Search results for: CuMnCe metal oxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3529

Search results for: CuMnCe metal oxide

319 Cell Adhesion, Morphology and Cytokine Expression of Synoviocytes Can Be Altered on Different Nano-Topographic Oxidized Silicon Nanosponges

Authors: Hung-Chih Hsu, Pey-Jium Chang, Ching-Hsein Chen, Jer-Liang Andrew Yeh

Abstract:

Osteoarthritis (OA) is a common disorder in rehabilitation clinic. The main characteristics include joint pain, localized tenderness and enlargement, joint effusion, cartilage destruction, loss of adhesion of perichondrium, synovium hyperplasia. Synoviocytes inflammation might be a cause of local tenderness and effusion. Inflammation cytokines might also play an important role in joint pain, cartilage destruction, decrease adhesion of perichondrium to the bone. Treatments of osteoarthritis include non-steroid anti-inflammation drugs (NSAID), glucosamine supplementation, hyaluronic acid, arthroscopic debridement, and total joint replacement. Total joint replacement is commonly used in patients with severe OA who failed respond to pharmacological treatment. However, some patients received surgery had serious adverse events, including instability of the implants due to insufficient adhesion to the adjacent bony tissue or synovial inflammation. We tried to develop ideal nano-topographic oxidized silicon nanosponges by using with various chemicals to produce thickness difference in nanometers in order to study more about the cell-environment interactions in vitro like the alterations of cell adhesion, morphology, extracellular matrix secretions in the pathogenesis of osteoarthritis. Cytokines studies like growth factor, reactive oxygen species, reactive inflammatory materials (Like nitrous oxide and prostaglandin E2), extracellular matrix (ECM) degradation enzymes, and synthesis of collagen will also be observed and discussed. Extracellular and intracellular expression transforming growth factor beta (TGF-β) will be studied by reverse transcription-polymerase chain reaction (RT-PCR). The degradation of ECM will be observed by the bioactivity ratio of matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase by ELISA (Enzyme-linked immunosorbent assay). When rabbit synoviocytes were cultured on these nano-topographic structures, they demonstrate better cell adhesion rate, decreased expression of MMP-2,9 and PGE2, and increased expression of TGF-β when cultured in nano-topographic oxidized silicon nanosponges than in the planar oxidized silicon ones. These results show cell behavior, cytokine production can be influenced by physical characteristics from different nano-topographic structures. Our study demonstrates the possibility of manipulating cell behavior in these nano-topographic biomaterials.

Keywords: osteoarthritis, synoviocyte, oxidized silicon surfaces, reactive oxygen species

Procedia PDF Downloads 375
318 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 281
317 Groundwater Arsenic Contamination in Brahmaputra River Basin: A Water Quality Assessment in Jorhat (Assam), India

Authors: Kruti Jaruriya

Abstract:

Distribution of arsenic (As) and its compound and related toxicology are serious concerns. This is particularly so since millions worldwide are suffering from toxicity due to drinking of As-contaminated groundwater. The Bengal delta plain, formed by the Ganga– Padma–Meghna–Brahmaputra river basin, covering several districts of West Bengal, India and Bangladesh is considered as the worst As affected alluvial basin. However, some equally affected, if not more, areas are emerging in upper Brahmaputra plains. The present study was carried out to examine As contamination trends in the worst affected part of Assam, India. Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized. The groundwater is characterized by high dissolved Fe, Mn, and HCO-3 and low concentrations of NO-3 and SO2-4 indicating anoxic conditions prevailing in the groundwater. Fifty groundwater samples collected from shallow and deep tubewells of Titabor, Jorhat district (Assam) were examined. Along with total As, examination of concentration levels of other key parameters, viz., pH, EC, Fe, Mn , Mg2+, Ca2+, Na+, K+, PO43- , HCO-3 , NO3- ,Cl - and SO42- was also carried out. In respect to the permissible guideline of World Health Organization (WHO: As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the range of As concentration in the groundwater varied from 0.014 to 0.604 mg/L with mean concentration 0.184 mg/L. The present study showed that out of the 50 groundwater samples,100%, 54%, and 42% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The results of hydrogeochemical study revealed that the reductive dissolution of MnOOH and FeOOH represents an important mechanism of arsenic release in the study area along with major cations playing an important role in leaching of As into the groundwater. Arsenic released by oxidation of pyrite, as water levels are drawn down and air enters the aquifer, contributes negligibly to the problem of As pollution. Identification of the mechanism of As release to groundwater helps to provide a framework to guide the placement of new water wells so that they will have acceptable concentrations of As.

