Search results for: carbon fiber reinforced polymers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5411

Search results for: carbon fiber reinforced polymers

2231 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 647
2230 Dielectric Properties of PANI/h-BN Composites

Authors: Seyfullah Madakbas, Emrah Cakmakci

Abstract:

Polyaniline (PANI), the most studied member of the conductive polymers, has a wide range of uses from several electronic devices to various conductive high-technology applications. Boron nitride (BN) is a boron and nitrogen containing compound with superior chemical and thermal resistance and thermal conductivity. Even though several composites of PANI was prepared in literature, the preparation of h-BN/PANI composites is rare. In this work PANI was polymerized in the presence of different amounts of h-BN (1, 3 and 5% with respect to PANI) by using 0.1 M solution of NH4S2O8 in HCl as the oxidizing agent and conductive composites were prepared. Composites were structurally characterized with FTIR spectroscopy and X-Ray Diffraction (XRD). Thermal properties of conductive composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric measurements were performed in the frequency range of 106–108 Hz at room temperature. The corresponding bands for the benzenoid and quinoid rings at around 1593 and 1496 cm-1 in the FTIR spectra of the composites proved the formation of polyaniline. Together with the FTIR spectra, XRD analysis also revealed the existence of the interactions between PANI and h-BN. Glass transition temperatures (Tg) of the composites increased with the increasing amount of PANI (from 87 to 101). TGA revealed that the char yield of the composites increased as the amount of h-BN was increased in the composites. Finally the dielectric permittivity of 3 wt.%h-BN-containing composite was measured and found as approximately 17. This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: dielectric permittivity, h-BN, PANI, thermal analysis

Procedia PDF Downloads 267
2229 Seismic Assessment of Old Existing RC Buildings In Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail

Abstract:

Early, pre-code, reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Among these, existing old RC building in Madinah is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After, updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP 2000 software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis ambient vibration, modal update

Procedia PDF Downloads 488
2228 Modal Analysis for Study of Minor Historical Architecture

Authors: Milorad Pavlovic, Anna Manzato, Antonella Cecchi

Abstract:

Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.

Keywords: FEM, masonry, minor historical architecture, modal analysis

Procedia PDF Downloads 307
2227 Synthesis of Smart Materials Based on Polyaniline Coated Fibers

Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu

Abstract:

Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.

Keywords: electrospinning, fibers, smart materials, polyaniline

Procedia PDF Downloads 281
2226 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 175
2225 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66

Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri

Abstract:

Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.

Keywords: heteropoly acid, graphene oxide, MOF, tetracycline

Procedia PDF Downloads 117
2224 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 149
2223 CO2 Methanation over Ru-Ni/CeO2 Catalysts

Authors: Nathalie Elia, Samer Aouad, Jane Estephane, Christophe Poupin, Bilal Nsouli, Edmond Abi Aad

Abstract:

Carbon dioxide is one of the main contributors to greenhouse effect and hence to climate change. As a result, the methanation reaction CO2(g) + 4H2(g) →CH4(g) + 2H2O (ΔH°298 = -165 kJ/mol), also known as Sabatier reaction, has received great interest as a process for the valorization of the greenhouse gas CO2 into methane which is a hydrogen-carrier gas. The methanation of CO2 is an exothermic reaction favored at low temperature and high pressure. However, this reaction requires a high energy input to activate the very stable CO2 molecule, and exhibits serious kinetic limitations. Consequently, the development of active and stable catalysts is essential to overcome these difficulties. Catalytic methanation of CO2 has been studied using catalysts containing Rh, Pd, Ru, Co and Ni on various supports. Among them, the Ni-based catalysts have been extensively investigated under various conditions for their comparable methanation activity with highly improved cost-efficiency. The addition of promoters are common strategies to increase the performance and stability of Ni catalysts. In this work, a small amount of Ru was used as a promoter for Ni catalysts supported on ceria and tested in the CO2 methanation reaction. The nickel loading was 5 wt. % and ruthenium loading is 0.5wt. %. The catalysts were prepared by successive impregnation method using Ni(NO3)2.6H2O and Ru(NO)(NO3)3 as precursors. The calcined support was impregnated with Ni(NO3)2.6H2O, dried, calcined at 600°C for 4h, and afterward, was impregnated with Ru(NO)(NO3)3. The resulting solid was dried and calcined at 600°C for 4 h. Supported monometallic catalysts were prepared likewise. The prepared solids Ru(0.5%)/CeO2, Ni(5%)/CeO2 and Ru(0.5%)-Ni(5%)/CeO2 were then reduced prior to the catalytic test under a flow of 50% H2/Ar (50 ml/min) for 4h at 500°C. Finally, their catalytic performances were evaluated in the CO2 methanation reaction, in the temperature range of 100–350°C by using a gaseous mixture of CO2 (10%) and H2 (40%) in Ar balanced at a total flow rate of 100 mL/min. The effect of pressure on the CO2 methanation was studied by varying the pressure between 1 and 10 bar. The various catalysts showed negligible CO2 conversion at temperatures lower than 250°C. The conversion of CO2 increases with increasing reaction temperature. The addition of Ru as promoter to Ni/CeO2 improved the CO2 methanation. It was shown that the CO2 conversion increases from 15 to 70% at 350°C and 1 bar. The effect of pressure on CO2 conversion was also studied. Increasing the pressure from 1 to 5 bar increases the CO2 conversion from 70% to 87%, while increasing the pressure from 5 to 10 bar increases the CO2 conversion from 87% to 91%. Ru–Ni catalysts showed excellent catalytic performance in the methanation of carbon dioxide with respect to Ni catalysts. Therefore the addition of Ru onto Ni catalysts improved remarkably the catalytic activity of Ni catalysts. It was also found that the pressure plays an important role in improving the CO2 methanation.

