Search results for: network packet
1717 How Supply Chains Can Benefit from Open Innovation: Inspiration from Toyota Production System
Authors: Sam Solaimani, Jack A. A. van der Veen, Mehdi Latifi
Abstract:
Considering the increasingly VUCA (Volatile, Uncertain, Complex, Ambiguous) business market, innovation is the name of the game in contemporary business. Innovation is not solely created within the organization itself; its 'network environment' appears to be equally important for innovation. There are, at least, two streams of literature that emphasize the idea of using the extended organization to foster innovation capability, namely, Supply Chain Collaboration (SCC) (also rooted in the Lean philosophy) and Open Innovation (OI). Remarkably, these two concepts are still considered as being totally different in the sense that these appear in different streams of literature and applying different concepts in pursuing the same purposes. This paper explores the commonalities between the two concepts in order to conceptually further our understanding of how OI can effectively be applied in Supply Chain networks. Drawing on available literature in OI, SCC and Lean, the paper concludes with five principles that help firms to contextualize the implementation of OI to the peculiar setting of SC. Theoretically, the present paper aims at contributing to the relatively under-researched theme of Supply Chain Innovation. More in practical terms, the paper provides OI and SCC communities with a workable know-how to seize on and sustain OI initiatives.Keywords: lean philosophy, open innovation, supply chain collaboration, supply chain management
Procedia PDF Downloads 3231716 Stochastic Analysis of Linux Operating System through Copula Distribution
Authors: Vijay Vir Singh
Abstract:
This work is focused studying the Linux operating system connected in a LAN (local area network). The STAR topology (to be called subsystem-1) and BUS topology (to be called subsystem-2) are taken into account, which are placed at two different locations and connected to a server through a hub. In the both topologies BUS topology and STAR topology, we have assumed n clients. The system has two types of failures i.e. partial failure and complete failure. Further, the partial failure has been categorized as minor and major partial failure. It is assumed that the minor partial failure degrades the sub-systems and the major partial failure make the subsystem break down mode. The system may completely fail due to failure of server hacking and blocking etc. The system is studied using supplementary variable technique and Laplace transform by using different types of failure and two types of repair. The various measures of reliability for example, availability of system, reliability of system, MTTF, profit function for different parametric values have been discussed.Keywords: star topology, bus topology, blocking, hacking, Linux operating system, Gumbel-Hougaard family copula, supplementary variable
Procedia PDF Downloads 3701715 Double Encrypted Data Communication Using Cryptography and Steganography
Authors: Adine Barett, Jermel Watson, Anteneh Girma, Kacem Thabet
Abstract:
In information security, secure communication of data across networks has always been a problem at the forefront. Transfer of information across networks is susceptible to being exploited by attackers engaging in malicious activity. In this paper, we leverage steganography and cryptography to create a layered security solution to protect the information being transmitted. The first layer of security leverages crypto- graphic techniques to scramble the information so that it cannot be deciphered even if the steganography-based layer is compromised. The second layer of security relies on steganography to disguise the encrypted in- formation so that it cannot be seen. We consider three cryptographic cipher methods in the cryptography layer, namely, Playfair cipher, Blowfish cipher, and Hills cipher. Then, the encrypted message is passed through the least significant bit (LSB) to the steganography algorithm for further encryption. Both encryption approaches are combined efficiently to help secure information in transit over a network. This multi-layered encryption is a solution that will benefit cloud platforms, social media platforms and networks that regularly transfer private information such as banks and insurance companies.Keywords: cryptography, steganography, layered security, Cipher, encryption
Procedia PDF Downloads 851714 Managing Inter-Organizational Innovation Project: Systematic Review of Literature
Authors: Lamin B Ceesay, Cecilia Rossignoli
Abstract:
Inter-organizational collaboration is a growing phenomenon in both research and practice. The partnership between organizations enables firms to leverage external resources, experiences, and technology that lie with other firms. This collaborative practice is a source of improved business model performance, technological advancement, and increased competitive advantage for firms. However, the competitive intents, and even diverse institutional logics of firms, make inter-firm innovation-based partnership even more complex, and its governance more challenging. The purpose of this paper is to present a systematic review of research linking the inter-organizational relationship of firms with their innovation practice and specify the different project management issues and gaps addressed in previous research. To do this, we employed a systematic review of the literature on inter-organizational innovation using two complementary scholarly databases - ScienceDirect and Web of Science (WoS). Article scoping relies on the combination of keywords based on similar terms used in the literature:(1) inter-organizational relationship, (2) business network, (3) inter-firm project, and (4) innovation network. These searches were conducted in the title, abstract, and keywords of conceptual and empirical research papers done in English. Our search covers between 2010 to 2019. We applied several exclusion criteria including Papers published outside the years under the review, papers in a language other than English, papers neither listed in WoS nor ScienceDirect and papers that are not sharply related to the inter-organizational innovation-based partnership were removed. After all relevant search criteria were applied, a final list of 84 papers constitutes the data for this review. Our review revealed an increasing evolution of inter-organizational relationship research during the period under the review. The descriptive analysis of papers according to Journal outlets finds that International Journal of Project Management (IJPM), Journal of Industrial Marketing, Journal of Business Research (JBR), etc. are the leading journal outlets for research in the inter-organizational innovation project. The review also finds that Qualitative methods and quantitative approaches respectively are the leading research methods adopted by scholars in the field. However, literature review and conceptual papers constitute the least in the field. During the content analysis of the selected papers, we read the content of each paper and found that the selected papers try to address one of the three phenomena in inter-organizational innovation research: (1) project antecedents; (2) project management and (3) project performance outcomes. We found that these categories are not mutually exclusive, but rather interdependent. This categorization also helped us to organize the fragmented literature in the field. While a significant percentage of the literature discussed project management issues, we found fewer extant literature on project antecedents and performance. As a result of this, we organized the future research agenda addressed in several papers by linking them with the under-researched themes in the field, thus providing great potential to advance future research agenda especially, in the under-researched themes in the field. Finally, our paper reveals that research on inter-organizational innovation project is generally fragmented which hinders a better understanding of the field. Thus, this paper contributes to the understanding of the field by organizing and discussing the extant literature to advance the theory and application of inter-organizational relationship.Keywords: inter-organizational relationship, inter-firm collaboration, innovation projects, project management, systematic review
Procedia PDF Downloads 1141713 A Proposal of Multi-modal Teaching Model for College English
Authors: Huang Yajing
Abstract:
Multimodal discourse refers to the phenomenon of using various senses such as hearing, vision, and touch to communicate through various means and symbolic resources such as language, images, sounds, and movements. With the development of modern technology and multimedia, language and technology have become inseparable, and foreign language teaching is becoming more and more modal. Teacher-student communication resorts to multiple senses and uses multiple symbol systems to construct and interpret meaning. The classroom is a semiotic space where multimodal discourses are intertwined. College English multi-modal teaching is to rationally utilize traditional teaching methods while mobilizing and coordinating various modern teaching methods to form a joint force to promote teaching and learning. Multimodal teaching makes full and reasonable use of various meaning resources and can maximize the advantages of multimedia and network environments. Based upon the above theories about multimodal discourse and multimedia technology, the present paper will propose a multi-modal teaching model for college English in China.Keywords: multimodal discourse, multimedia technology, English education, applied linguistics
Procedia PDF Downloads 681712 Optimization of Floor Heating System in the Incompressible Turbulent Flow Using Constructal Theory
Authors: Karim Farahmandfar, Hamidolah Izadi, Mohammadreza Rezaei, Amin Ardali, Ebrahim Goshtasbi Rad, Khosro Jafarpoor
Abstract:
Statistics illustrates that the higher amount of annual energy consumption is related to surmounting the demand in buildings. Therefore, it is vital to economize the energy consumption and also find the solution with regard to this issue. One of the systems for the sake of heating the building is floor heating. As a matter of fact, floor heating performance is based on convection and radiation. Actually, in addition to creating a favorable heating condition, this method leads to energy saving. It is the goal of this article to outline the constructal theory and introduce the optimization method in branch networks for floor heating. There are several steps in order to gain this purpose. First of all, the pressure drop through the two points of the network is calculated. This pressure drop is as a function of pipes diameter and other parameters. After that, the amount of heat transfer is determined. Consequently, as a result of the combination of these two functions, the final function will be determined. It is necessary to mention that flow is laminar.Keywords: constructal theory, optimization, floor heating system, turbulent flow
Procedia PDF Downloads 3191711 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx
Procedia PDF Downloads 2131710 Transfer Learning for Protein Structure Classification at Low Resolution
Authors: Alexander Hudson, Shaogang Gong
Abstract:
Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.Keywords: transfer learning, protein distance maps, protein structure classification, neural networks
Procedia PDF Downloads 1361709 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 1601708 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating
Procedia PDF Downloads 5281707 The Penetration of Urban Mobility Multi-Modality Enablers in a Vehicle-Dependent City
Authors: Lama Yaseen, Nourah Al-Hosain
Abstract:
A Multi-modal system in urban mobility is an essential framework for an optimized urban transport network. Many cities are still heavily dependent on vehicle transportation, dominantly using conventional fuel-based cars for daily travel. With the reliance on motorized vehicles in large cities such as Riyadh, the capital city of Saudi Arabia, traffic congestion is eminent, which ultimately results in an increase in road emissions and loss of time. Saudi Arabia plans to undergo a massive transformation in mobility infrastructure and urban greening projects, including introducing public transport and other massive urban greening infrastructures that enable alternative mobility options. This paper uses a Geographic Information System (GIS) approach that analyzes the accessibility of current and planned public transport stations and how they intertwine with massive urban greening projects that may play a role as an enabler of micro-mobility and walk-ability options in the city.Keywords: urban development, urban mobility, sustainable mobility, Middle East
Procedia PDF Downloads 1001706 Relation of Radar and Hail Parameters in the Continetal Part of Croatia
Authors: Damir Počakal
Abstract:
Continental part Croatia is exposed, mainly in the summer months, to the frequent occurrence of severe thunderstorms and hail. In the 1960s, aiming to protect and reduce the damage, an operational hail suppression system was introduced in that area. The current protected area is 26800 km2 and has about 580 hail suppression stations (rockets and ground generators) which are managed with 8 radar centres (S-band radars). In order to obtain objective and precise hailstone measurement for different research studies, hailpads were installed on all this stations in 2001. Additionally the dense hailpad network with the dimensions of 20 km x 30 km (1 hailpad per 4 km2), was established in the area with the highest average number of days with hail in Croatia in 2002. This paper presents analysis of relation between radar measured parameters of Cb cells in the time of hail fall with physical parameters of hail (max. diameter, number of hail stones and kinetic energy) measured on hailpads in period 2002 -2014. In addition are compared radar parameters of Cb cells with and without hail on the ground located at the same time over the polygon area.Keywords: Cb cell, hail, radar, hailpad
Procedia PDF Downloads 2961705 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 801704 Satellite Connectivity for Sustainable Mobility
Authors: Roberta Mugellesi Dow
Abstract:
As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.Keywords: sustainability, connectivity, mobility, satellites
Procedia PDF Downloads 1331703 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3391702 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 1461701 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes
Authors: Hermann Kuehnle
Abstract:
Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization
Procedia PDF Downloads 5261700 Scalable Cloud-Based LEO Satellite Constellation Simulator
Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi
Abstract:
Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter
Procedia PDF Downloads 3871699 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 51698 The Results of the Research and Documentation of Early Middle Ages Sites in the North-West Poland
Authors: Wojciech Kulesza
Abstract:
The north-western part of the Poland, specifically West Pomerania and Lubuskie provinces, from several years are the subject of research of the Department of Archaeology of Early Middle Ages of Institute of Archaeology of Nicolaus Copernicus University in Toruń. This area has a dense network of rivers and numerous lakes, where many of them are connected to the southern part of the Baltic Sea. During the many years of research in this area, archaeologists discovered the remains of the early Middle Ages settlement located on several islands and in most cases were encountered relics of early Middle Ages bridges linking those islands with the mainland. During the excavation, work was carried out both under water and on land for the accurate identification of islands and adjacent to them underwater areas. The result of this work is a graphic documentation, made in a three-dimensional technique, not only for the underwater trenches but also relics of bridges and objects discovered during exploration, which as the main theme will be presented in the full presentation.Keywords: Poland, underwater archaeology, Nicolaus Copernicus University, early middle ages
Procedia PDF Downloads 2451697 An Implementation of a Configurable UART-to-Ethernet Converter
Authors: Jungho Moon, Myunggon Yoon
Abstract:
This paper presents an implementation of a configurable UART-to-Ethernet converter using an ARM-based 32-bit microcontroller as well as a dedicated configuration program running on a PC for configuring the operating parameters of the converter. The program was written in Python. Various parameters pertaining to the operation of the converter can be modified by the configuration program through the Ethernet interface of the converter. The converter supports 3 representative asynchronous serial communication protocols, RS-232, RS-422, and RS-485 and supports 3 network modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and UDP protocols were implemented on the microcontroller using an open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP) and FreeRTOS, a free real-time operating system for embedded systems. Due to the use of a real-time operating system, the firmware of the converter was implemented as a multi-thread application and as a result becomes more modular and easier to develop. The converter can provide a seamless bridge between a serial port and an Ethernet port, thereby allowing existing legacy apparatuses with no Ethernet connectivity to communicate using the Ethernet protocol.Keywords: converter, embedded systems, ethernet, lwIP, UART
Procedia PDF Downloads 7061696 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1291695 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach
Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal
Abstract:
Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.Keywords: e-learning, cluster, personalization, sequence, pattern
Procedia PDF Downloads 4291694 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes
Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi
Abstract:
Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing
Procedia PDF Downloads 3061693 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation
Procedia PDF Downloads 2721692 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility
Authors: Jung-Hsuan Hsu
Abstract:
Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition
Procedia PDF Downloads 4511691 The Role of the New Silk Road (One Belt, One Road Initiative) in Connecting the Free Zones of Iran and Turkey: A Case Study of the Free Zones of Sarakhs and Maku to Anatolia and Europe
Authors: Morteza Ghourchi, Meraj Jafari, Atena Soheilazizi
Abstract:
Today, with the globalization of communications and the connection of countries within the framework of the global economy, free zones play the most important role as the engine of global economic development and globalization of countries. In this regard, corridors have a fundamental role in linking countries and free zones physically with each other. One of these corridors is the New Silk Road corridor (One Belt, One Road initiative), which is being built by China to connect with European countries. In connecting this corridor to European countries, Iran and Turkey are among the countries that play an important role in linking China to European countries through this corridor. The New Silk Road corridor, by connecting Iran’s free zones (Sarakhs and Maku) and Turkey’s free zones (Anatolia and Europe), can provide the best opportunity for expanding economic cooperation and regional development between Iran and Turkey. It can also provide economic links between Iran and Turkey with Central Asian countries and especially the port of Khorgos. On the other hand, it can expand Iran-Turkey economic relations more than ever before with Europe in a vast economic network. The research method was descriptive-analytical, using library resources, documents of Iranian free zones, and the Internet. In an interview with Fars News Agency, Mohammad Reza Kalaei, CEO of Sarakhs Free Zone, said that the main goal of Sarakhs Special Economic Zone is to connect Iran