Keywords: arsenic, assam, brahmaputra floodplain, groundwater, hydrogeochemistry

Procedia PDF Downloads 300
316 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 59
315 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 381
314 Femoropatellar Groove: An Anatomical Study

Authors: Mamatha Hosapatna, Anne D. Souza, Vrinda Hari Ankolekar, Antony Sylvan D. Souza

Abstract:

Introduction: The lower extremity of the femur is characterized by an anterior groove in which patella is held during motion. This groove separates the two lips of the trochlea (medial and lateral), prolongation of the two condyles. In humans, the lateral trochlear lip is more developed than the medial one, creating an asymmetric groove that is also specific to the human body. Because of femoral obliquity, contraction of quadriceps leads to a lateral dislocation stress on the patella, and the more elevated lateral side of the patellar groove helps the patella stays in its correct place, acting as a wall against lateral dislocation. This specific shape fits an oblique femur. It is known that femoral obliquity is not genetically determined but comes with orthostatism and biped walking. Material and Methodology: To measure the various dimensions of the Femoropatellar groove (FPG) and femoral condyle using digital image analyser. 37 dried adult femora (22 right,15 left) were used for the study. End on images of the lower end of the femur was taken. Various dimensions of the Femoropatellar groove and FP angle were measured using image J software. Results were analyzed statistically. Results: Maximum of the altitude of medial condyle of the right femur is 4.98± 0.35 cm and of the left femur is 5.20±.16 cm. Maximum altitude of lateral condyle is 5.44±0.4 and 5.50±0.14 on the right and left side respectively. Medial length of the groove is 1.30±0.38 cm on the right side and on the left side is 1.88±0.16 cm. The lateral length of the groove on the right side is 1.900±.16 cm and left side is 1.88±0.16 cm. Femoropatellar angle is 136.38◦±2.59 on the right side and on the left side it is 142.38◦±7.0 Angle and dimensions of the femoropatellar groove on the medial and lateral sides were measured. Asymmetry in the patellar groove was observed. The lateral lip was found to be wider and bigger which correlated with the previous studies. An asymmetrical patellar groove with a protruding lateral side associated with an oblique femur is a specific mark of bipedal locomotion. Conclusion: Dimensions of FPG are important in maintaining the stability of patella and also in knee replacement surgeries. The implants used in to replace the patellofemoral compartment consist of a metal groove to fit on the femoral end and a plastic disc that attaches to the undersurface of the patella. The location and configuration of the patellofemoral groove of the distal femur are clinically significant in the mechanics and pathomechanics of the patellofemoral articulation.

Keywords: femoral patellar groove, femoro patellar angle, lateral condyle, medial condyle

Procedia PDF Downloads 383
313 Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem

Authors: Pantea Salehizadeh, Martin P. Bucknall, Robert Driscoll, Jayashree Arcot, George Srzednicki

Abstract:

Banana is one of the most important crops produced in large quantities in tropical and sub-tropical countries. Of the total plant material grown, approximately 40% is considered waste and left in the field to decay. This practice allows fungal diseases such as Sigatoka Leaf Spot to develop, limiting plant growth and spreading spores in the air that can cause respiratory problems in the surrounding population. The pseudostem is considered a waste residue of production (60 to 80 tonnes/ha/year), although it is a good source of dietary fiber and volatile organic compounds (VOC’s). Strategies to process banana pseudostem into palatable, nutritious and marketable food materials could provide significant social and economic benefits. Extraction of VOC’s with desirable odor from dried and fresh pseudostem could improve the smell of products from the confectionary and bakery industries. Incorporation of banana pseudostem flour into bakery products could provide cost savings and improve nutritional value. The aim of this study was to determine the effects of drying methods and different banana species on the profile of volatile aroma compounds in dried banana pseudostem. The banana species analyzed were Musa acuminata and Musa balbisiana. Fresh banana pseudostem samples were processed by either freeze-drying (FD) or heat pump drying (HPD). The extraction of VOC’s was performed at ambient temperature using vacuum distillation and the resulting, mostly aqueous, distillates were analyzed using headspace solid phase microextraction (SPME) gas chromatography – mass spectrometry (GC-MS). Optimal SPME adsorption conditions were 50 °C for 60 min using a Supelco 65 μm PDMS/DVB Stableflex fiber1. Compounds were identified by comparison of their electron impact mass spectra with those from the Wiley 9 / NIST 2011 combined mass spectral library. The results showed that the two species have notably different VOC profiles. Both species contained VOC’s that have been established in literature to have pleasant appetizing aromas. These included l-Menthone, D-Limonene, trans-linlool oxide, 1-Nonanol, CIS 6 Nonen-1ol, 2,6 Nonadien-1-ol, Benzenemethanol, 4-methyl, 1-Butanol, 3-methyl, hexanal, 1-Propanol, 2-methyl- acid، 2-Methyl-2-butanol. Results show banana pseudostem VOC’s are better preserved by FD than by HPD. This study is still in progress and should lead to the optimization of processing techniques that would promote the utilization of banana pseudostem in the food industry.

Keywords: heat pump drying, freeze drying, SPME, vacuum distillation, VOC analysis

Procedia PDF Downloads 312
312 Atypical Retinoid ST1926 Nanoparticle Formulation Development and Therapeutic Potential in Colorectal Cancer

Authors: Sara Assi, Berthe Hayar, Claudio Pisano, Nadine Darwiche, Walid Saad

Abstract:

Nanomedicine, the application of nanotechnology to medicine, is an emerging discipline that has gained significant attention in recent years. Current breakthroughs in nanomedicine have paved the way to develop effective drug delivery systems that can be used to target cancer. The use of nanotechnology provides effective drug delivery, enhanced stability, bioavailability, and permeability, thereby minimizing drug dosage and toxicity. As such, the use of nanoparticle (NP) formulations in drug delivery has been applied in various cancer models and have shown to improve the ability of drugs to reach specific targeted sites in a controlled manner. Cancer is one of the major causes of death worldwide; in particular, colorectal cancer (CRC) is the third most common type of cancer diagnosed amongst men and women and the second leading cause of cancer related deaths, highlighting the need for novel therapies. Retinoids, consisting of natural and synthetic derivatives, are a class of chemical compounds that have shown promise in preclinical and clinical cancer settings. However, retinoids are limited by their toxicity and resistance to treatment. To overcome this resistance, various synthetic retinoids have been developed, including the adamantyl retinoid ST1926, which is a potent anti-cancer agent. However, due to its limited bioavailability, the development of ST1926 has been restricted in phase I clinical trials. We have previously investigated the preclinical efficacy of ST1926 in CRC models. ST1926 displayed potent inhibitory and apoptotic effects in CRC cell lines by inducing early DNA damage and apoptosis. ST1926 significantly reduced the tumor doubling time and tumor burden in a xenograft CRC model. Therefore, we developed ST1926-NPs and assessed their efficacy in CRC models. ST1926-NPs were produced using Flash NanoPrecipitation with the amphiphilic diblock copolymer polystyrene-b-ethylene oxide and cholesterol as a co-stabilizer. ST1926 was formulated into NPs with a drug to polymer mass ratio of 1:2, providing a stable formulation for one week. The contin ST1926-NP diameter was 100 nm, with a polydispersity index of 0.245. Using the MTT cell viability assay, ST1926-NP exhibited potent anti-growth activities as naked ST1926 in HCT116 cells, at pharmacologically achievable concentrations. Future studies will be performed to study the anti-tumor activities and mechanism of action of ST1926-NPs in a xenograft mouse model and to detect the compound and its glucuroconjugated form in the plasma of mice. Ultimately, our studies will support the use of ST1926-NP formulations in enhancing the stability and bioavailability of ST1926 in CRC.