Keywords: CO2, methanation, nickel, ruthenium

Procedia PDF Downloads 209
2222 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 518
2221 Study of the Behavior of Geogrid Mechanically Stabilized Earth Walls Under Cyclic Loading

Authors: Yongzhe Zhao, Ying Liu, Zhiyong Liu, Hui You

Abstract:

The soil behind retaining wall is normally subjected to cyclic loading, for example traffic loading. Geotextile has been widely used to reinforce the soil for the purpose of reducing the settlement of the soil. A series of physical model tests were performed to investigate the settlement of footing under cyclic loading. The settlement of the footing, ground deformation and the vertical earth pressure in subsoil were presented and discussed under different types of geotextiles. The results indicate that including geotextiles significantly decreases the footing settlement and the stiffer the geotextile, the less the settlement. Under cyclic loading, the soil below the footing shows dilation within certain depths and beyond that it experiences contraction. The location of footing relative to the retaining wall has important effects on the deformation behavior of the soil in the ground, and the closer the footing to the retaining wall, the greater the contraction soil shows. This is because the retaining wall experienced greater lateral displacement.

Keywords: physical model tests, reinforced retaining wall, cyclic loading, footing

Procedia PDF Downloads 146
2220 Safety of Built Infrastructure: Single Degree of Freedom Approach to Blast Resistant RC Wall Panels

Authors: Muizz Sanni-Anibire

Abstract:

The 21st century has witnessed growing concerns for the protection of built facilities against natural and man-made disasters. Studies in earthquake resistant buildings, fire, and explosion resistant buildings now dominate the arena. To protect people and facilities from the effects of the explosion, reinforced concrete walls have been designed to be blast resistant. Understanding the performance of these walls is a key step in ensuring the safety of built facilities. Blast walls are mostly designed using simple techniques such as single degree of freedom (SDOF) method, despite the increasing use of multi-degree of freedom techniques such as the finite element method. This study is the first stage of a continuous research into the safety and reliability of blast walls. It presents the SDOF approach applied to the analysis of a concrete wall panel under three representative bomb situations. These are motorcycle 50 kg, car 400kg and also van with the capacity of 1500 kg of TNT explosive.

Keywords: blast wall, safety, protection, explosion

Procedia PDF Downloads 257
2219 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Authors: T. Thompson, E. F. Zegeye

Abstract:

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Keywords: bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test

Procedia PDF Downloads 108
2218 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings

Authors: Nirand Anunthanakul

Abstract:

This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.

Keywords: outrigger, belt truss, tall buildings, wind loadings

Procedia PDF Downloads 559
2217 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft

Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti

Abstract:

Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.

Keywords: chitosan, collagen, PLGA, spinneret

Procedia PDF Downloads 388
2216 Thermal, Chemical, and Mineralogical Properties of Soil Building Blocks Reinforced with Cement

Authors: Abdelmalek Ammari

Abstract:

This paper represents an experimental study to determine the effect between thermal conductivity of Compressed Earth Block Stabilized (CEBs) by cement and the mineralogical and chemical analyses of soil, all the samples of CEB in the dry state and with different content of cement, the samples made by soil stabilized by Portland Cement. The soil used collected from fez city in Morocco. That determination of the thermal conductivity of CEBs plays an important role when considering its suitability for energy saving insulation. The measurement technique used to determine thermal conductivity is called hot ring method, the thermal conductivity of the tested samples is strongly affected by the quantity of the cement added. The soil of Fez, mainly composed of calcite, quartz, and dolomite, improved the behaviour of the material by the addition of cement. The findings suggest that to manufacture lightweight samples with high thermal insulation properties, it is advisable to use clays that contain quartz. . In addition, quartz has high thermal conductivity.

Keywords: compressed earth blocks, thermal conductivity, mineralogical, chemical, temperature

Procedia PDF Downloads 145
2215 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation

Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager

Abstract:

The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.

Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization

Procedia PDF Downloads 88
2214 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa

Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori

Abstract:

The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.

