upgrade their logistic information systems to computer-to-computer communication of business transactions and documents, as well adopt new technology such as, tracking-and-tracing systems (barcode scanning for packages and palettes), tracking vehicles with Global Positioning System (GPS), measuring vehicle performance with ‘black boxes’ (containing logistic data), and Automatic Equipment Identification (AEI) into their systems.

Keywords: e-commerce, electronic data interchange, flour distribution, information system, interactive telephone systems

Procedia PDF Downloads 453
10580 Factors Affecting Students' Performance in the Examination

Authors: Amylyn F. Labasano

Abstract:

A significant number of empirical studies are carried out to investigate factors affecting college students’ performance in the academic examination. With a wide-array of literature-and studies-supported findings, this study is limited only on the students’ probability of passing periodical exams which is associated with students’ gender, absences in the class, use of reference book, and hours of study. Binary logistic regression was the technique used in the analysis. The research is based on the students’ record and data collected through survey. The result reveals that gender, use of reference book and hours of study are significant predictors of passing an examination while students’ absenteeism is an insignificant predictor. Females have 45% likelihood of passing the exam than their male classmates. Students who use and read their reference book are 38 times more likely pass the exam than those who do not use and read their reference book. Those who spent more than 3 hours in studying are four (4) times more likely pass the exam than those who spent only 3 hours or less in studying.

Keywords: absences, binary logistic regression, gender, hours of study prediction-causation method, periodical exams, random sampling, reference book

Procedia PDF Downloads 229
10579 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling

Procedia PDF Downloads 428