Keywords: nanoparticles, drug delivery, colorectal cancer, retinoids

Procedia PDF Downloads 88
311 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 118
310 Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode

Authors: Chinedu F. Anochie

Abstract:

The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established.

Keywords: cathodic protection, corrosion, pipe, sacrificial anode

Procedia PDF Downloads 168
309 Impact of Environmental Pollution on Oxidative Stress Indices in African Cat Fish (Clarias gariepinus) from Araromi River in Ondo State, Nigeria

Authors: Arojojoye Oluwatosin Adetola, Nwaechefu Olajumoke Olufunlayo, Ademola Adetokunbo Oyagbemi, Jeremiah Moyinoluwalogo Afolabi, Asaolu Racheal Oluwabukola

Abstract:

The effects of man’s activities on the environment include depletion of natural resources alongside pollution of water bodies. Petroleum exploration in the Niger Delta region of Nigeria has compromised the aquatic environment with grave consequences on the entire ecosystem. In this study, we assessed the environmental safety of Araromi River, located in an oil-producing area in Ondo State, in the Niger Delta region of Nigeria by determining the levels of heavy metals (copper, cadmium, chromium, nickel, lead) and some biomarkers of oxidative stress (malondialdehyde, glutathione-S-transferase, glutathione peroxidase, catalase, superoxide dismutase, myeloperoxidase and reduced glutathione) in Clarias gariepinus (350-400g) from the river using standard methods. Clarias gariepinus from a clean fish farm in the same geographical location as the reference site (Ilesannmi fishery) was used as a control. Water samples from both sites were also analysed for some physicochemical parameters, heavy metals, and bacterial contamination. Our findings show a significant increase in malondialdehyde level (index of lipid peroxidation) as well as alterations in antioxidant status in the organs of Clarias gariepinus from Araromi River compared with control. A significant increase in bacterial contaminants, heavy metal pollutants, and particulate matter deposits were also observed in the water sample from Araromi River compared with control. In conclusion, high levels of indicators of environmental pollution observed in the water sample from Araromi River coupled with induction of oxidative stress in Clarias gariepinus from the river show that Araromi River is polluted; therefore, consumption of fishes and other aquatic organisms from the river may be unsafe for the people in that community.

Keywords: Araromi River, Clarias gariepinus, environmental pollution, heavy metals, oxidative stress

Procedia PDF Downloads 151
308 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 289
307 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 119
306 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 144
305 Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)

Authors: Mohammed Alnuwairan, Mahmoud Abdelrahman

Abstract:

Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context.

Keywords: construction and demolition waste, recycling, reuse, sustainability

Procedia PDF Downloads 338
304 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 213
303 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State

Authors: F. Mohammadsadeghi

Abstract:

Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.

Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine

Procedia PDF Downloads 396
302 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 245
301 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 193
300 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery

Authors: Augustus K. Lebechi, Kenneth I. Ozoemena

Abstract:

Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.

Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.

Procedia PDF Downloads 50
299 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 65
298 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health

Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang

Abstract:

The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.