Keywords: agro-ecosystem, conventional farm, dialectical, sustainability

Procedia PDF Downloads 204
2213 Preparation and Properties of PP/EPDM Reinforced with Graphene

Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy

Abstract:

Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).

Keywords: nanocomposite, graphene, microstructure, mechanical properties

Procedia PDF Downloads 322
2212 Preparation of Zno/Ag Nanocomposite and Coating on Polymers for Anti-Infection Biomaterial Application

Authors: Babak Sadeghi, Parisa Ghayomipour

Abstract:

ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of S. aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900 ºC. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications.

Keywords: nanocomposites, antibacterial activity, scanning electron microscopy (SEM), x-ray diffraction (XRD)

Procedia PDF Downloads 461
2211 Design of a Plant to Produce 100,000 MTPY of Green Hydrogen from Brine

Authors: Abdulrazak Jinadu Otaru, Ahmed Almulhim, Hassan Alhassan, Mohammed Sabri

Abstract:

Saudi Arabia is host to a state-owned oil and gas corporation, known as Saudi ARAMCO, that is responsible for the highest emissions of carbon dioxide (CO₂) due to the heavy reliance on fossil fuels as an energy source for various sectors such as transportation, aerospace, manufacturing, and residential use. Unfortunately, the detrimental consequences of CO₂ emissions include escalating temperatures in the Middle East region, posing significant obstacles in terms of food security and water scarcity for the Kingdom of Saudi Arabia. As part of the Saudi Vision 2030 initiative, which aims to reduce the country's reliance on fossil fuels by 50 %, this study focuses on designing a plant that will produce approximately 100,000 metric tons per year (MTPY) of green hydrogen (H₂) using brine as the primary feedstock. The proposed facility incorporates a double electrolytic technology that first separates brine or sodium chloride (NaCl) into sodium hydroxide, hydrogen gas, and chlorine gas. The sodium hydroxide is then used as an electrolyte in the splitting of water molecules through the supply of electrical energy in a second-stage electrolyser to produce green hydrogen. The study encompasses a comprehensive analysis of process descriptions and flow diagrams, as well as materials and energy balances. It also includes equipment design and specification, cost analysis, and considerations for safety and environmental impact. The design capitalizes on the abundant brine supply, a byproduct of the world's largest desalination plant located in Al Jubail, Saudi Arabia. Additionally, the design incorporates the use of available renewable energy sources, such as solar and wind power, to power the proposed plant. This approach not only helps reduce carbon emissions but also aligns with Saudi Arabia's energy transition policy. Furthermore, it supports the United Nations Sustainable Development Goals on Sustainable Cities and Communities (Goal 11) and Climate Action (Goal 13), benefiting not only Saudi Arabia but also other countries in the Middle East.

Keywords: plant design, electrolysis, brine, sodium hydroxide, chlorine gas, green hydrogen

Procedia PDF Downloads 36
2210 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 137
2209 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 231
2208 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity

Procedia PDF Downloads 179
2207 Characterization of Filled HNBR Elastomers for Sealing Application in Cold Climate Areas

Authors: Anton G. Akulichev, Avinash Tiwari, Ben Alcock, Andreas Echtermeyer

Abstract:

Low temperatures are known to pose a major threat for polymers; many are prone to excessive stiffness or even brittleness. There is a technology gap between the properties of existing elastomeric sealing materials and the properties needed for service in extremely cold regions. Moreover, some aspects of low temperature behaviour of rubber are not thoroughly studied and understood. The paper presents results of laboratory testing of a conventional oilfield HNBR (hydrogenated nitrile butadiene rubber) elastomer at low climatic temperatures above and below its glass transition point, as well as the performance of some filled HNBR formulations. Particular emphasis in the experiments is put on rubber viscoelastic characteristics studied by Dynamic Mechanical Analysis (DMA) and quasi-static mechanical testing results at low temperatures. As demonstrated by the stress relaxation and DMA experiments the transition region near Tg of the studied compound has the most striking features, like rapid stress relaxation, as compared to the glassy and rubbery plateau. In addition the quasi-static experiments show that molecular movement below Tg is not completely frozen, but rather evident and manifested in a certain stress decay as well. The effect of temperature and filler additions on typical mechanical and other properties of the materials is also discussed.

Keywords: characterization, filled elastomers, HNBR, low temperature

Procedia PDF Downloads 305
2206 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 425
2205 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide

Procedia PDF Downloads 284
2204 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds

Authors: Shaker Alsharif, Xavier Banquy

Abstract:

Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.

Keywords: controlled release, hydrogel, liposomes, active compounds

Procedia PDF Downloads 438
2203 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity

Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki

Abstract:

The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.

Keywords: indium tin oxide, particles, surface-modification, volume resistivity

Procedia PDF Downloads 244
2202 Use of Natural Fibers in Landfill Leachate Treatment

Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes

Procedia PDF Downloads 347