with the Middle East and create a transit corridor towards East Asian countries, including Turkey. Also, according to an interview with Hussein Gharousi, CEO of Maku Free Zone, the importance of this region is due to the fact that Maku Free Zone, due to its geographical location and its position on the China-Europe trade route, the East-West corridor, which is the closest point to the European Union through railway and transit routes, and also due to its proximity to Eurasian countries, is an ideal opportunity for industrial and technological companies. Creating a transit corridor towards East Asian countries, including Turkey, is one of the goals of this project Free zones between Iran and Turkey can sign an agreement within the framework of the New Silk Road to expand joint investments and economic cooperation towards regional convergence. The purpose of this research is to develop economic links between Iranian and Turkish free zones along the New Silk Road, which will lead to the expansion and development of regional cooperation between the two countries within the framework of neighboring policies. The findings of this research include the development of economic diplomacy between the Secretariat of the Supreme Council of Free Zones of Iran and the General Directorate of Free Zones of Turkey, the agreement to expand cooperation between the free zones of Sarakhs, Maku, Anatolia, and Europe, holding biennial conferences between Iranian free zones along the New Silk Road with Turkish free zones, creating a joint investment fund between Iran and Turkey in the field of developing free zones along the Silk Road, helping to attract tourism between Iranian and Turkish free zones located along the New Silk Road, improving transit infrastructure and transportation to better connect Iranian free zones to Turkish free zones, communicating with China, and creating joint collaborations between China’s dry ports and its free zones with Iranian and Turkish free zones.Keywords: network economy, new silk road (one belt, one road initiative), free zones (Sarakhs, Maku, Anatolia, Europe), regional development, neighborhood policies
Procedia PDF Downloads 641690 Consumer Market of Agricultural Products and Agricultural Policy in Georgia
Authors: G. Erkomaishvili, M. Kobalava, T. Lazariashvili, M. Saghareishvili
Abstract:
The article discusses the consumer market of agricultural products and agricultural policy in Georgia. It is noted that development of the strategic areas of the agricultural sector needs a special support. These strategic areas should create the country's major export potential. It is important to develop strategies to access to the international markets, form extensive marketing network etc., which will become the basis for the promotion and revenue growth of the country. The Georgian agricultural sector, with the right state policy and support, can achieve success and gain access to the world market with competitive agricultural products. The paper discusses the current condition of agriculture, export and import of agricultural products and agricultural policy in Georgia. The conducted research concludes the information that there is an increasing demand on the green goods in the world market. Natural and climatic conditions of Georgia give a serious possibility of implementing it. The research presents an agricultural development strategy in Georgia and the findings and based on them recommendations are proposed.Keywords: agriculture, export-import of agricultural products, agricultural cooperative society, agricultural policy, agricultural insurance
Procedia PDF Downloads 3211689 Women And Gender Inequality: The Academic Experience
Authors: Akanle Florence Foluso
Abstract:
This paper examined briefly the patriarchy nature of gendered power system: a network of social, political and economic relationships through which men dominate and control female labour, as well as define women’s status, privileges and rights in the society. The paper discusses the historical perspective of “the academic experience of women. It takes a look at the plight of women in a academia in some Nigeria. Universities in at present to see if both men and women have equal opportunities. This paper focuses on women in Academics today, it examines the overall gender proportions of men and women by universities, women/men ratios by lecturers, women and men ratio of associate professors, women and men ratio of professors by universities. It also examines women and men ratio by Dean also executive heads (Vice Chancellors) Expofactor design was be used. The study population comprised of three selected universities from Ondo, Ekiti and Zanfara respectively. Involuntary and indept interview was used to collect data for the study data for the study was also collected from so purposively selected academic staff in the categories of Dean and senior staff who are familiar with gender issues. Findings souls that there is gender inequality academia.Keywords: women, gender, inequality, academia
Procedia PDF Downloads 771688 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 105