Keywords: climate change, health impact, health adaptation, Erren River Basin

Procedia PDF Downloads 293
297 Impaired Transient Receptor Potential Vanilloid 4-Mediated Dilation of Mesenteric Arteries in Spontaneously Hypertensive Rats

Authors: Ammar Boudaka, Maryam Al-Suleimani, Hajar BaOmar, Intisar Al-Lawati, Fahad Zadjali

Abstract:

Background: Hypertension is increasingly becoming a matter of medical and public health importance. The maintenance of normal blood pressure requires a balance between cardiac output and total peripheral resistance. The endothelium, through the release of vasodilating factors, plays an important role in the control of total peripheral resistance and hence blood pressure homeostasis. Transient Receptor Potential Vanilloid type 4 (TRPV4) is a mechanosensitive non-selective cation channel that is expressed on the endothelium and contributes to endothelium-mediated vasodilation. So far, no data are available about the morphological and functional status of this channel in hypertensive cases. Objectives: This study aimed to investigate whether there is any difference in the morphological and functional features of TRPV4 in the mesenteric artery of normotensive and hypertensive rats. Methods: Functional feature of TRPV4 in four experimental animal groups: young and adult Wistar-Kyoto rats (WKY-Y and WKY-A), young and adult spontaneously hypertensive rats (SHR-Y and SHR-A), was studied by adding 5 µM 4αPDD (TRPV4 agonist) to mesenteric arteries mounted in a four-chamber wire myograph and pre-contracted with 4 µM phenylephrine. The 4αPDD-induced response was investigated in the presence and absence of 1 µM HC067047 (TRPV4 antagonist), 100 µM L-NAME (nitric oxide synthase inhibitor), and endothelium. The morphological distribution of TRPV4 in the wall of rat mesenteric arteries was investigated by immunostaining. Real-time PCR was used in order to investigate mRNA expression level of TRPV4 in the mesenteric arteries of the four groups. The collected data were expressed as mean ± S.E.M. with n equal to the number of animals used (one vessel was taken from each rat). To determine the level of significance, statistical comparisons were performed using the student’s t-test and considered to be significantly different at p<0.05. Results: 4αPDD induced a relaxation response in the mesenteric arterial preparations (WKY-Y: 85.98% ± 4.18; n = 5) that was markedly inhibited by HC067047 (18.30% ± 2.86; n= 5; p<0.05), endothelium removal (19.93% ± 1.50; n = 5; p<0.05) and L-NAME (28.18% ± 3.09; n = 5; p<0.05). The 4αPDD-induced relaxation was significantly lower in SHR-Y compared to WKY-Y (SHR-Y: 70.96% ± 3.65; n = 6, WKY-Y: 85.98% ± 4.18; n = 5-6, p<0.05. Moreover, the 4αPDD-induced response was significantly lower in WKY-A than WKY-Y (WKY-A: 75.58 ± 1.30; n = 5, WKY-Y: 85.98% ± 4.18; n = 5, p<0.05). Immunostaining study showed immunofluorescent signal confined to the endothelial layer of the mesenteric arteries. The expression of TRPV4 mRNA in SHR-Y was significantly lower than in WKY-Y (SHR-Y; 0.67RU ± 0.34; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Furthermore, TRPV4 mRNA expression in WKY-A was lower than its expression in WKY-Y (WKY-A: 0.62RU ± 0.37; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Conclusion: Stimulation of TRPV4, which is expressed on the endothelium of rat mesenteric artery, triggers an endothelium-mediated relaxation response that markedly decreases with hypertension and growing up changes due to downregulation of TRPV4 expression.

Keywords: hypertension, endothelium, mesenteric artery, TRPV4

Procedia PDF Downloads 299
296 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 116
295 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 436
294 Application of Heritage Clay Roof Tiles in Malaysia’s Government Buildings: Conservation Challenges

Authors: Mohd Sabere Sulaiman, Masyitah Abd Aziz, Norsiah Hassan, Jamilah Halina Abdul Halim, Mohd Saipul Asrafi Haron

Abstract:

The use of clay roof tiles was spread out through Asia and Europe, including Malaysia, since the early 17th Century. Most of the common type of clay roof tiles are used in a flat and rectangular shape, measurement, styles, and characteristics through each tradition and interest, including responsive to the climate. Various types of heritage clay roof tiles were used in Malaysia’s Government Buildings dated 1865, 1919, 1936, and so forth, which mostly were imported from India, France, and Italy. Until now, these heritage clay roof tiles are still found throughout Malaysia, including the ‘Interlocking’ clay roof tile type. This study is to investigate and overview the existence of heritage clay roof tiles used in Malaysia; the ‘interlocking’ type with ‘lip’ and ‘hooks’, through literature reviews as desktop study besides carried out a preliminary observation on various sites and interviews. From the literatures, the last production and used of the local heritage clay roof tiles in Malaysia dated in mid 1900s in Batu Arang, Selangor. The brick factory was abandoned since early 2000s. Although the modern ‘Interlocking’ type were produced to duplicate its form, pattern, and size of the original one, they still facing the problem to blend and merged, which end up dismantling the original version, or replacing one to one condition and even replaced overall with the modern materials. This is quite contradicting with the basic principles of building conservation and had become a challenge. Initial findings from the preliminary observation on site in various state in Malaysia shows some evidence that the heritage clay roof tiles are still intact and been used. Some of them might change to modern roof materials such as metal deck, probably due to easy maintenance and cheaper. Also, some are still struggling to maintain and retain its looks and authenticity of the roof while facing the increasing of material cost. Those improper alteration and changes made is due to lack of knowledge among the owner and end user. Various aspect needs to be considered in order to sustain its usage and its original looks by looking at the proper maintenance aspects of the heritage clay roof tiles to prolong the building life for future generation preferences.

Keywords: challenges, clay, interlocking, maintenance

Procedia PDF Downloads 78
293 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 589
292 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension

Authors: E. A. Krasikov

Abstract:

As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.

Keywords: controlling, embrittlement, radiation, steel, wet annealing

Procedia PDF Downloads 364
291 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 262
290 Impact of Two Xenobiotics in Mosquitofish: Gambusia affinis: Several Approaches

Authors: Chouahda Salima, Soltani Noureddine

Abstract:

The present study is a part of biological control against mosquitoes. It aims to assess the impact of two xenobiotics (a selective insect growth regulator: halofenozide and heavy metals: cadmium, more toxic and widespread in the region) in mosquitofish: Gambusia affinis. Several approaches were examined: Acute toxicity of cadmium and halofenozide: The acute toxicity of cadmium and halofenozide was examined in juvenile and adult males and females of G. affinis at different concentrations, cadmium causes mortality of the species studied with a relation dose-response. In laboratory conditions, the impact of cadmium was determined on two biomarkers of environmental stress: glutathione and acetylcholinesterase. The results show that the juvenile followed by adult males are more susceptible than adult females, while the halofenozide does not have any effect on the mortality of juvenile and adult males and females of G.affinis. Chronic toxicity of cadmium and halofenozide: both xenobiotics were added to the water fish raising at different doses tested in juveniles and adults males and females during two months of experience. Growth and metric indices; results show that halofenozide added to the water juveniles of G. affinis has no effect on their growth (length and weight). On the other side, the cadmium at the dose 5 µg/L shows a higher toxicity against juvenile, where he appears to reduce significantly their linear growth and weight. In females, the both xenobiotics have significant effects on metric indices, but these effects are more important on the hepatosomatic index that the gonadosomatic index and the coefficient of condition. Biomarkers; acetylcholinesterase (AChE), glutathione S-transferase (GST) and glutathione (GSH) used in assessing of environmental stress were measured in juveniles and adults males and females. The response of these biomarkers reveals an inhibition of AChE specific activity, an induction of GST activity, and decrease of GSH rates in juveniles in the end of experiment and during chronic treatment adult males and females. The effect of these biomarkers is more pronounced in females compared to males and juveniles. These different biomarkers have a similar profile for the duration of exposure.

Keywords: gambusia affinis, insecticide, heavy metal, morphology, biomarkers, chronic toxicity, acute toxicity, pollution

Procedia PDF Downloads 302